1
|
Kumari S, Katiyar S, Darshna, Anand A, Singh D, Singh BN, Mallick SP, Mishra A, Srivastava P. Design strategies for composite matrix and multifunctional polymeric scaffolds with enhanced bioactivity for bone tissue engineering. Front Chem 2022; 10:1051678. [PMID: 36518978 PMCID: PMC9742444 DOI: 10.3389/fchem.2022.1051678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 11/14/2022] [Indexed: 09/19/2023] Open
Abstract
Over the past few decades, various bioactive material-based scaffolds were investigated and researchers across the globe are actively involved in establishing a potential state-of-the-art for bone tissue engineering applications, wherein several disciplines like clinical medicine, materials science, and biotechnology are involved. The present review article's main aim is to focus on repairing and restoring bone tissue defects by enhancing the bioactivity of fabricated bone tissue scaffolds and providing a suitable microenvironment for the bone cells to fasten the healing process. It deals with the various surface modification strategies and smart composite materials development that are involved in the treatment of bone tissue defects. Orthopaedic researchers and clinicians constantly focus on developing strategies that can naturally imitate not only the bone tissue architecture but also its functional properties to modulate cellular behaviour to facilitate bridging, callus formation and osteogenesis at critical bone defects. This review summarizes the currently available polymeric composite matrices and the methods to improve their bioactivity for bone tissue regeneration effectively.
Collapse
Affiliation(s)
- Shikha Kumari
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Soumya Katiyar
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Darshna
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Aditya Anand
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Divakar Singh
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sarada Prasanna Mallick
- Department of Biotechnology, Koneru Lakshmaiah Education Foundation, Vaddeswaram, Andhra Pradesh, India
| | - Abha Mishra
- School of Biochemical Engineering, IIT BHU, Varanasi, India
| | | |
Collapse
|
2
|
Gradinaru LM, Barbalata‐Mandru M, Vlad S, Petrescu M. Surface energy evaluation of casting and nanofiber polyurethane films by using different models. J Appl Polym Sci 2021. [DOI: 10.1002/app.50834] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
| | | | - Stelian Vlad
- Petru Poni Institute of Macromolecular Chemistry Iași Romania
| | | |
Collapse
|
3
|
Venegas-Cervera GA, Oliva AI, Avila-Ortega A, Cervantes-Uc JM, Carrillo-Cocom LM, Juarez-Moreno JA. Biocompatibility studies of polyurethane electrospun membranes based on arginine as chain extender. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:104. [PMID: 34417669 PMCID: PMC8379123 DOI: 10.1007/s10856-021-06581-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Electrospun polymers are an example of multi-functional biomaterials that improve the material-cellular interaction and aimed at enhancing wound healing. The main objective of this work is to fabricate electrospun polyurethane membranes using arginine as chain extender (PUUR) in order to test the fibroblasts affinity and adhesion on the material and the polymer toxicity. Polyurethane membranes were prepared in two steps: (i) the polyurethane synthesis, and ii) the electrospinning process. The membranes were characterized by scanning electron microscopy (SEM), Fourier transforms infrared spectroscopy, gel permeation chromatography, and differential scanning calorimetry techniques. The evaluation of PUUR as a scaffolding biomaterial for growing and developing of cells on the material was realized by LIVE/DEAD staining. The results show that the fluorescent surface area of human fibroblasts (hFB), was greater in control dense membranes made from Tecoflex than in electrospun and dense PUUR. From SEM analysis, the electrospun membranes show relatively uniform attachment of cells with a well-spread shape, while Tecoflex dense membranes show a non-proliferating round shape, which is attributed to the fiber's structure in electrospun membranes. The cell morphology and the cell attachment assay results reveal the well spreading of hFB cells on the surface of electrospun PUUR membranes which indicates a good response related to cell adhesion.
Collapse
Affiliation(s)
- Georgina Alejandra Venegas-Cervera
- Facultad de Ingeniería Química, Periférico Norte Kilómetro 33.5, Universidad Autónoma de Yucatán, Col. Chuburná de Hidalgo Inn, C.P. 97203, Mérida, Yucatán, México
| | - Andrés Iván Oliva
- Centro de Investigación y de Estudios Avanzados del IPN, Unidad Mérida, Depto. de Física Aplicada, Km. 6 Antigua Carretera a Progreso A.P. 73, Cordemex, C.P. 97310, Mérida, Yucatán, México
| | - Alejandro Avila-Ortega
- Facultad de Ingeniería Química, Periférico Norte Kilómetro 33.5, Universidad Autónoma de Yucatán, Col. Chuburná de Hidalgo Inn, C.P. 97203, Mérida, Yucatán, México
| | - José Manuel Cervantes-Uc
- Centro de Investigación Científica de Yucatán, A.C., Unidad de Materiales, Calle 43 No. 130 x32y 34, Col. Chuburná de Hidalgo, C.P. 97205, Mérida, Yucatán, México
| | - Leydi Maribel Carrillo-Cocom
- Facultad de Ingeniería Química, Periférico Norte Kilómetro 33.5, Universidad Autónoma de Yucatán, Col. Chuburná de Hidalgo Inn, C.P. 97203, Mérida, Yucatán, México
| | - Juan Antonio Juarez-Moreno
- Facultad de Ingeniería Química, Periférico Norte Kilómetro 33.5, Universidad Autónoma de Yucatán, Col. Chuburná de Hidalgo Inn, C.P. 97203, Mérida, Yucatán, México.
| |
Collapse
|
4
|
Moreira A, Lawson D, Onyekuru L, Dziemidowicz K, Angkawinitwong U, Costa PF, Radacsi N, Williams GR. Protein encapsulation by electrospinning and electrospraying. J Control Release 2020; 329:1172-1197. [PMID: 33127450 DOI: 10.1016/j.jconrel.2020.10.046] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/20/2020] [Accepted: 10/22/2020] [Indexed: 12/24/2022]
Abstract
Given the increasing interest in the use of peptide- and protein-based agents in therapeutic strategies, it is fundamental to develop delivery systems capable of preserving the biological activity of these molecules upon administration, and which can provide tuneable release profiles. Electrohydrodynamic (EHD) techniques, encompassing electrospinning and electrospraying, allow the generation of fibres and particles with high surface area-to-volume ratios, versatile architectures, and highly controllable release profiles. This review is focused on exploring the potential of different EHD methods (including blend, emulsion, and co-/multi-axial electrospinning and electrospraying) for the development of peptide and protein delivery systems. An overview of the principles of each technique is first presented, followed by a survey of the literature on the encapsulation of enzymes, growth factors, antibodies, hormones, and vaccine antigens using EHD approaches. The possibility for localised delivery using stimuli-responsive systems is also explored. Finally, the advantages and challenges with each EHD method are summarised, and the necessary steps for clinical translation and scaled-up production of electrospun and electrosprayed protein delivery systems are discussed.
Collapse
Affiliation(s)
| | - Dan Lawson
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK
| | - Lesley Onyekuru
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Karolina Dziemidowicz
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Ukrit Angkawinitwong
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK
| | - Pedro F Costa
- BIOFABICS, Rua Alfredo Allen 455, 4200-135 Porto, Portugal.
| | - Norbert Radacsi
- School of Engineering, Institute for Materials and Processes, The University of Edinburgh, Robert Stevenson Road, Edinburgh EH9 3FB, UK.
| | - Gareth R Williams
- UCL School of Pharmacy, University College London, 29-39 Brunswick Square, London WC1N 1AX, UK.
| |
Collapse
|
5
|
El Khatib M, Mauro A, Wyrwa R, Di Mattia M, Turriani M, Di Giacinto O, Kretzschmar B, Seemann T, Valbonetti L, Berardinelli P, Schnabelrauch M, Barboni B, Russo V. Fabrication and Plasma Surface Activation of Aligned Electrospun PLGA Fiber Fleeces with Improved Adhesion and Infiltration of Amniotic Epithelial Stem Cells Maintaining their Teno-inductive Potential. Molecules 2020; 25:E3176. [PMID: 32664582 PMCID: PMC7396982 DOI: 10.3390/molecules25143176] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 02/06/2023] Open
Abstract
Electrospun PLGA microfibers with adequate intrinsic physical features (fiber alignment and diameter) have been shown to boost teno-differentiation and may represent a promising solution for tendon tissue engineering. However, the hydrophobic properties of PLGA may be adjusted through specific treatments to improve cell biodisponibility. In this study, electrospun PLGA with highly aligned microfibers were cold atmospheric plasma (CAP)-treated by varying the treatment exposure time (30, 60, and 90 s) and the working distance (1.3 and 1.7 cm) and characterized by their physicochemical, mechanical and bioactive properties on ovine amniotic epithelial cells (oAECs). CAP improved the hydrophilic properties of the treated materials due to the incorporation of new oxygen polar functionalities on the microfibers' surface especially when increasing treatment exposure time and lowering working distance. The mechanical properties, though, were affected by the treatment exposure time where the optimum performance was obtained after 60 s. Furthermore, CAP treatment did not alter oAECs' biocompatibility and improved cell adhesion and infiltration onto the microfibers especially those treated from a distance of 1.3 cm. Moreover, teno-inductive potential of highly aligned PLGA electrospun microfibers was maintained. Indeed, cells cultured onto the untreated and CAP treated microfibers differentiated towards the tenogenic lineage expressing tenomodulin, a mature tendon marker, in their cytoplasm. In conclusion, CAP treatment on PLGA microfibers conducted at 1.3 cm working distance represent the optimum conditions to activate PLGA surface by improving their hydrophilicity and cell bio-responsiveness. Since for tendon tissue engineering purposes, both high cell adhesion and mechanical parameters are crucial, PLGA treated for 60 s at 1.3 cm was identified as the optimal construct.
Collapse
Affiliation(s)
- Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Annunziata Mauro
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Ralf Wyrwa
- Department of Biomaterials, INNOVENT e. V., 07745 Jena, Germany; (R.W.); (M.S.)
| | - Miriam Di Mattia
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Maura Turriani
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Oriana Di Giacinto
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Björn Kretzschmar
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany; (B.K.); (T.S.)
| | - Thomas Seemann
- Department of Surface Engineering, INNOVENT e. V., 07745 Jena, Germany; (B.K.); (T.S.)
| | - Luca Valbonetti
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Paolo Berardinelli
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | | | - Barbara Barboni
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| | - Valentina Russo
- Unit of Basic and Applied Biosciences, Faculty of Bioscience and Agro-Food and Environmental Technology, University of Teramo, 64100 Teramo, Italy; (M.E.K.); (M.D.M.); (M.T.); (O.D.G.); (L.V.); (P.B.); (B.B.); (V.R.)
| |
Collapse
|
6
|
Begum R, Perriman AW, Su B, Scarpa F, Kafienah W. Chondroinduction of Mesenchymal Stem Cells on Cellulose-Silk Composite Nanofibrous Substrates: The Role of Substrate Elasticity. Front Bioeng Biotechnol 2020; 8:197. [PMID: 32266231 PMCID: PMC7096586 DOI: 10.3389/fbioe.2020.00197] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 02/28/2020] [Indexed: 01/09/2023] Open
Abstract
Smart biomaterials with an inherent capacity to elicit specific behaviors in lieu of biological prompts would be advantageous for regenerative medicine applications. In this work, we employ an electrospinning technique to model the in vivo nanofibrous extracellular matrix (ECM) of cartilage using a chondroinductive cellulose and silk polymer blend (75:25 ratio). This natural polymer composite is directly electrospun for the first time, into nanofibers without post-spun treatment, using a trifluoroacetic acid and acetic acid cosolvent system. Biocompatibility of the composite nanofibres with human mesenchymal stem cells (hMSCs) is demonstrated and its inherent capacity to direct chondrogenic stem cell differentiation, in the absence of stimulating growth factors, is confirmed. This chondrogenic stimulation could be countered biochemically using fibroblast growth factor-2, a growth factor used to enhance the proliferation of hMSCs. Furthermore, the potential mechanisms driving this chondroinduction at the cell-biomaterial interface is investigated. Composite substrates are fabricated as two-dimensional film surfaces and cultured with hMSCs in the presence of chemicals that interfere with their biochemical and mechanical signaling pathways. Preventing substrate surface elasticity transmission resulted in a significant downregulation of chondrogenic gene expression. Interference with the classical chondrogenic Smad2/3 phosphorylation pathway did not impact chondrogenesis. The results highlight the importance of substrate mechanical elasticity on hMSCs chondroinduction and its independence to known chondrogenic biochemical pathways. The newly fabricated scaffolds provide the foundation for designing a robust, self-inductive, and cost-effective biomimetic biomaterial for cartilage tissue engineering.
Collapse
Affiliation(s)
- Runa Begum
- Faculty of Biomedical Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Adam W Perriman
- Faculty of Biomedical Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| | - Bo Su
- Bristol Dental School, University of Bristol, Bristol, United Kingdom
| | - Fabrizio Scarpa
- Bristol Composites Institute (ACCIS), University of Bristol, Bristol, United Kingdom
| | - Wael Kafienah
- Faculty of Biomedical Sciences, School of Cellular and Molecular Medicine, University of Bristol, Bristol, United Kingdom
| |
Collapse
|
7
|
Koosha M, Solouk A, Ghalei S, Sadeghi D, Bagheri S, Mirzadeh H. Chitosan/gum tragacanth/PVA hybrid nanofibrous scaffold for tissue engineering applications. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2020. [DOI: 10.1680/jbibn.18.00028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this paper, preparation and characterization of a nanofibrous scaffold comprising both chitosan (CS) and gum tragacanth (GT) are reported for the first time. CS and GT were separately blended with poly(vinyl alcohol) (PVA) and simultaneously electrospun by a double-nozzle electrospinning apparatus, and the resulting nanofibrous mats were compared with CS/PVA and GT/PVA electrospun ones. Scanning electron microscopy images showed uniform bead-free nanofibers with some merging areas and an average fiber diameter of ∼273 nm for CS-PVA/GT-PVA. The ultimate tensile strength and strain at break of the hybrid nanofibers were ∼20 MPa and ∼9%, respectively, which were significantly higher than those of the CS/PVA and GT/PVA nanofibers. The CS-PVA/GT-PVA nanofibrous mats also showed a water droplet contact angle value (∼31°) between those of the CS/PVA and GT/PVA nanofibrous mats. MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay using L929 fibroblast cells indicated more biocompatibility of the CS-PVA/GT-PVA hybrid nanofibers compared with the CS/PVA and GT/PVA ones. The obtained results showed that the CS-PVA/GT-PVA hybrid nanofibrous scaffold might be useful for tissue engineering applications.
Collapse
Affiliation(s)
- Mojtaba Koosha
- Faculty of New Technologies Engineering, Shahid Beheshti University, Tehran, Iran
| | - Atefeh Solouk
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Sama Ghalei
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Davoud Sadeghi
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadab Bagheri
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Hamid Mirzadeh
- Department of Polymer Engineering and Color Technology, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| |
Collapse
|
8
|
Higuchi J, Fortunato G, Woźniak B, Chodara A, Domaschke S, Męczyńska-Wielgosz S, Kruszewski M, Dommann A, Łojkowski W. Polymer Membranes Sonocoated and Electrosprayed with Nano-Hydroxyapatite for Periodontal Tissues Regeneration. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1625. [PMID: 31731775 PMCID: PMC6915502 DOI: 10.3390/nano9111625] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Revised: 11/12/2019] [Accepted: 11/13/2019] [Indexed: 01/21/2023]
Abstract
Diseases of periodontal tissues are a considerable clinical problem, connected with inflammatory processes and bone loss. The healing process often requires reconstruction of lost bone in the periodontal area. For that purpose, various membranes are used to prevent ingrowth of epithelium in the tissue defect and enhance bone regeneration. Currently-used membranes are mainly non-resorbable or are derived from animal tissues. Thus, there is an urgent need for non-animal-derived bioresorbable membranes with tuned resorption rates and porosity optimized for the circulation of body nutrients. We demonstrate membranes produced by the electrospinning of biodegradable polymers (PDLLA/PLGA) coated with nanohydroxyapatite (nHA). The nHA coating was made using two methods: sonocoating and electrospraying of nHA suspensions. In a simulated degradation study, for electrosprayed membranes, short-term calcium release was observed, followed by hydrolytic degradation. Sonocoating produced a well-adhering nHA layer with full coverage of the fibers. The layer slowed the polymer degradation and increased the membrane wettability. Due to gradual release of calcium ions the degradation-associated acidity of the polymer was neutralized. The sonocoated membranes exhibited good cellular metabolic activity responses against MG-63 and BJ cells. The collected results suggest their potential use in Guided Tissue Regeneration (GTR) and Guided Bone Regeneration (GBR) periodontal procedures.
Collapse
Affiliation(s)
- Julia Higuchi
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, 01142 Warsaw, Poland; (B.W.); (A.C.); (W.Ł.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02507 Warsaw, Poland
- Laboratory for Biomimetic Membranes and Textiles, Empa Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Giuseppino Fortunato
- Laboratory for Biomimetic Membranes and Textiles, Empa Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland
| | - Bartosz Woźniak
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, 01142 Warsaw, Poland; (B.W.); (A.C.); (W.Ł.)
| | - Agnieszka Chodara
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, 01142 Warsaw, Poland; (B.W.); (A.C.); (W.Ł.)
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 02507 Warsaw, Poland
| | - Sebastian Domaschke
- Experimental Continuum Mechanics, Empa Swiss Federal Laboratories for Materials Science and Technology, 8600 Dübendorf, Switzerland;
- Department of Mechanical and Process Engineering, Institute for Mechanical Systems, ETH Zürich, 8092 Zürich, Switzerland
| | - Sylwia Męczyńska-Wielgosz
- Centre for Radiobiology and Biological Dosimetry, Institute of Nuclear Chemistry and Technology, 03195 Warsaw, Poland;
| | - Marcin Kruszewski
- Department of Molecular Biology and Translational Research, Institute of Rural Health, 20090 Lublin, Poland;
| | - Alex Dommann
- Department Materials meet Life, Empa Swiss Federal Laboratories for Materials Science and Technology, 9014 St. Gallen, Switzerland;
| | - Witold Łojkowski
- Laboratory of Nanostructures, Institute of High Pressure Physics, Polish Academy of Sciences, 01142 Warsaw, Poland; (B.W.); (A.C.); (W.Ł.)
| |
Collapse
|
9
|
Liu C, Wang C, Zhao Q, Li X, Xu F, Yao X, Wang M. Incorporation and release of dual growth factors for nerve tissue engineering using nanofibrous bicomponent scaffolds. ACTA ACUST UNITED AC 2018. [PMID: 29537390 DOI: 10.1088/1748-605x/aab693] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Electrospun fibrous scaffolds have been extensively used as cell-supporting matrices or delivery vehicles for various biomolecules in tissue engineering. Biodegradable scaffolds with tunable degradation behaviors are favorable for various resorbable tissue replacements. In nerve tissue engineering, delivery of growth factors (GFs) such as nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) from scaffolds can be used to promote peripheral nerve repair. In this study, using the established dual-source dual-power electrospinning technique, bicomponent scaffolds incorporated with NGF and GDNF were designed and demonstrated as a strategy to develop scaffolds providing dual GF delivery. NGF and GDNF were encapsulated in poly(D, L-lactic acid) (PDLLA) and poly(lactic-co-glycolic acid) (PLGA) nanofibers, respectively, via emulsion electrospinning. Bicomponent scaffolds with various mass ratios of GDNF/PLGA fibers to NGF/PDLLA fibers were fabricated. Their morphology, structure, properties, and the in vitro degradation were examined. Both types of core-shell structured fibers were evenly distributed in bicomponent scaffolds. Robust scaffolds with varying component ratios were fabricated with average fiber diameter ranging from 307 ± 100 nm to 688 ± 129 nm. The ultimate tensile stress and elastic modulus could be tuned ranging from 0.23 ± 0.07 MPa to 1.41 ± 0.23 MPa, 11.1 ± 3.0 MPa to 75.9 ± 3.3 MPa, respectively. Adjustable degradation was achieved and the weight loss of scaffolds ranged from 9.2% to 44.0% after 42 day degradation test. GDNF and NGF were incorporated with satisfactory encapsulation efficiency and their bioactivity were well preserved. Sustained release of both types of GFs was also achieved.
Collapse
Affiliation(s)
- Chaoyu Liu
- Department of Mechanical Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong, People's Republic of China. Department of Research and Development, Shenzhen Gene Health Bio Tech Co., Ltd, Shenzhen, 518055, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
10
|
Wang C, Lu WW, Wang M. Bicomponent fibrous scaffolds made through dual-source dual-power electrospinning: Dual delivery of rhBMP-2 and Ca-P nanoparticles and enhanced biological performances. J Biomed Mater Res A 2017; 105:2199-2209. [DOI: 10.1002/jbm.a.36084] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/01/2017] [Accepted: 03/29/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Chong Wang
- Department of Mechanical Engineering; The University of Hong Kong; Pokfulam Road Hong Kong
| | - William Weijia Lu
- Department of Orthopedics and Traumatology, Li Ka Shing Faculty of Medicine; The University of Hong Kong; Sasson Road Hong Kong
| | - Min Wang
- Department of Mechanical Engineering; The University of Hong Kong; Pokfulam Road Hong Kong
| |
Collapse
|
11
|
Ngadiman NHA, Noordin MY, Idris A, Kurniawan D. A review of evolution of electrospun tissue engineering scaffold: From two dimensions to three dimensions. Proc Inst Mech Eng H 2017; 231:597-616. [DOI: 10.1177/0954411917699021] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The potential of electrospinning process to fabricate ultrafine fibers as building blocks for tissue engineering scaffolds is well recognized. The scaffold construct produced by electrospinning process depends on the quality of the fibers. In electrospinning, material selection and parameter setting are among many factors that contribute to the quality of the ultrafine fibers, which eventually determine the performance of the tissue engineering scaffolds. The major challenge of conventional electrospun scaffolds is the nature of electrospinning process which can only produce two-dimensional electrospun mats, hence limiting their applications. Researchers have started to focus on overcoming this limitation by combining electrospinning with other techniques to fabricate three-dimensional scaffold constructs. This article reviews various polymeric materials and their composites/blends that have been successfully electrospun for tissue engineering scaffolds, their mechanical properties, and the various parameters settings that influence the fiber morphology. This review also highlights the secondary processes to electrospinning that have been used to develop three-dimensional tissue engineering scaffolds as well as the steps undertaken to overcome electrospinning limitations.
Collapse
Affiliation(s)
| | - MY Noordin
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Ani Idris
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Denni Kurniawan
- Department of Mechanical Engineering, Curtin University, Miri, Malaysia
- Department of Mechanical, Robotics and Energy Engineering, Dongguk University, Seoul, Korea
| |
Collapse
|
12
|
Ngadiman NHA, Mohd Yusof N, Idris A, Kurniawan D, Fallahiarezoudar E. Fabricating high mechanical strength γ-Fe2O3 nanoparticles filled poly(vinyl alcohol) nanofiber using electrospinning process potentially for tissue engineering scaffold. J BIOACT COMPAT POL 2016. [DOI: 10.1177/0883911516681328] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of electrospinning has gained substantial interest in the development of tissue engineering scaffolds due to its ability to produce nanoscale fibers which can mimic the geometry of extracellular tissues. Besides geometry, mechanical property is one of the main elements to be considered when developing tissue engineering scaffolds. In this study, the electrospinning process parameter settings were varied in order to find the optimum setting which can produce electrospun nanofibrous mats with good mechanical properties. Maghemite (γ-Fe2O3) was mixed with poly(vinyl alcohol) and then electrospun to form nanofibers. The five input variable factors involved were nanoparticles content, voltage, flow rate, spinning distance, and rotating speed, while the response variable considered was Young’s modulus. The performance of electrospinning process was systematically screened and optimized using response surface methodology. This work truly demonstrated the sequential nature of designed experimentation. Additionally, the application of various designs of experiment techniques and concepts was also demonstrated. Results revealed that electrospun nanofibrous mats with maximum Young’s modulus (273.51 MPa) was obtained at optimum input settings: 9 v/v% nanoparticle content, 35 kV voltage, 2 mL/h volume flow rate, 8 cm spinning distance, and 3539 r/min of rotating speed. The model was verified successfully by performing confirmation experiments. The nanofibers characterization demonstrated that the nanoparticles were well dispersed inside the nanofibers, and it also showed that the presence of defects on the nanofibers can decrease their mechanical strength. The biocompatibility performance was also evaluated and it was proven that the presence of γ-Fe2O3 enhanced the cell viability and cell growth rate. The developed poly(vinyl alcohol)/γ-Fe2O3 electrospun nanofiber mat has a good potential for tissue engineering scaffolds.
Collapse
Affiliation(s)
| | - Noordin Mohd Yusof
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Ani Idris
- Institute of Bioproduct Development, Universiti Teknologi Malaysia, Skudai, Malaysia
- Faculty of Chemical & Energy Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | - Denni Kurniawan
- Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Skudai, Malaysia
| | | |
Collapse
|
13
|
Buschmann J. Biomimetic phosphate nanocomposites for bone-tissue regeneration. NANOCOMPOSITES FOR MUSCULOSKELETAL TISSUE REGENERATION 2016:285-305. [DOI: 10.1016/b978-1-78242-452-9.00013-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
14
|
Cui X, Liu M, Wang J, Zhou Y, Xiang Q. Electrospun scaffold containing TGF-β1 promotes human mesenchymal stem cell differentiation towards a nucleus pulposus-like phenotype under hypoxia. IET Nanobiotechnol 2015; 9:76-84. [PMID: 25829173 DOI: 10.1049/iet-nbt.2014.0006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The study was aimed at evaluating the effect of electrospun scaffold containing TGF-β1 on promoting human mesenchymal stem cells (MSCs) differentiation towards a nucleus pulposus-like phenotype under hypoxia. Two kinds of nanofibrous scaffolds containing TGF-β1 were fabricated using uniaxial electrospinning (Group I) and coaxial electrospinning (Group II). Human MSCs were seeded on both kinds of scaffolds and cultured in a hypoxia chamber (2% O2), and then the scaffolds were characterised. Cell proliferation and differentiation were also evaluated after 3 weeks of cell culture. Results showed that both kinds of scaffolds shared similar diameter distributions and protein release. However, Group I scaffolds were more hydrophilic than that of Group II. Both kinds of scaffolds induced the MSCs to differentiate towards the nucleus pulposus-type phenotype in vitro. In addition, the expression of nucleus pulposus-associated genes (aggrecan, type II collagen, HIF-1α and Sox-9) in Group I increased more than that of Group II. These results indicate that electrospinning nanofibrous scaffolds containing TGF-β1 supports the differentiation of MSCs towards the pulposus-like phenotype in a hypoxia chamber, which would be a more appropriate choice for nucleus pulposus regeneration.
Collapse
Affiliation(s)
- Xiang Cui
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China.
| | - Minghan Liu
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Jiaxu Wang
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Yue Zhou
- Department of Orthopedics, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, People's Republic of China
| | - Qiang Xiang
- Department of Emergency, Southwest Hospital, Third Military Medical University, Chongqing 400038, People's Republic of China
| |
Collapse
|
15
|
Ngadiman NHA, Idris A, Irfan M, Kurniawan D, Yusof NM, Nasiri R. γ-Fe2O3 nanoparticles filled polyvinyl alcohol as potential biomaterial for tissue engineering scaffold. J Mech Behav Biomed Mater 2015; 49:90-104. [DOI: 10.1016/j.jmbbm.2015.04.029] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 12/13/2022]
|
16
|
Wang C, Wang M. Formation of Core–Shell Structures in Emulsion Electrospun Fibres: A Comparative Study. Aust J Chem 2014. [DOI: 10.1071/ch14214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Electrospinning has attracted great attention in recent years from different industries including biomedical engineering. Owing to the relative ease of fabricating ultrafine fibres with core–shell structures, emulsion electrospinning has been investigated intensively for making nanofibrous delivery vehicles for local and sustained release of bioactive or therapeutic substances, especially biomolecules such as growth factors. In preparing emulsions for electrospinning, different surfactants, ionic or non-ionic, can be used, which may subsequently influence the evolution of the core–shell structure in the electrospun emulsion jet or fibre. In this investigation, emulsions consisting of deionized water or phosphate buffer saline as the water phase, a poly(lactic-co-glycolic acid) solution as the oil phase and Span 80 (a non-ionic surfactant) or sodium dodecyl sulfate (an ionic surfactant) were electrospun into fibres for studying the core–shell structure and its evolution in emulsion electrospun fibres. Different microscopies were employed to study the morphological changes of the water phase in fibre samples collected at different locations along the jet (or fibre) trajectory during emulsion electrospinning. It was found that the evolution of the fibre core–shell structure was significantly different when different surfactants were used. If Span 80 was the surfactant, the water phase within the thick emulsion jet (or fibre) close to the Taylor cone existed in a discrete state whereas in ultrafine fibres collected beyond a certain distance from the Taylor cone, a mostly continuous water-phase core was observed. If sodium dodecyl sulfate was the surfactant, the core–shell structure in the thick jet (or fibre) was irregular but relatively continuous. A single core core–shell structure was eventually developed in ultrafine fibres. The core–shell structure in electrospun fibres and its evolution were also affected by the emulsion composition (e.g. polymer solution concentration, water-phase volume, and ion addition in the water phase).
Collapse
|
17
|
Allo BA, Lin S, Mequanint K, Rizkalla AS. Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression. ACS APPLIED MATERIALS & INTERFACES 2013; 5:7574-7583. [PMID: 23826710 DOI: 10.1021/am401861w] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Three-dimensional (3D) bioactive organic-inorganic (O/I) hybrid fibrous scaffolds are attractive extracellular matrix (ECM) surrogates for bone tissue engineering. With the aim of regulating osteoblast gene expression in 3D, a new class of hybrid fibrous scaffolds with two distinct fiber diameters (260 and 600 nm) and excellent physico-mechanical properties were fabricated from tertiary (SiO2-CaO-P2O5) bioactive glass (BG) and poly (ε-caprolactone) (PCL) by in situ sol-gel and electrospinning process. The PCL/BG hybrid fibrous scaffolds exhibited accelerated wetting properties, enhanced pore sizes and porosity, and superior mechanical properties that were dependent on fiber diameter. Contrary to control PCL fibrous scaffolds that were devoid of bonelike apatite particles, incubating PCL/BG hybrid fibrous scaffolds in simulated body fluid (SBF) revealed bonelike apatite deposition. Osteoblast cells cultured on PCL/BG hybrid fibrous scaffolds spread with multiple attachments and actively proliferated suggesting that the low temperature in situ sol-gel and electrospinning process did not have a detrimental effect. Targeted bone-associated gene expressions by rat calvarial osteoblasts seeded on these hybrid scaffolds demonstrated remarkable spatiotemporal gene activation. Transcriptional-level gene expressions for alkaline phosphatase (ALP), osteopontin (OPN), bone sialoprotein (BSP), and osteocalcin (OCN) were significantly higher on the hybrid fibrous scaffolds (p < 0.001) that were largely dependent on fiber diameter compared. Taken together, our results suggest that PCL/BG fibrous scaffolds may accelerate bone formation by providing a favorable microenvironment.
Collapse
Affiliation(s)
- Bedilu A Allo
- Department of Chemical and Biochemical Engineering, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
18
|
Félix Lanao RP, Jonker AM, Wolke JG, Jansen JA, van Hest JC, Leeuwenburgh SC. Physicochemical properties and applications of poly(lactic-co-glycolic acid) for use in bone regeneration. TISSUE ENGINEERING. PART B, REVIEWS 2013; 19:380-90. [PMID: 23350707 PMCID: PMC3690090 DOI: 10.1089/ten.teb.2012.0443] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2012] [Accepted: 01/11/2013] [Indexed: 11/12/2022]
Abstract
Poly(lactic-co-glycolic acid) (PLGA) is the most often used synthetic polymer within the field of bone regeneration owing to its biocompatibility and biodegradability. As a consequence, a large number of medical devices comprising PLGA have been approved for clinical use in humans by the American Food and Drug Administration. As compared with the homopolymers of lactic acid poly(lactic acid) and poly(glycolic acid), the co-polymer PLGA is much more versatile with regard to the control over degradation rate. As a material for bone regeneration, the use of PLGA has been extensively studied for application and is included as either scaffolds, coatings, fibers, or micro- and nanospheres to meet various clinical requirements.
Collapse
Affiliation(s)
- Rosa P. Félix Lanao
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Anika M. Jonker
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Joop G.C. Wolke
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - John A. Jansen
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| | - Jan C.M. van Hest
- Institute for Molecules and Materials, Radboud University Nijmegen, Nijmegen, The Netherlands
| | - Sander C.G. Leeuwenburgh
- Department of Biomaterials, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
19
|
Bruinink A, Bitar M, Pleskova M, Wick P, Krug HF, Maniura-Weber K. Addition of nanoscaled bioinspired surface features: A revolution for bone related implants and scaffolds? J Biomed Mater Res A 2013; 102:275-94. [PMID: 23468287 DOI: 10.1002/jbm.a.34691] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 01/16/2013] [Accepted: 02/11/2013] [Indexed: 11/08/2022]
Abstract
Our expanding ability to handle the "literally invisible" building blocks of our world has started to provoke a seismic shift on the technology, environment and health sectors of our society. During the last two decades, it has become increasingly evident that the "nano-sized" subunits composing many materials—living, natural and synthetic—are becoming more and more accessible for predefined manipulations at the nanosize scale. The use of equally nanoscale sized or functionalised tools may, therefore, grant us unprecedented prospects to achieve many therapeutic aims. In the past decade it became clear that nano-scale surface topography significantly influences cell behaviour and may, potentially, be utilised as a powerful tool to enhance the bioactivity and/ or integration of implanted devices. In this review, we briefly outline the state of the art and some of the current approaches and concepts for the future utilisation of nanotechnology to create biomimetic implantable medical devices and scaffolds for in vivo and in vitro tissue engineering,with a focus on bone. Based on current knowledge it must be concluded that not the materials and surfaces themselves but the systematic biological evaluation of these new material concepts represent the bottleneck for new biomedical product development based on nanotechnological principles.
Collapse
Affiliation(s)
- Arie Bruinink
- Empa, Swiss Federal Laboratories for Materials Testing and Research, Laboratory for Materials - Biology Interaction, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | | | | | | | | | | |
Collapse
|
20
|
Tong HW, Wang M, Lu WW. Enhancing the biological performance of osteoconductive nanocomposite scaffolds through negative voltage electrospinning. Nanomedicine (Lond) 2013; 8:577-89. [DOI: 10.2217/nnm.13.51] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To investigate negative voltage electrospinning of fibrous nanocomposite scaffolds bearing negative electric charges (N-poled), and determine whether and how retained negative charges could influence the biological performance of scaffolds for bone tissue engineering. Materials & methods: Poly(D,L-lactic acid) was used as the polymer matrix and carbonated hydroxyapatite nanospheres were the osteoconductive phase in the electrospun nanocomposite scaffolds. N-poled nanocomposite scaffolds were formed using negative voltage electrospinning, while conventional positive voltage electrospinning produced fibrous nanocomposite scaffolds bearing positive electric charges (P-poled). N-poled and P-poled scaffolds were systematically characterized and their biological performance was investigated through in vitro cell culture experiments. Results & conclusion: N-poled and P-poled scaffolds retained charges for different periods of time after electrospinning. Both types of scaffolds supported cell spreading and promoted filopodia formation. Compared with P-poled scaffolds, N-poled scaffolds enhanced cell proliferation, alkaline phosphatase activity and mineralization. N-poled scaffolds offer distinct advantages for bone tissue engineering.
Collapse
Affiliation(s)
- Ho-Wang Tong
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Min Wang
- Department of Mechanical Engineering, Faculty of Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| | - William W Lu
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The University of Hong Kong, Sassoon Road, Hong Kong
| |
Collapse
|