1
|
Kohli N, Theodoridis K, Hall TAG, Sanz-Pena I, Gaboriau DCA, van Arkel RJ. Bioreactor analyses of tissue ingrowth, ongrowth and remodelling around implants: An alternative to live animal testing. Front Bioeng Biotechnol 2023; 11:1054391. [PMID: 36890911 PMCID: PMC9986429 DOI: 10.3389/fbioe.2023.1054391] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 02/06/2023] [Indexed: 02/22/2023] Open
Abstract
Introduction: Preclinical assessment of bone remodelling onto, into or around novel implant technologies is underpinned by a large live animal testing burden. The aim of this study was to explore whether a lab-based bioreactor model could provide similar insight. Method: Twelve ex vivo trabecular bone cylinders were extracted from porcine femora and were implanted with additively manufactured stochastic porous titanium implants. Half were cultured dynamically, in a bioreactor with continuous fluid flow and daily cyclic loading, and half in static well plates. Tissue ongrowth, ingrowth and remodelling around the implants were evaluated with imaging and mechanical testing. Results: For both culture conditions, scanning electron microscopy (SEM) revealed bone ongrowth; widefield, backscatter SEM, micro computed tomography scanning, and histology revealed mineralisation inside the implant pores; and histology revealed woven bone formation and bone resorption around the implant. The imaging evidence of this tissue ongrowth, ingrowth and remodelling around the implant was greater for the dynamically cultured samples, and the mechanical testing revealed that the dynamically cultured samples had approximately three times greater push-through fixation strength (p < 0.05). Discussion: Ex vivo bone models enable the analysis of tissue remodelling onto, into and around porous implants in the lab. While static culture conditions exhibited some characteristics of bony adaptation to implantation, simulating physiological conditions with a bioreactor led to an accelerated response.
Collapse
Affiliation(s)
- Nupur Kohli
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Konstantinos Theodoridis
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Thomas A G Hall
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Inigo Sanz-Pena
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - David C A Gaboriau
- FILM, National Heart & Lung Institute, Imperial College London, London, United Kingdom
| | - Richard J van Arkel
- Biomechanics Group, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
2
|
Micheletti C, Hurley A, Gourrier A, Palmquist A, Tang T, Shah FA, Grandfield K. Bone mineral organization at the mesoscale: A review of mineral ellipsoids in bone and at bone interfaces. Acta Biomater 2022; 142:1-13. [PMID: 35202855 DOI: 10.1016/j.actbio.2022.02.024] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 01/14/2022] [Accepted: 02/17/2022] [Indexed: 01/13/2023]
Abstract
Much debate still revolves around bone architecture, especially at the nano- and microscale. Bone is a remarkable material where high strength and toughness coexist thanks to an optimized composition of mineral and protein and their hierarchical organization across several distinct length scales. At the nanoscale, mineralized collagen fibrils act as building block units. Despite their key role in biological and mechanical functions, the mechanisms of collagen mineralization and the precise arrangement of the organic and inorganic constituents in the fibrils remains not fully elucidated. Advances in three-dimensional (3D) characterization of mineralized bone tissue by focused ion beam-scanning electron microscopy (FIB-SEM) revealed mineral-rich regions geometrically approximated as prolate ellipsoids, much larger than single collagen fibrils. These structures have yet to become prominently recognized, studied, or adopted into biomechanical models of bone. However, they closely resemble the circular to elliptical features previously identified by scanning transmission electron microscopy (STEM) in two-dimensions (2D). Herein, we review the presence of mineral ellipsoids in bone as observed with electron-based imaging techniques in both 2D and 3D with particular focus on different species, anatomical locations, and in proximity to natural and synthetic biomaterial interfaces. This review reveals that mineral ellipsoids are a ubiquitous structure in all the bones and bone-implant interfaces analyzed. This largely overlooked hierarchical level is expected to bring different perspectives to our understanding of bone mineralization and mechanical properties, in turn shedding light on structure-function relationships in bone. STATEMENT OF SIGNIFICANCE: In bone, the hierarchical organization of organic (mainly collagen type I) and inorganic (calcium-phosphate mineral) components across several length scales contributes to a unique combination of strength and toughness. However, aspects related to the collagen-mineral organization and to mineralization mechanisms remain unclear. Here, we review the presence of mineral prolate ellipsoids across a variety of species, anatomical locations, and interfaces, both natural and with synthetic biomaterials. These mineral ellipsoids represent a largely unstudied feature in the organization of bone at the mesoscale, i.e., at a level connecting nano- and microscale. Thorough understanding of their origin, development, and structure can provide valuable insights into bone architecture and mineralization, assisting the treatment of bone diseases and the design of bio-inspired materials.
Collapse
Affiliation(s)
- Chiara Micheletti
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada; Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 46, Sweden
| | - Ariana Hurley
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada; Integrated Biomedical Engineering and Health Sciences, McMaster University, Hamilton L8S 4L7, ON, Canada
| | | | - Anders Palmquist
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 46, Sweden
| | - Tengteng Tang
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada
| | - Furqan A Shah
- Department of Biomaterials, Sahlgrenska Academy, University of Gothenburg, Gothenburg SE-413 46, Sweden
| | - Kathryn Grandfield
- Department of Materials Science and Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada; School of Biomedical Engineering, McMaster University, Hamilton L8S 4L7, ON, Canada.
| |
Collapse
|
3
|
Wang JK, Çimenoğlu Ç, Cheam NMJ, Hu X, Tay CY. Sustainable aquaculture side-streams derived hybrid biocomposite for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 126:112104. [PMID: 34082928 DOI: 10.1016/j.msec.2021.112104] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 03/23/2021] [Accepted: 04/08/2021] [Indexed: 02/07/2023]
Abstract
Despite being a rich source of bioactive compounds, the current exploitation of aquatic biomass is insufficient. Majority of the aquaculture industry side-streams are currently used for low-value purposes such as animal feed or composting material, with low economical returns. To maximize resource reuse and minimize waste generation, valorization efforts should be augmented with the aim to produce high-value products. Herein, we present a novel aquaculture wastes-derived multi-scale osteoconductive hybrid biocomposite that is composed of chemically crosslinked American bullfrog (Rana catesbeiana) skin-derived type I tropocollagen nanofibrils (~22.3 nm) network and functionalized with micronized (~1.6 μm) single-phase hydroxyapatite (HA) from discarded snakehead (Channa micropeltes) fish scales. The bioengineered construct is biocompatible, highly porous (>90%), and exhibits excellent osteoconductive properties, as indicated by robust adhesion and proliferation of human fetal osteoblastic 1.19 cell line (hFOB 1.19). Furthermore, increased expression level of osteo-related ALPL and BGLAP mRNA transcripts, as well as enhanced osteocalcin immunoreactivity and increasing Alizarin red S staining coverage on the hybrid biocomposite was observed over 21 days of culture. Collectively, the devised "waste-to-resource" platform represents a sustainable waste valorization strategy that is amendable for advanced bone repair and regeneration applications.
Collapse
Affiliation(s)
- Jun Kit Wang
- School of Materials Science and Engineering, Nanyang Technological University Singapore, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Çiğdem Çimenoğlu
- School of Materials Science and Engineering, Nanyang Technological University Singapore, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Nicole Mein Ji Cheam
- School of Materials Science and Engineering, Nanyang Technological University Singapore, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Xiao Hu
- School of Materials Science and Engineering, Nanyang Technological University Singapore, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore; Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, 1 CleanTech Loop, CleanTech One, Singapore 637141, Singapore
| | - Chor Yong Tay
- School of Materials Science and Engineering, Nanyang Technological University Singapore, N4.1, 50 Nanyang Avenue, Singapore 639798, Singapore; Environmental Chemistry and Materials Centre, Nanyang Environment & Water Research Institute, 1 CleanTech Loop, CleanTech One, Singapore 637141, Singapore; School of Biological Sciences, Nanyang Technological University Singapore, 60 Nanyang Drive, Singapore 637551, Singapore; Energy Research Institute, Nanyang Technological University Singapore, 50 Nanyang Drive, Singapore 637553, Singapore.
| |
Collapse
|
4
|
Cao NJ, Zhu YH, Gao F, Liang C, Wang ZB, Zhang Y, Hao CP, Wang W. Gradient nanostructured titanium stimulates cell responses in vitro and enhances osseointegration in vivo. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:531. [PMID: 33987229 DOI: 10.21037/atm-20-7588] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Background Though titanium (Ti) is widely used as dental materials in the clinic, effective methods to treat Ti for higher surface biological activity still lack. Through Surface mechanical attrition treatment (SMAT) technology we could endow Ti with gradient nanostructured surface (GNS Ti). To investigate the biocompatibility of GNS Ti for its further application in dental implant field, we study the effects of GNS Ti on cell responses in vitro and osseointegration of the implant with surrounding bone tissues in vivo. Methods In this study, GNS Ti was fabricated by SMAT. In vitro experiment, we co-cultured GNS Ti with bone mesenchymal stem cells (BMSCs), surface characterization was detected by transmission electron microscope (TEM). Adhesion, proliferation and differentiation of BMSCs were evaluated by scanning electron microscope (SEM), MTT, flow cytometry (FCM), alkaline phosphatase (ALP) and osteocalcin (OCN) tests. In vivo experiment, the GNS Ti was implanted into the rabbit mandible. Osteogenesis and osseointegration were evaluated by Micro CT, toluidine blue staining, and immunohistochemical staining at 4, 8, and 12 weeks postoperatively. Results Both results showed that compared with the coarse grained (CG) Ti, the GNS Ti stimulated the adhesion, proliferation, and differentiation of BMSCs and improved osteogenesis and osseointegration. Conclusions This study indicates that gradient nanostructured Ti is a promising material for dental implant application.
Collapse
Affiliation(s)
- Nan-Jue Cao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China.,The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, China
| | - Yu-He Zhu
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Fei Gao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Chen Liang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Zhen-Bo Wang
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China
| | - Yue Zhang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Chun-Ping Hao
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Wei Wang
- School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| |
Collapse
|
5
|
Kamyshinsky RA, Patsaev TD, Tenchurin TK, Zagoskin YD, Grigoriev TE, Darienko KA, Panteleyev AA, Chvalun SN, Vasiliev AL. Environmental Scanning Electron Microscopy of Dermal Fibroblasts on Various Types of Polymer Scaffolds. CRYSTALLOGR REP+ 2020. [DOI: 10.1134/s1063774520050107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Arevalo SE, Pruitt LA. Nanomechanical analysis of medical grade PEEK and carbon fiber-reinforced PEEK composites. J Mech Behav Biomed Mater 2020; 111:104008. [PMID: 32805544 DOI: 10.1016/j.jmbbm.2020.104008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 01/23/2023]
Abstract
Polyether ether ketone (PEEK) and PEEK composites are viable candidates for orthopedic implants owing to their ability for modulus match of surrounding bone tissue. The structural properties of these systems for load-bearing application in the body can be tailored by incorporating carbon fibers; to this end, polyacrylonitrile (PAN) and pitch fibers are commonly incorporated in the PEEK matrix. Mechanical property optimization for a given medical application requires consideration of carbon fiber type and volume fraction, as well as processing conditions for the composite systems. While much is known about the bulk mechanical properties of PEEK and PEEK composites, little is known about the nanomechanical properties of these systems. Insight into nanoscale behavior can offer valuable information about fiber-matrix interactions that may influence long-term integrity of these biomaterials when used in load bearing medical device applications. In this study, we utilize nanoindentation as a method to characterize mechanical behavior of clinical grade PEEK and PEEK composites. We examine PEEK formulations with pitch and PAN fibers and evaluate a range of thermal treatments known to influence polymer microstructure. We use a conospherical tip of 1.5 μm in radius and a conospherical tip of 20 μm radius to determine indentation modulus over different length scales. We correlate these findings with previous characterization on these same PEEK systems using microindentation. A novelty of this work is that we combine nanoindentation with k-means clustering to quantitatively discern the influence of heat treatment and carbon fiber type on the mechanical behavior of PEEK composites and their constituents. We demonstrate that nanoindentation is an effective characterization tool for discerning fiber-matrix interactions and measuring the mechanical behavior in response to thermal treatment and carbon fiber type in PEEK composites. Nanoindentation is shown to be a viable tool for characterizing complex biomaterials and can serve as an effective technique to guide optimization of microstructures for long-term structural applications in the body.
Collapse
Affiliation(s)
- Sofia E Arevalo
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA.
| | - Lisa A Pruitt
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| |
Collapse
|
7
|
Qian L, Zhao H. Nanoindentation of Soft Biological Materials. MICROMACHINES 2018; 9:E654. [PMID: 30544918 PMCID: PMC6316095 DOI: 10.3390/mi9120654] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 01/01/2023]
Abstract
Nanoindentation techniques, with high spatial resolution and force sensitivity, have recently been moved into the center of the spotlight for measuring the mechanical properties of biomaterials, especially bridging the scales from the molecular via the cellular and tissue all the way to the organ level, whereas characterizing soft biomaterials, especially down to biomolecules, is fraught with more pitfalls compared with the hard biomaterials. In this review we detail the constitutive behavior of soft biomaterials under nanoindentation (including AFM) and present the characteristics of experimental aspects in detail, such as the adaption of instrumentation and indentation response of soft biomaterials. We further show some applications, and discuss the challenges and perspectives related to nanoindentation of soft biomaterials, a technique that can pinpoint the mechanical properties of soft biomaterials for the scale-span is far-reaching for understanding biomechanics and mechanobiology.
Collapse
Affiliation(s)
- Long Qian
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| | - Hongwei Zhao
- School of Mechanical and Aerospace Engineering, Jilin University, Changchun 130025, China.
| |
Collapse
|
8
|
How cell culture conditions affect the microstructure and nanomechanical properties of extracellular matrix formed by immortalized human mesenchymal stem cells: An experimental and modelling study. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 89:149-159. [DOI: 10.1016/j.msec.2018.03.027] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 02/02/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022]
|
9
|
Modelling the Nanomechanical Responses of Biofilms Grown on the Indenter Probe. Processes (Basel) 2018. [DOI: 10.3390/pr6070084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Cao Y, Duan P, Chen J. Modelling the nanomechanical response of a micro particle-matrix system for nanoindentation tests. NANOTECHNOLOGY 2016; 27:195703. [PMID: 27041486 DOI: 10.1088/0957-4484/27/19/195703] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A lot of experimental, numerical simulation and analytical modelling work has been done on how the substrate affects the measured hardness and elastic modulus of the coating/substrate system for nanoindentation tests. Little work has been done on the elastic-plastic behaviour of micro particle-matrix systems. Clifford et al have proposed an empirical model to describe the spatially dependent composite modulus during nanoindentation tests for linear elastic particles embedded in a linear elastic matrix. However, no such models have been developed for elastic-plastic composites. In this study, finite element simulations were used to determine the elastic modulus and hardness of hard particles embedded in a soft matrix and vice versa. An extended Clifford model has been developed to determine the elastic modulus and hardness for elastic-plastic composites with various particle shapes and volume fractions.
Collapse
Affiliation(s)
- Yunyi Cao
- School of Mechanical & Systems Engineering, Newcastle University, Newcastle Upon Tyne, NE1 7RU, UK
| | | | | |
Collapse
|
11
|
Kilpatrick JI, Revenko I, Rodriguez BJ. Nanomechanics of Cells and Biomaterials Studied by Atomic Force Microscopy. Adv Healthc Mater 2015. [PMID: 26200464 DOI: 10.1002/adhm.201500229] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The behavior and mechanical properties of cells are strongly dependent on the biochemical and biomechanical properties of their microenvironment. Thus, understanding the mechanical properties of cells, extracellular matrices, and biomaterials is key to understanding cell function and to develop new materials with tailored mechanical properties for tissue engineering and regenerative medicine applications. Atomic force microscopy (AFM) has emerged as an indispensable technique for measuring the mechanical properties of biomaterials and cells with high spatial resolution and force sensitivity within physiologically relevant environments and timescales in the kPa to GPa elastic modulus range. The growing interest in this field of bionanomechanics has been accompanied by an expanding array of models to describe the complexity of indentation of hierarchical biological samples. Furthermore, the integration of AFM with optical microscopy techniques has further opened the door to a wide range of mechanotransduction studies. In recent years, new multidimensional and multiharmonic AFM approaches for mapping mechanical properties have been developed, which allow the rapid determination of, for example, cell elasticity. This Progress Report provides an introduction and practical guide to making AFM-based nanomechanical measurements of cells and surfaces for tissue engineering applications.
Collapse
Affiliation(s)
- Jason I. Kilpatrick
- Conway Institute of Biomolecular and Biomedical Research; University College Dublin; Belfield Dublin 4 Ireland
| | - Irène Revenko
- Asylum Research an Oxford Instruments Company; 6310 Hollister Avenue Santa Barbara CA 93117 USA
| | - Brian J. Rodriguez
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin; Belfield, Dublin 4, Ireland; School of Physics; University College Dublin; Belfield Dublin 4 Ireland
| |
Collapse
|
12
|
Cimpean A, Vasilescu E, Drob P, Cinca I, Vasilescu C, Anastasescu M, Mitran V, Drob SI. Enhancement of the electrochemical behaviour and biological performance of Ti–25Ta–5Zr alloy by thermo-mechanical processing. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 38:127-42. [DOI: 10.1016/j.msec.2014.01.056] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Revised: 01/15/2014] [Accepted: 01/30/2014] [Indexed: 11/16/2022]
|
13
|
Abstract
Nanobiomechanics of living cells is very important to understand cell-materials interactions. This would potentially help to optimize the surface design of the implanted materials and scaffold materials for tissue engineering. The nanoindentation techniques enable quantifying nanobiomechanics of living cells, with flexibility of using indenters of different geometries. However, the data interpretation for nanoindentation of living cells is often difficult. Despite abundant experimental data reported on nanobiomechanics of living cells, there is a lack of comprehensive discussion on testing with different tip geometries, and the associated mechanical models that enable extracting the mechanical properties of living cells. Therefore, this paper discusses the strategy of selecting the right type of indenter tips and the corresponding mechanical models at given test conditions.
Collapse
Affiliation(s)
- Jinju Chen
- School of Mechanical and Systems Engineering, Newcastle University, Newcastle Upon Tyne NE1 7RU, UK
- Arthritis Research UK (ARUK) Tissue Engineering Centre, Institute of Cellular Medicine, Newcastle University, Newcastle Upon Tyne NE2 4HH, UK
| |
Collapse
|
14
|
Nanomechanical properties and molecular structures of in vitro mineralized tissues on anodically-oxidized titanium surfaces. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2014; 10:629-37. [DOI: 10.1016/j.nano.2013.09.007] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 08/12/2013] [Accepted: 09/26/2013] [Indexed: 12/23/2022]
|
15
|
Park JE, Todo M. Development and characterization of reinforced poly(L-lactide) scaffolds for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2011; 22:1171-1182. [PMID: 21431907 DOI: 10.1007/s10856-011-4289-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 03/10/2011] [Indexed: 05/30/2023]
Abstract
Novel reinforced poly(L-lactic acid) (PLLA) scaffolds such as solid shell, porous shell, one beam and two beam reinforced scaffolds were developed to improve the mechanical properties of a standard PLLA scaffold. Experimental results clearly indicated that the compressive mechanical properties such as the strength and the modulus are effectively improved by introducing the reinforcement structures. A linear elastic model consisting of three phases, that is, the reinforcement, the porous matrix and the boundary layer was also introduced in order to predict the compressive moduli of the reinforced scaffolds. The comparative study clearly showed that the simple theoretical model can reasonably predict the moduli of the scaffolds with three phase structures. The failure mechanism of the solid shell and the porous shell reinforced scaffolds under compression were found to be buckling of the solid shell and localized buckling of the struts constructing the pores in the porous shell, respectively. For the beam reinforced scaffolds, on the contrary, the primary failure mechanism was understood to be micro-cracking within the beams and the subsequent formation of the main-crack due to the coalescence of the micro-racks. The biological study was exhibited that osteoblast-like cells, MC3T3-E1, were well adhered and proliferated on the surfaces of the scaffolds after 12 days culturing.
Collapse
Affiliation(s)
- Joo-Eon Park
- Interdisciplinary Graduate School of Engineering Sciences, Kyushu University, 6-1 Kasuga-koen, Kasuga, 816-8580, Japan
| | | |
Collapse
|