1
|
Toulou C, Chaudhari VS, Bose S. Extrusion 3D-printed tricalcium phosphate-polycaprolactone biocomposites for quercetin-KCl delivery in bone tissue engineering. J Biomed Mater Res A 2024; 112:1472-1483. [PMID: 38477071 PMCID: PMC11239310 DOI: 10.1002/jbm.a.37692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/12/2024] [Accepted: 02/13/2024] [Indexed: 03/14/2024]
Abstract
Critical-sized bone defects pose a significant challenge in advanced healthcare due to limited bone tissue regenerative capacity. The complex interplay of numerous overlapping variables hinders the development of multifunctional biocomposites. Phytochemicals show promise in promoting bone growth, but their dose-dependent nature and physicochemical properties halt clinical use. To develop a comprehensive solution, a 3D-printed (3DP) extrusion-based tricalcium phosphate-polycaprolactone (TCP-PCL) scaffold is augmented with quercetin and potassium chloride (KCl). This composite material demonstrates a compressive strength of 30 MPa showing promising stability for low load-bearing applications. Quercetin release from the scaffold follows a biphasic pattern that persists for up to 28 days, driven via diffusion-mediated kinetics. The incorporation of KCl allows for tunable degradation rates of scaffolds and prevents the initial rapid release. Functionalization of scaffolds facilitates the attachment and proliferation of human fetal osteoblasts (hfOB), resulting in a 2.1-fold increase in cell viability. Treated scaffolds exhibit a 3-fold reduction in osteosarcoma (MG-63) cell viability as compared to untreated substrates. Ruptured cell morphology and decreased mitochondrial membrane potential indicate the antitumorigenic potential. Scaffolds loaded with quercetin and quercetin-KCl (Q-KCl) demonstrate 76% and 89% reduction in bacterial colonies of Staphylococcus aureus, respectively. This study provides valuable insights as a promising strategy for bone tissue engineering (BTE) in orthopedic repair.
Collapse
Affiliation(s)
- Connor Toulou
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
2
|
Liang HY, Lee WK, Hsu JT, Shih JY, Ma TL, Vo TTT, Lee CW, Cheng MT, Lee IT. Polycaprolactone in Bone Tissue Engineering: A Comprehensive Review of Innovations in Scaffold Fabrication and Surface Modifications. J Funct Biomater 2024; 15:243. [PMID: 39330219 PMCID: PMC11433047 DOI: 10.3390/jfb15090243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/17/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Bone tissue engineering has seen significant advancements with innovative scaffold fabrication techniques such as 3D printing. This review focuses on enhancing polycaprolactone (PCL) scaffold properties through structural modifications, including surface treatments, pore architecture adjustments, and the incorporation of biomaterials like hydroxyapatite (HA). These modifications aim to improve scaffold conformation, cellular behavior, and mechanical performance, with particular emphasis on the role of mesenchymal stem cells (MSCs) in bone regeneration. The review also explores the potential of integrating nanomaterials and graphene oxide (GO) to further enhance the mechanical and biological properties of PCL scaffolds. Future directions involve optimizing scaffold structures and compositions for improved bone tissue regeneration outcomes.
Collapse
Affiliation(s)
- Hsin-Yu Liang
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.L.); (J.-T.H.); (J.-Y.S.)
| | - Wei-Keung Lee
- Department of Physical Medicine and Rehabilitation, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan;
| | - Jui-Tsen Hsu
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.L.); (J.-T.H.); (J.-Y.S.)
| | - Jie-Yu Shih
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.L.); (J.-T.H.); (J.-Y.S.)
| | - Tien-Li Ma
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan;
| | - Thi Thuy Tien Vo
- Faculty of Dentistry, Nguyen Tat Thanh University, Ho Chi Minh 70000, Vietnam;
| | - Chiang-Wen Lee
- Department of Nursing, Division of Basic Medical Sciences, and Chronic Diseases and Health Promotion Research Center, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan;
- Department of Respiratory Care, Chang Gung University of Science and Technology, Chiayi 61363, Taiwan
- Department of Orthopaedic Surgery, Chang Gung Memorial Hospital, Chiayi 61363, Taiwan
| | - Ming-Te Cheng
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 33004, Taiwan
- College of Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Department of Biomedical Engineering, Chung Yuan Christian University, Taoyuan 32023, Taiwan
- Department of Orthopedic Surgery, Taoyuan General Hospital, Ministry of Health and Welfare, Sinwu Branch, Taoyuan 32748, Taiwan
| | - I-Ta Lee
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan; (H.-Y.L.); (J.-T.H.); (J.-Y.S.)
| |
Collapse
|
3
|
Sestito JM, Harris TAL, Wang Y. Structural descriptor and surrogate modeling for design of biodegradable scaffolds. J Mech Behav Biomed Mater 2024; 152:106415. [PMID: 38301521 DOI: 10.1016/j.jmbbm.2024.106415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/29/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024]
Abstract
Biodegradable scaffolds are important to regenerative medicine in that they provide an amicable environment for tissue regrowth. However, establishing structure-property (SP) relationships for scaffold design is challenging due to the complexity of the three-dimensional porous scaffold geometry. The complexity requires high-dimensional geometric descriptors. The training of such a SP surrogate model will need a large amount of experimental or simulation data. In this work, a schema of constructing SP relationship surrogates is developed to predict the degraded mechanical properties from the initial scaffold geometry. A new structure descriptor, the extended surfacelet transform (EST), is proposed to capture important details of pores associated with the degradation of scaffolds. The efficiency is further enhanced with principal component analysis to reduce the high-dimensional EST data into a low-dimensional representation. The schema also includes a kinetic Monte Carlo biodegradation model to simulate the biodegradation of polymer scaffolds and to generate the training data for the formation of SP relationships. The schema is demonstrated with the design of polycaprolactone biodegradable scaffolds by connecting the initial scaffold geometry to the degraded compressive modulus.
Collapse
Affiliation(s)
- Jesse M Sestito
- College of Engineering, Valparaiso University, Valparaiso, IN, 46383, USA.
| | - Tequila A L Harris
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yan Wang
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
4
|
Finze R, Laubach M, Russo Serafini M, Kneser U, Medeiros Savi F. Histological and Immunohistochemical Characterization of Osteoimmunological Processes in Scaffold-Guided Bone Regeneration in an Ovine Large Segmental Defect Model. Biomedicines 2023; 11:2781. [PMID: 37893154 PMCID: PMC10604530 DOI: 10.3390/biomedicines11102781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Large-volume bone defect regeneration is complex and demands time to complete. Several regeneration phases with unique characteristics, including immune responses, follow, overlap, and interdepend on each other and, if successful, lead to the regeneration of the organ bone's form and function. However, during traumatic, infectious, or neoplastic clinical cases, the intrinsic bone regeneration capacity may exceed, and surgical intervention is indicated. Scaffold-guided bone regeneration (SGBR) has recently shown efficacy in preclinical and clinical studies. To investigate different SGBR strategies over periods of up to three years, we have established a well-characterized ovine large segmental tibial bone defect model, for which we have developed and optimized immunohistochemistry (IHC) protocols. We present an overview of the immunohistochemical characterization of different experimental groups, in which all ovine segmental defects were treated with a bone grafting technique combined with an additively manufactured medical-grade polycaprolactone/tricalcium phosphate (mPCL-TCP) scaffold. The qualitative dataset was based on osteoimmunological findings gained from IHC analyses of over 350 sheep surgeries over the past two decades. Our systematic and standardized IHC protocols enabled us to gain further insight into the complex and long-drawn-out bone regeneration processes, which ultimately proved to be a critical element for successful translational research.
Collapse
Affiliation(s)
- Ronja Finze
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; (R.F.)
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany;
| | - Markus Laubach
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; (R.F.)
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 81377 Munich, Germany
| | - Mairim Russo Serafini
- Department of Pharmacy, Universidade Federal de Sergipe, Sao Cristovao 49100-000, Brazil;
| | - Ulrich Kneser
- Department of Hand-, Plastic and Reconstructive Surgery, Burn Center, BG Trauma Center Ludwigshafen, University of Heidelberg, 67071 Ludwigshafen, Germany;
| | - Flavia Medeiros Savi
- Centre for Biomedical Technologies, School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD 4059, Australia; (R.F.)
- Australian Research Council (ARC) Training Centre for Multiscale 3D Imaging, Modelling and Manufacturing (M3D Innovation), Queensland University of Technology, Brisbane, QLD 4000, Australia
- Max Planck Queensland Center for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, QLD 4059, Australia
| |
Collapse
|
5
|
Dehghanpour P, Emadi R, Salimijazi H. Influence of mechanochemically fabricated nano-hardystonite reinforcement in polycaprolactone scaffold for potential use in bone tissue engineering: Synthesis and characterization. J Mech Behav Biomed Mater 2023; 146:106100. [PMID: 37660447 DOI: 10.1016/j.jmbbm.2023.106100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 09/05/2023]
Abstract
Bone tissue engineering (BTE) has gained significant attention for the regeneration of bone tissue, particularly for critical-size bone defects. The aim of this research was first to synthesize nanopowders of hardystonite (HT) through ball milling and then to manufacture composite scaffolds for BTE use out of polycaprolactone (PCL) containing 0, 3, 5, and 10 wt% HT by electrospinning method. The crystallite size of the synthesized HT nanopowders was 42.8 nm. including up to 5 wt% HT into PCL scaffolds resulted in significant improvements, such as a reduction in the fiber diameter from 186.457±15.74 to 150.021±21.99 nm, a decrease in porosity volume from 85.2±2.5 to 80.3±3.3 %, an improvement in the mechanical properties (ultimate tensile strength: 5.7±0.2 MPa, elongation: 47.5±3.5 %, tensile modulus: 32.7±0.9 MPa), an improvement in the hydrophilicity, and biodegradability. Notably, PCL/5%HT exhibited the maximum cell viability (194±14 %). Additionally, following a 4-week of submersion in simulated body fluid (SBF), the constructed PCL/HT composite scaffolds showed a remarkable capacity to stimulate the development of hydroxyapatite (HA), which increased significantly for the 5 wt% HT scaffolds. However, at 10 wt% HT, nanopowder agglomeration led to an increase in the fiber diameter and a decrease in the mechanical characteristics. Collectively, the PCL/5%HT composite scaffolds can therefore help with the regeneration of the critical-size bone defects and offer tremendous potential for BTE applications.
Collapse
Affiliation(s)
- Pegah Dehghanpour
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 8415683111, Iran.
| | - Rahmatollah Emadi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 8415683111, Iran.
| | - Hamidreza Salimijazi
- Department of Materials Engineering, Isfahan University of Technology, Isfahan, 8415683111, Iran
| |
Collapse
|
6
|
Menotti F, Scutera S, Coppola B, Longo F, Mandras N, Cavallo L, Comini S, Sparti R, Fiume E, Cuffini AM, Banche G, Palmero P, Allizond V. Tuning of Silver Content on the Antibacterial and Biological Properties of Poly(ɛ-caprolactone)/Biphasic Calcium Phosphate 3D-Scaffolds for Bone Tissue Engineering. Polymers (Basel) 2023; 15:3618. [PMID: 37688244 PMCID: PMC10489712 DOI: 10.3390/polym15173618] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
There is a growing interest in tissue engineering, in which biomaterials play a pivotal role in promoting bone regeneration. Furthermore, smart functionalization can provide biomaterials with the additional role of preventing orthopedic infections. Due to the growing microbial resistance to antimicrobials used to treat those infections, metal ions, such as silver, thanks to their known wide range of bactericidal properties, are believed to be promising additives in developing antibacterial biomaterials. In this work, novel poly(ε-caprolactone) (PCL)-based 3D scaffolds have been designed and developed, where the polymer matrix was modified with both silver (Ag), to supply antibacterial behavior, and calcium phosphates (biphasic calcium phosphate, BCP) particles to impart bioactive/bioresorbable properties. The microstructural analysis showed that constructs were characterized by square-shaped macropores, in line with the morphology and size of the templating salts used as pore formers. Degradation tests demonstrated the important role of calcium phosphates in improving PCL hydrophilicity, leading to a higher degradation degree for BCP/PCL composites compared to the neat polymer after 18 days of soaking. The appearance of an inhibition halo around the silver-functionalized PCL scaffolds for assayed microorganisms and a significant (p < 0.05) decrease in both adherent and planktonic bacteria demonstrate the Ag+ release from the 3D constructs. Furthermore, the PCL scaffolds enriched with the lowest silver percentages did not hamper the viability and proliferation of Saos-2 cells. A synergic combination of antimicrobial, osteoproliferative and biodegradable features provided to 3D scaffolds the required potential for bone tissue engineering, beside anti-microbial properties for reduction in prosthetic joints infections.
Collapse
Affiliation(s)
- Francesca Menotti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Sara Scutera
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Bartolomeo Coppola
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Fabio Longo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Narcisa Mandras
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Lorenza Cavallo
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Sara Comini
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Rosaria Sparti
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Elisa Fiume
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Anna Maria Cuffini
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Giuliana Banche
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| | - Paola Palmero
- Department of Applied Science and Technology, Politecnico di Torino, 10129 Turin, Italy; (B.C.); (P.P.)
| | - Valeria Allizond
- Department of Public Health and Pediatrics, University of Torino, 10126 Turin, Italy; (F.M.); (S.S.); (F.L.); (N.M.); (L.C.); (R.S.); (A.M.C.); (V.A.)
| |
Collapse
|
7
|
Wang W, Zhou X, Yin Z, Yu X. Fabrication and Evaluation of Porous dECM/PCL Scaffolds for Bone Tissue Engineering. J Funct Biomater 2023; 14:343. [PMID: 37504838 PMCID: PMC10381742 DOI: 10.3390/jfb14070343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/20/2023] [Accepted: 06/26/2023] [Indexed: 07/29/2023] Open
Abstract
Porous scaffolds play a crucial role in bone tissue regeneration and have been extensively investigated in this field. By incorporating a decellularized extracellular matrix (dECM) onto tissue-engineered scaffolds, bone regeneration can be enhanced by replicating the molecular complexity of native bone tissue. However, the exploration of porous scaffolds with anisotropic channels and the effects of dECM on these scaffolds for bone cells and mineral deposition remains limited. To address this gap, we developed a porous polycaprolactone (PCL) scaffold with anisotropic channels and functionalized it with dECM to capture the critical physicochemical properties of native bone tissue, promoting osteoblast cells' proliferation, differentiation, biomineralization, and osteogenesis. Our results demonstrated the successful fabrication of porous dECM/PCL scaffolds with multiple channel sizes for bone regeneration. The incorporation of 100 μm grid-based channels facilitated improved nutrient and oxygen infiltration, while the porous structure created using 30 mg/mL of sodium chloride significantly enhanced the cells' attachment and proliferation. Notably, the mechanical properties of the scaffolds closely resembled those of human bone tissue. Furthermore, compared with pure PCL scaffolds, the presence of dECM on the scaffolds substantially enhanced the proliferation and differentiation of bone marrow stem cells. Moreover, dECM significantly increased mineral deposition on the scaffold. Overall, the dECM/PCL scaffold holds significant potential as an alternative bone graft substitute for repairing bone injuries.
Collapse
Affiliation(s)
- Weiwei Wang
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Xiaqing Zhou
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Zhuozhuo Yin
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| | - Xiaojun Yu
- Department of Biomedical Engineering, Charles V. Schaefer School of Engineering and Sciences, Stevens Institute of Technology, Hoboken, NJ 07030, USA
| |
Collapse
|
8
|
Raees S, Ullah F, Javed F, Akil HM, Jadoon Khan M, Safdar M, Din IU, Alotaibi MA, Alharthi AI, Bakht MA, Ahmad A, Nassar AA. Classification, processing, and applications of bioink and 3D bioprinting: A detailed review. Int J Biol Macromol 2023; 232:123476. [PMID: 36731696 DOI: 10.1016/j.ijbiomac.2023.123476] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/12/2023] [Accepted: 01/25/2023] [Indexed: 02/02/2023]
Abstract
With the advancement in 3D bioprinting technology, cell culture methods can design 3D environments which are both, complex and physiologically relevant. The main component in 3D bioprinting, bioink, can be split into various categories depending on the criterion of categorization. Although the choice of bioink and bioprinting process will vary greatly depending on the application, general features such as material properties, biological interaction, gelation, and viscosity are always important to consider. The foundation of 3D bioprinting is the exact layer-by-layer implantation of biological elements, biochemicals, and living cells with the spatial control of the implantation of functional elements onto the biofabricated 3D structure. Three basic strategies underlie the 3D bioprinting process: autonomous self-assembly, micro tissue building blocks, and biomimicry or biomimetics. Tissue engineering can benefit from 3D bioprinting in many ways, but there are still numerous obstacles to overcome before functional tissues can be produced and used in clinical settings. A better comprehension of the physiological characteristics of bioink materials and a higher level of ability to reproduce the intricate biologically mimicked and physiologically relevant 3D structures would be a significant improvement for 3D bioprinting to overcome the limitations.
Collapse
Affiliation(s)
- Sania Raees
- Department of Biosciences, COMSATS University Islamabad, Park Road, 45520 Islamabad, Pakistan
| | - Faheem Ullah
- Department of Biological Sciences, National University of Medical Sciences, NUMS, Rawalpindi 46000, Pakistan; School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Fatima Javed
- Department of Chemistry, Shaheed Benazir Bhutto Women University, Peshawar 25000, KPK, Pakistan
| | - Hazizan Md Akil
- School of Materials and Mineral Resources Engineering, Engineering Campus, Universiti Sains Malaysia, Seri Ampangan, 14300 Nibong Tebal, Pulau Pinang, Malaysia
| | - Muhammad Jadoon Khan
- Department of Biosciences, COMSATS University Islamabad, Park Road, 45520 Islamabad, Pakistan
| | - Muhammad Safdar
- Department of Pharmacy, Gomal University D. I Khan, KPK, Pakistan
| | - Israf Ud Din
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia.
| | - Mshari A Alotaibi
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia
| | - Abdulrahman I Alharthi
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia
| | - M Afroz Bakht
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia
| | - Akil Ahmad
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia
| | - Amal A Nassar
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdulaziz University, 16278 Al-Kharj, Saudi Arabia
| |
Collapse
|
9
|
Adjustment of Micro- and Macroporosity of ß-TCP Scaffolds Using Solid-Stabilized Foams as Bone Replacement. Bioengineering (Basel) 2023; 10:bioengineering10020256. [PMID: 36829750 PMCID: PMC9952018 DOI: 10.3390/bioengineering10020256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
To enable rapid osteointegration in bioceramic implants and to give them osteoinductive properties, scaffolds with defined micro- and macroporosity are required. Pores or pore networks promote the integration of cells into the implant, facilitating the supply of nutrients and the removal of metabolic products. In this paper, scaffolds are created from ß-tricalciumphosphate (ß-TCP) and in a novel way, where both the micro- and macroporosity are adjusted simultaneously by the addition of pore-forming polymer particles. The particles used are 10-40 wt%, spherical polymer particles of polymethylmethacrylate (PMMA) (Ø = 5 µm) and alternatively polymethylsilsesquioxane (PMSQ) (Ø = 2 µm), added in the course of ß-TCP slurry preparation. The arrangement of hydrophobic polymer particles at the interface of air bubbles was incorporated during slurry preparation and foaming of the slurry. The foam structures remain after sintering and lead to the formation of macro-porosity in the scaffolds. Furthermore, decomposition of the polymer particles during thermal debindering results in the formation of an additional network of interconnecting micropores in the stabilizing structures. It is possible to adjust the porosity easily and quickly in a range of 1.2-140 μm with a relatively low organic fraction. The structures thus prepared showed no cytotoxicity nor negative effects on the biocompatibility.
Collapse
|
10
|
Song Z, Yang D, Hu Q, Wang Y, Zhang H, Dong W, Yang J, Gu Y. Reconstruction of Abdominal Wall Defect with Composite Scaffold of 3D Printed ADM/PLA in a Rat Model. Macromol Biosci 2023; 23:e2200521. [PMID: 36746773 DOI: 10.1002/mabi.202200521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/15/2023] [Indexed: 02/08/2023]
Abstract
Abdominal wall defects are a frequently occurring condition in surgical practice. The most important are material structure and biocompatibility. In this study, PLA mesh composited with a 3D printing of acellular dermal matrix (ADM) material is used to repair abdominal wall defects. The results show that the adhesion score of ADM/PLA composite scaffolds is smaller than PLA meshes. Immunohistochemical assessment reveals that the ADM/PLA composite scaffold can effectively reduce the inflammatory response at the contact surface between the meshes and the abdominal organs. And the ADM/PLA composite scaffold can effectively reduce the expression levels of the inflammation-related factors IL-6 and IL-10. In addition, the ADM/PLA composite scaffold repair is rich in the expression levels of tissue regeneration-related factors vascular endothelial growth factor and transforming growth factor β. Thus, ADM/PLA composite scaffolds can effectively reduce surrounding inflammation to effectively promote the repair of abdominal wall defects.
Collapse
Affiliation(s)
- Zhicheng Song
- General Surgery, Huadong Hospital Affiliated to Fudan University, 221 Yan 'an West Road, Jing 'an District, Shanghai, Shanghai, 200040, China
| | - Dongchao Yang
- General Surgery, Huadong Hospital Affiliated to Fudan University, 221 Yan 'an West Road, Jing 'an District, Shanghai, Shanghai, 200040, China
| | - Qingxi Hu
- Rapid Manufacturing Engineering Center, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai, Shanghai, 200444, China
| | - Yiming Wang
- Administrative office, Tenth People's Hospital of Tongji University, 301 Yanchang Zhong Lu, Jing 'an District, Shanghai, Shanghai, 200072, China
| | - Haiguang Zhang
- Rapid Manufacturing Engineering Center, Shanghai University, 99 Shangda Road, Baoshan District, Shanghai, Shanghai, 200444, China
| | - Wenpei Dong
- General Surgery, Huadong Hospital Affiliated to Fudan University, 221 Yan 'an West Road, Jing 'an District, Shanghai, Shanghai, 200040, China
| | - Jianjun Yang
- General Surgery, Huadong Hospital Affiliated to Fudan University, 221 Yan 'an West Road, Jing 'an District, Shanghai, Shanghai, 200040, China
| | - Yan Gu
- General Surgery, Huadong Hospital Affiliated to Fudan University, 221 Yan 'an West Road, Jing 'an District, Shanghai, Shanghai, 200040, China
| |
Collapse
|
11
|
Wu H, Wei X, Liu Y, Dong H, Tang Z, Wang N, Bao S, Wu Z, Shi L, Zheng X, Li X, Guo Z. Dynamic degradation patterns of porous polycaprolactone/β-tricalcium phosphate composites orchestrate macrophage responses and immunoregulatory bone regeneration. Bioact Mater 2022; 21:595-611. [PMID: 36685731 PMCID: PMC9832114 DOI: 10.1016/j.bioactmat.2022.07.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/17/2022] [Accepted: 07/24/2022] [Indexed: 01/25/2023] Open
Abstract
Biodegradable polycaprolactone/β-tricalcium phosphate (PT) composites are desirable candidates for bone tissue engineering applications. A higher β-tricalcium phosphate (TCP) ceramic content improves the mechanical, hydrophilic and osteogenic properties of PT scaffolds in vitro. Using a dynamic degradation reactor, we established a steady in vitro degradation model to investigate the changes in the physio-chemical and biological properties of PT scaffolds during degradation.PT46 and PT37 scaffolds underwent degradation more rapidly than PT scaffolds with lower TCP contents. In vivo studies revealed the rapid degradation of PT (PT46 and PT37) scaffolds disturbed macrophage responses and lead to bone healing failure. Macrophage co-culture assays and a subcutaneous implantation model indicated that the scaffold degradation process dynamically affected macrophage responses, especially polarization. RNA-Seq analysis indicated phagocytosis of the degradation products of PT37 scaffolds induces oxidative stress and inflammatory M1 polarization in macrophages. Overall, this study reveals that the dynamic patterns of biodegradation of degradable bone scaffolds highly orchestrate immune responses and thus determine the success of bone regeneration. Therefore, through evaluation of the biological effects of biomaterials during the entire process of degradation on immune responses and bone regeneration are necessary in order to develop more promising biomaterials for bone regeneration.
Collapse
Affiliation(s)
- Hao Wu
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| | - Xinghui Wei
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| | - Yichao Liu
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Hui Dong
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Zhen Tang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| | - Ning Wang
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| | - Shusen Bao
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China
| | - Zhigang Wu
- Department of Orthopaedics, The 63750 Hospital of People's Liberation Army, Xi'an, Shaanxi, 710038, PR China
| | - Lei Shi
- Department of Orthopaedics, Xijing Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Xiongfei Zheng
- State Key Laboratory of Robotics, Shenyang Institute of Automation, Chinese Academy of Sciences, Shenyang, Liaoning, 110000, PR China
| | - Xiaokang Li
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China,Corresponding author.
| | - Zheng Guo
- Department of Orthopaedics, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, 710038, PR China,Corresponding author.
| |
Collapse
|
12
|
Du J, Zhou Y, Bao X, Kang Z, Huang J, Xu G, Yi C, Li D. Surface polydopamine modification of bone defect repair materials: Characteristics and applications. Front Bioeng Biotechnol 2022; 10:974533. [PMID: 35935489 PMCID: PMC9355039 DOI: 10.3389/fbioe.2022.974533] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 07/04/2022] [Indexed: 12/02/2022] Open
Abstract
Bone defects are a common challenge for clinical orthopedic surgeons. The existing bone defect repair materials are difficult to achieve satisfactory osseointegration between the material and the bone. Therefore, it is increasingly important to find effective methods to improve the integration of the materials with the bone and thus facilitate bone defect repair. Researchers have found that polydopamine (PDA) has a structure and properties similar to the adhesive proteins secreted by mussels in nature, with good biocompatibility, bioactivity, hydrophilicity, bio-adhesion and thermal stability. PDA is therefore expected to be used as a surface modification material for bone repair materials to improve the bonding of bone repair materials to the bone surface. This paper reviews research related to PDA-modified bone repair materials and looks at their future applications.
Collapse
Affiliation(s)
- Jianhang Du
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Ying Zhou
- Department of Rehabilitation, General Hospital of Chinese People’s Liberation Army, Beijing, China
| | - Xiaogang Bao
- Spine Center, Department of Orthopedics Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
| | - Zhanrong Kang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Jianming Huang
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
| | - Guohua Xu
- Spine Center, Department of Orthopedics Surgery, Changzheng Hospital, Second Military Medical University, Shanghai, China
- *Correspondence: Guohua Xu, ; Chengqing Yi, ; Dejian Li,
| | - Chengqing Yi
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Guohua Xu, ; Chengqing Yi, ; Dejian Li,
| | - Dejian Li
- Department of Orthopedics, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, Shanghai, China
- *Correspondence: Guohua Xu, ; Chengqing Yi, ; Dejian Li,
| |
Collapse
|
13
|
Li J, Kim C, Pan CC, Babian A, Lui E, Young JL, Moeinzadeh S, Kim S, Yang YP. Hybprinting for musculoskeletal tissue engineering. iScience 2022; 25:104229. [PMID: 35494239 PMCID: PMC9051619 DOI: 10.1016/j.isci.2022.104229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
This review presents bioprinting methods, biomaterials, and printing strategies that may be used for composite tissue constructs for musculoskeletal applications. The printing methods discussed include those that are suitable for acellular and cellular components, and the biomaterials include soft and rigid components that are suitable for soft and/or hard tissues. We also present strategies that focus on the integration of cell-laden soft and acellular rigid components under a single printing platform. Given the structural and functional complexity of native musculoskeletal tissue, we envision that hybrid bioprinting, referred to as hybprinting, could provide unprecedented potential by combining different materials and bioprinting techniques to engineer and assemble modular tissues.
Collapse
Affiliation(s)
- Jiannan Li
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Carolyn Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Chi-Chun Pan
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Aaron Babian
- Department of Biological Sciences, University of California, Davis CA 95616, USA
| | - Elaine Lui
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Mechanical Engineering, 416 Escondido Mall, Stanford University, Stanford, CA 94305, USA
| | - Jeffrey L Young
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Seyedsina Moeinzadeh
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Sungwoo Kim
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA
| | - Yunzhi Peter Yang
- Department of Orthopaedic Surgery, School of Medicine, Stanford University, 300 Pasteur Drive BMI 258, Stanford, CA 94305, USA.,Department of Materials Science and Engineering, Stanford University, 496 Lomita Mall, Stanford, CA 94305, USA.,Department of Bioengineering, Stanford University, 443 Via Ortega, Stanford, CA 94305, USA
| |
Collapse
|
14
|
Qiu X, Li S, Li X, Xiao Y, Li S, Fen Q, Kang X, Zhen P. Experimental study of β-TCP scaffold loaded with VAN/PLGA microspheres in the treatment of infectious bone defects. Colloids Surf B Biointerfaces 2022; 213:112424. [PMID: 35227993 DOI: 10.1016/j.colsurfb.2022.112424] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/14/2022] [Accepted: 02/21/2022] [Indexed: 10/19/2022]
Abstract
Antibiotic bone cement filling technology has been widely used in the treatment of infectious bone defects for decades. However, the current treatment requires multiple complicated procedures, which would lead to pain and financial burden for patients. Repairing bone defects and control infection at the same time is the pain spot of orthopaedic area. In this study, we develop a composite scaffold that aiming at effectively repair infectious bone defects simultaneously. Vancomycin hydrochloride(Van) /Poly(lactic-co-glycolic) acid(PLGA) microspheres prepared by double emulsion method were successfully loaded into β-tricalcium phosphate scaffold through electrostatic and physical crosslinking. Full characterization, including mechanical properties, biocompatibility, in vitro release profile and antibacterial properties of the composite scaffolds(CPSFs) were performed. The rabbit osteomyelitis model based on big hole and small hole methods was established. Pharmacodynamics study, including the local bacteriostatic and osteogenic ability were evaluated by X-ray, Micro-CT and histopathology at 4 months after surgery. These findings indicate that a reliable rabbit model of local bone defect infection successfully established by big hole approach. The CPSFs with significant histocompatibility and biocompatibility could sustained release vancomycin for extended duration. It exhibited great application potential in clinical aim at the indication of local infectious bone defects.
Collapse
Affiliation(s)
- Xiaoming Qiu
- Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Songkai Li
- Department of the orthopaedic centre, The 940th Hospital of Logistics Support Force of PLA, Lanzhou 730000, China
| | - Xun Li
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yating Xiao
- School of Molecular Medicine, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Shengtang Li
- Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Qiangsheng Fen
- Department of the orthopaedic centre, The 940th Hospital of Logistics Support Force of PLA, Lanzhou 730000, China
| | - Xuewen Kang
- Lanzhou University Second Hospital, Lanzhou 730000, China
| | - Ping Zhen
- Lanzhou University Second Hospital, Lanzhou 730000, China; Department of the orthopaedic centre, The 940th Hospital of Logistics Support Force of PLA, Lanzhou 730000, China
| |
Collapse
|
15
|
Clinical Application of 3D-Printed Patient-Specific Polycaprolactone/Beta Tricalcium Phosphate Scaffold for Complex Zygomatico-Maxillary Defects. Polymers (Basel) 2022; 14:polym14040740. [PMID: 35215652 PMCID: PMC8875444 DOI: 10.3390/polym14040740] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/05/2022] [Accepted: 02/09/2022] [Indexed: 02/01/2023] Open
Abstract
(1) Background: In the present study, we evaluated the efficacy of a 3D-printed, patient-specific polycaprolactone/beta tricalcium phosphate (PCL/β-TCP) scaffold in the treatment of complex zygomatico-maxillary defects. (2) Methods: We evaluated eight patients who underwent immediate or delayed maxillary reconstruction with patient-specific PCL implants between December 2019 and June 2021. The efficacy of these techniques was assessed using the volume and density analysis of computed tomography data obtained before surgery and six months after surgery. (3) Results: Patients underwent maxillary reconstruction with the 3D-printed PCL/β-TCP scaffold based on various reconstructive techniques, including bone graft, fasciocutaneous free flaps, and fat graft. In the volume analysis, satisfactory volume conformity was achieved between the preoperative simulation and actual implant volume with a mean volume conformity of 79.71%, ranging from 70.89% to 86.31%. The ratio of de novo bone formation to total implant volume (bone volume fraction) was satisfactory with a mean bone fraction volume of 23.34%, ranging from 7.81% to 66.21%. Mean tissue density in the region of interest was 188.84 HU, ranging from 151.48 HU to 291.74 HU. (4) Conclusions: The combined use of the PCL/β-TCP scaffold with virtual surgical simulation and 3D printing techniques may replace traditional non-absorbable implants in the future owing to its accuracy and biocompatible properties.
Collapse
|
16
|
Kim HY, Kim BH, Kim MS. Amine Plasma-Polymerization of 3D Polycaprolactone/β-Tricalcium Phosphate Scaffold to Improving Osteogenic Differentiation In Vitro. MATERIALS 2022; 15:ma15010366. [PMID: 35009509 PMCID: PMC8745968 DOI: 10.3390/ma15010366] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 12/20/2021] [Accepted: 01/02/2022] [Indexed: 01/19/2023]
Abstract
This study aims to investigate the surface characterization and pre-osteoblast biological behaviors on the three-dimensional (3D) poly(ε-caprolactone)/β-tricalcium phosphate (β-TCP) scaffold modified by amine plasma-polymerization. The 3D PCL scaffolds were fabricated using fused deposition modeling (FDM) 3D printing. To improve the pre-osteoblast bioactivity, the 3D PCL scaffold was modified by adding β-TCP nanoparticles, and then scaffold surfaces were modified by amine plasma-polymerization using monomer allylamine (AA) and 1,2-diaminocyclohexane (DACH). After the plasma-polymerization of PCL/β-TCP, surface characterizations such as contact angle, AFM, XRD, and FTIR were evaluated. In addition, mechanical strength was measured by UTM. The pre-osteoblast bioactivities were evaluated by focal adhesion and cell proliferation. Osteogenic differentiation was investigated by ALP activity, Alizarin red staining, and Western blot. Plasma-polymerization induced the increase in hydrophilicity of the surface of the 3D PCL/β-TCP scaffold due to the deposition of amine polymeric thin film on the scaffold surface. Focal adhesion and proliferation of pre-osteoblast improved, and osteogenic differentiation was increased. These results indicated that 3D PCL/β-TCP scaffolds treated with DACH plasma-polymerization showed the highest bioactivity compared to the other samples. We suggest that 3D PCL/β-TCP scaffolds treated with DACH and AA plasma-polymerization can be used as a promising candidate for osteoblast differentiation of pre-osteoblast.
Collapse
Affiliation(s)
- Hee-Yeon Kim
- BioMedical Sciences Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea;
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
| | - Byung-Hoon Kim
- Department of Dental Materials, College of Dentistry, Chosun University, Gwangju 61452, Korea
- Correspondence: (B.-H.K.); (M.-S.K.); Tel.: +82-62-230-6447 (B.-H.K.); +82-62-227-1640 (M.-S.K.)
| | - Myung-Sun Kim
- Department of Orthopaedic Surgery, College of Medicine, Chonnam National University, Gwangju 61469, Korea
- Correspondence: (B.-H.K.); (M.-S.K.); Tel.: +82-62-230-6447 (B.-H.K.); +82-62-227-1640 (M.-S.K.)
| |
Collapse
|
17
|
Backes EH, Harb SV, Beatrice CAG, Shimomura KMB, Passador FR, Costa LC, Pessan LA. Polycaprolactone usage in additive manufacturing strategies for tissue engineering applications: A review. J Biomed Mater Res B Appl Biomater 2021; 110:1479-1503. [PMID: 34918463 DOI: 10.1002/jbm.b.34997] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 08/02/2021] [Accepted: 11/27/2021] [Indexed: 12/11/2022]
Abstract
Polycaprolactone (PCL) has been extensively applied on tissue engineering because of its low-melting temperature, good processability, biodegradability, biocompatibility, mechanical resistance, and relatively low cost. The advance of additive manufacturing (AM) technologies in the past decade have boosted the fabrication of customized PCL products, with shorter processing time and absence of material waste. In this context, this review focuses on the use of AM techniques to produce PCL scaffolds for various tissue engineering applications, including bone, muscle, cartilage, skin, and cardiovascular tissue regeneration. The search for optimized geometry, porosity, interconnectivity, controlled degradation rate, and tailored mechanical properties are explored as a tool for enhancing PCL biocompatibility and bioactivity. In addition, rheological and thermal behavior is discussed in terms of filament and scaffold production. Finally, a roadmap for future research is outlined, including the combination of PCL struts with cell-laden hydrogels and 4D printing.
Collapse
Affiliation(s)
- Eduardo Henrique Backes
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Samarah Vargas Harb
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Cesar Augusto Gonçalves Beatrice
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Kawany Munique Boriolo Shimomura
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| | | | - Lidiane Cristina Costa
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| | - Luiz Antonio Pessan
- Materials Engineering Department, Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, Brazil
| |
Collapse
|
18
|
Li J, Chong YT, Teng CP, Liu J, Wang F. Microporosity mediated proliferation of preosteoblast cells on 3D printed bone scaffolds. NANO SELECT 2021. [DOI: 10.1002/nano.202000272] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Jian Li
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| | - Yi Ting Chong
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| | - Choon Peng Teng
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| | - Jinyan Liu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products Guangdong Institute of Medical Instruments Guangzhou Guangdong China
| | - FuKe Wang
- Institute of Materials Research and Engineering A*STAR (Agency for Science, Technology and Research) Singapore Singapore
| |
Collapse
|
19
|
Ruiz-Aguilar C, Olivares-Pinto U, Drew R, Aguilar-Reyes E, Alfonso I. Porogen Effect on Structural and Physical Properties of β-TCP Scaffolds for Bone Tissue Regeneration. Ing Rech Biomed 2021. [DOI: 10.1016/j.irbm.2020.05.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
20
|
Mao Z, Bai J, Jin X, Mao W, Dong Y. Construction of a multifunctional 3D nanofiber aerogel loaded with ZnO for wound healing. Colloids Surf B Biointerfaces 2021; 208:112070. [PMID: 34564038 DOI: 10.1016/j.colsurfb.2021.112070] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 08/21/2021] [Accepted: 08/24/2021] [Indexed: 10/24/2022]
Abstract
Bacterial infection and severe wound inflammation are two primary harmful problems that bring harm to the human body and may cause death when a large-scale skin defect occurs. Thus, developing an effective and quick wound healing strategy for curing skin damage and trauma is vital. This study has developed a multifunctional PLA/gelatin/ZnO nanofiber aerogel with a three-dimensional structure through electrospinning and freeze-drying technology for wound healing. It has validated that the nanofiber aerogel has an excellent antibacterial property and biocompatibility. Meanwhile, benefiting from its three-dimensional nanofiber structure, the PLA/gelatin/ZnO nanofiber aerogel possesses good water absorption and air permeability. In vivo experiments have determined that the PLA/gel/ZnO nanofiber aerogel scaffolds effectively promote skin infection's wound healing and enhance angiogenesis that is practical with increasing ZnO concentration.
Collapse
Affiliation(s)
- Zhenyang Mao
- Department of Orthopedics Trauma, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Jiarun Bai
- Department of Orthopedics Trauma, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Xiangyun Jin
- Department of Orthopedics Trauma, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China
| | - Wenwei Mao
- School of Pharmacy, Shanghai Jiao Tong University, China.
| | - Yuqi Dong
- Department of Orthopedics Trauma, Department of Orthopedics, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, China.
| |
Collapse
|
21
|
Human astrocytes and astrocytoma respond differently to resveratrol. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2021; 37:102441. [PMID: 34302989 DOI: 10.1016/j.nano.2021.102441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 06/01/2021] [Accepted: 07/06/2021] [Indexed: 12/17/2022]
Abstract
A fundamental problem in oncology is that anticancer chemotherapeutics kill both cancer and healthy cells in the surrounding tissues. Resveratrol is a natural antioxidant with intriguing and opposing biological properties: it reduces viability of some cancer cells but not of non-transformed ones (in equimolar concentrations). Therefore, we examined resveratrol in human non-transformed primary astrocytes and astrocytoma. Resveratrol reduced reactive oxygen species in astrocytes, but not in astrocytoma. Such cell-type dependent response is particularly evident with analyses at the single cell level showing clear population difference in high and low glutathione levels. Due to resveratrol's poor aqueous solubility that limits its use in clinics, we incorporated it into stimulus-responsive micelles assembled from miktoarm polymers. This could be an attractive chemotherapeutic delivery strategy in nano-oncology. As a proof of principle, we show that these formulations containing resveratrol markedly decrease astrocytoma viability, particularly in combination with temozolomide, a first line chemotherapeutic for astrocytoma.
Collapse
|
22
|
|
23
|
Han X, Gao Y, Ding Y, Wang W, Liu L, Zhao A, Yang P. In vitro performance of 3D printed PCL -β-TCP degradable spinal fusion cage. J Biomater Appl 2020; 35:1304-1314. [PMID: 33287645 DOI: 10.1177/0885328220978492] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Spinal fusion cages are commonly used to treat spinal diseases caused by degenerative changes, deformities, and trauma. At present, most of the main clinical spinal fusion cage products are non-degradable and still cause some undesirable side effects, such as the stress shielding phenomenon, interference with postoperative medical imaging, and obvious foreign body sensation in patients. Degradable spinal fusion cages have promising potential with extensive perspectives. The purpose of this study was to fabricate a degradable spinal fusion cage from both polycaprolactone (PCL) and high-proportion beta-tricalcium phosphate (β-TCP), using the highly personalised, accurate, and rapid fused deposition modelling 3 D printing technology. PCL and β-TCP were mixed in three different ratios (60:40, 55:45, and 50:50). Both in vitro degradation and cell experiments proved that all cages with the different PCL:β-TCP ratios met the mechanical properties of human cancellous bone while maintaining their structural integrity. The biological activity of the cages improved with higher amounts of the β-TCP content. This study also showed that a spinal fusion cage with high β-TCP content and suitable mechanical properties can be manufactured using extruding rods and appropriate models, providing a new solution for the design of degradable spinal fusion cages.
Collapse
Affiliation(s)
- Xiao Han
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Yuan Gao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Yilei Ding
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Weijie Wang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Li Liu
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Ansha Zhao
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| | - Ping Yang
- Key Lab. for Advanced Technologies of Materials, Ministry of Education, School of Material Science and Engineering, Southwest Jiaotong University, Chengdu, PR China
| |
Collapse
|
24
|
Lotocki V, Yazdani H, Zhang Q, Gran ER, Nyrko A, Maysinger D, Kakkar A. Miktoarm Star Polymers with Environment-Selective ROS/GSH Responsive Locations: From Modular Synthesis to Tuned Drug Release through Micellar Partial Corona Shedding and/or Core Disassembly. Macromol Biosci 2020; 21:e2000305. [PMID: 33620748 DOI: 10.1002/mabi.202000305] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 10/12/2020] [Indexed: 02/06/2023]
Abstract
Branched architectures with asymmetric polymeric arms provide an advantageous platform for the construction of tailored nanocarriers for therapeutic interventions. Simple and adaptable synthetic methodologies to amphiphilic miktoarm star polymers have been developed in which spatial location of reactive oxygen species (ROS) and glutathione (GSH) responsive entities is articulated to be on the corona shell surface or inside the core. The design of such architectures is facilitated through versatile building blocks and selected combinations of ring-opening polymerization, Steglich esterification, and alkyne-azide click reactions. Soft nanoparticles from aqueous self-assembly of these stimuli responsive miktoarm stars have low critical micelle concentrations and high drug loading efficiencies. Partial corona shedding upon response to ROS is accompanied by an increase in drug release, without significant changes to overall micelle morphology. The location of the GSH responsive unit at the core leads to micelle disassembly and complete drug release. Curcumin loaded soft nanoparticles show higher efficiencies in preventing ROS generation in extracellular and cellular environments, and in ROS scavenging in human glioblastoma cells. The ease in synthetic elaboration and an understanding of structure-property relationships in stimuli responsive nanoparticles offer a facile venue for well-controlled drug delivery, based on the extra- and intracellular concentrations of ROS and GSH.
Collapse
Affiliation(s)
- Victor Lotocki
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Hossein Yazdani
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.,Department of Chemistry, Shahid Beheshti University G.C., Tehran, 1983963113, Iran
| | - Qiaochu Zhang
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada.,Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Evan Rizzel Gran
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Anastasiia Nyrko
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| | - Dusica Maysinger
- Department of Pharmacology and Therapeutics, McGill University, 3655 Promenade Sir-William-Osler, Montreal, Quebec, H3G 1Y6, Canada
| | - Ashok Kakkar
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec, H3A 0B8, Canada
| |
Collapse
|
25
|
Pan Q, Li Y, Xu J, Kang Y, Li Y, Wang B, Yang YP, Lin S, Li G. The effects of tubular structure on biomaterial aided bone regeneration in distraction osteogenesis. J Orthop Translat 2020; 25:80-86. [DOI: 10.1016/j.jot.2020.09.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
|
26
|
Bou‐Francis A, Piercey M, Al‐Qatami O, Mazzanti G, Khattab R, Ghanem A. Polycaprolactone blends for fracture fixation in low load‐bearing applications. J Appl Polym Sci 2020. [DOI: 10.1002/app.48940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Antony Bou‐Francis
- Department of Process Engineering and Applied ScienceDalhousie University Halifax Canada
| | - Marta Piercey
- Department of Process Engineering and Applied ScienceDalhousie University Halifax Canada
| | - Omar Al‐Qatami
- Department of Process Engineering and Applied ScienceDalhousie University Halifax Canada
| | - Gianfranco Mazzanti
- Department of Process Engineering and Applied ScienceDalhousie University Halifax Canada
| | - Rabie Khattab
- Clinical Nutrition DepartmentImam Abdulrahman Bin Faisal University Dammam Kingdom of Saudi Arabia
| | - Amyl Ghanem
- Department of Process Engineering and Applied ScienceDalhousie University Halifax Canada
- School of Biomedical EngineeringDalhousie University Halifax Canada
| |
Collapse
|
27
|
Wang JQ, Jiang BJ, Guo WJ, Zhao YM. Indirect 3D printing technology for the fabrication of customised β-TCP/chitosan scaffold with the shape of rabbit radial head-an in vitro study. J Orthop Surg Res 2019; 14:102. [PMID: 30975173 PMCID: PMC6460811 DOI: 10.1186/s13018-019-1136-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/27/2019] [Indexed: 01/11/2023] Open
Abstract
Background With the development of indirect three-dimensional (3D) printing technology, it is possible to customise individual scaffolds to be used in bone transplantation and regeneration. In addition, materials previously limited to the 3D printing (3DP) process due to their own characteristics can also be used well in indirect 3DP. In this study, customised β-TCP/chitosan scaffolds with the shape of rabbit radial head were produced by indirect 3D printing technology. Methods Swelling ability, porosity, mechanical characterisation, and degradation rate analysis were performed, and in vitro studies were also implemented to evaluate the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells (MSCs) on the scaffolds. CCK8 cell proliferation assay kit and alkaline phosphatase (ALP) staining solution were used to study cell proliferation and early ALP content at the scaffold surface. Moreover, the osteogenic differentiation of MSCs on scaffolds was also evaluated through the scanning electron microscopy analysis. Results β-TCP/chitosan scaffold has good performance and degradation rate, and in vitro cell experiments also confirm that the scaffold has adequate cytocompatibility and bioactivity. Conclusion This study provides a promising new strategy for the design of customised scaffolds for the repair of complex damaged tissues.
Collapse
Affiliation(s)
- Ji-Qi Wang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xue Yuan Xi Road, Wenzhou, 325000, Zhejiang, China.,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Bing-Jie Jiang
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xue Yuan Xi Road, Wenzhou, 325000, Zhejiang, China.,Key Laboratory of Orthopedics of Zhejiang Province, Wenzhou, 325000, Zhejiang, China.,The Second School of Medicine, Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Wei-Jun Guo
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xue Yuan Xi Road, Wenzhou, 325000, Zhejiang, China
| | - You-Ming Zhao
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, 109# Xue Yuan Xi Road, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
28
|
Choi S, Oh YI, Park KH, Lee JS, Shim JH, Kang BJ. New clinical application of three-dimensional-printed polycaprolactone/β-tricalcium phosphate scaffold as an alternative to allograft bone for limb-sparing surgery in a dog with distal radial osteosarcoma. J Vet Med Sci 2019; 81:434-439. [PMID: 30662043 PMCID: PMC6451899 DOI: 10.1292/jvms.18-0158] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Limb-sparing surgery is one of the surgical options for dogs with distal radial osteosarcoma (OSA). This case report highlights the novel application of a three-dimensional (3D)-printed patient-specific polycaprolactone/β-tricalcium phosphate (PCL/β-TCP) scaffold in limb-sparing surgery in a dog with distal radial OSA. The outcomes evaluated included postoperative gait analysis, complications, local recurrence of tumor, metastasis, and survival time. Post-operative gait evaluation showed significant improvement in limb function, including increased weight distribution and decreased asymmetry. The implant remained well in place and increased bone opacity was observed between the host bone and the scaffold. There was no complication due to scaffold or surgery. Significant improvement in limb function and quality of life was noted postoperatively. Local recurrence and pulmonary metastasis were identified at 8 weeks postoperatively. The survival time from diagnosis of OSA to death was 190 days. The PCL/β-TCP scaffold may be an effective alternative to cortical allograft in limb-sparing surgery for bone tumors.
Collapse
Affiliation(s)
- Seongjae Choi
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ye-In Oh
- Department of Veterinary Internal Medicine, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Keun-Ho Park
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung 15073, Republic of Korea
| | - Jeong-Seok Lee
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung 15073, Republic of Korea
| | - Jin-Hyung Shim
- Department of Mechanical Engineering, Korea Polytechnic University, Siheung 15073, Republic of Korea
| | - Byung-Jae Kang
- Department of Veterinary Surgery, College of Veterinary Medicine and Institute of Veterinary Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
29
|
Siqueira LD, Passador FR, Lobo AO, Trichês EDS. Morphological, thermal and bioactivity evaluation of electrospun PCL/β-TCP fibers for tissue regeneration. POLIMEROS 2019. [DOI: 10.1590/0104-1428.02118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
30
|
Development of a PCL/gelatin/chitosan/β-TCP electrospun composite for guided bone regeneration. Prog Biomater 2018; 7:225-237. [PMID: 30242739 PMCID: PMC6173671 DOI: 10.1007/s40204-018-0098-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 09/07/2018] [Indexed: 01/01/2023] Open
Abstract
Many approaches have been developed to regenerate biological substitutes for repairing damaged tissues. Guided bone/tissue regeneration (GBR/GTR) that employs a barrier membrane has received much attention in recent years. Regardless of substantial efforts for treatment of damaged tissue in recent years, an effective therapeutic strategy is still a challenge for tissue engineering researchers. The aim of the current study is to fabricate a GBR membrane consisting of polycaprolactone (PCL)/gelatin/chitosan which is modified with different percentages of β-tricalcium phosphate (β-TCP) for improved biocompatibility, mechanical properties, and antibacterial activity. The membranes are examined for their mechanical properties, surface roughness, hydrophilicity, biodegradability and biological response. The mechanical properties, wettability and roughness of the membranes are improved with increases in β-TCP content. An increase in the elastic modulus of the substrates is obtained as the amount of β-TCP increases to 5% (145–200 MPa). After 5 h, the number of attached cells is enhanced by 30%, 40% and 50% on membranes having 1%, 3% and 5% β-TCP, respectively. The cell growth on a membrane with 3% of β-TCP is also 50% and 20% higher than those without β-TCP and 5% β-TCP, respectively. Expression of type I collagen is increased with addition of β-TCP by 3%, while there is no difference in ALP activity. The results indicated that a composite having (3%) β-TCP has a potential application for guided bone tissue regeneration.
Collapse
|
31
|
Yuan B, Zhou SY, Chen XS. Rapid prototyping technology and its application in bone tissue engineering. J Zhejiang Univ Sci B 2017; 18:303-315. [PMID: 28378568 DOI: 10.1631/jzus.b1600118] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Bone defects arising from a variety of reasons cannot be treated effectively without bone tissue reconstruction. Autografts and allografts have been used in clinical application for some time, but they have disadvantages. With the inherent drawback in the precision and reproducibility of conventional scaffold fabrication techniques, the results of bone surgery may not be ideal. This is despite the introduction of bone tissue engineering which provides a powerful approach for bone repair. Rapid prototyping technologies have emerged as an alternative and have been widely used in bone tissue engineering, enhancing bone tissue regeneration in terms of mechanical strength, pore geometry, and bioactive factors, and overcoming some of the disadvantages of conventional technologies. This review focuses on the basic principles and characteristics of various fabrication technologies, such as stereolithography, selective laser sintering, and fused deposition modeling, and reviews the application of rapid prototyping techniques to scaffolds for bone tissue engineering. In the near future, the use of scaffolds for bone tissue engineering prepared by rapid prototyping technology might be an effective therapeutic strategy for bone defects.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Orthopedic Surgery, Shanghai Changzheng Hospital, the Second Military Medical University, Shanghai 200003, China
| | - Sheng-Yuan Zhou
- Department of Orthopedic Surgery, Shanghai Changzheng Hospital, the Second Military Medical University, Shanghai 200003, China
| | - Xiong-Sheng Chen
- Department of Orthopedic Surgery, Shanghai Changzheng Hospital, the Second Military Medical University, Shanghai 200003, China
| |
Collapse
|
32
|
Park SH, Park SA, Kang YG, Shin JW, Park YS, Gu SR, Wu YR, Wei J, Shin JW. PCL/β-TCP Composite Scaffolds Exhibit Positive Osteogenic Differentiation with Mechanical Stimulation. Tissue Eng Regen Med 2017; 14:349-358. [PMID: 30603491 PMCID: PMC6171607 DOI: 10.1007/s13770-017-0022-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/10/2016] [Accepted: 05/03/2016] [Indexed: 10/19/2022] Open
Abstract
We investigated the use of Polycaprolactone (PCL)/ β-tricalcium phosphate (β-TCP) composites with applied mechanical stimulation as scaffold for bone tissue engineering. PCL-based three-dimensional (3D) structures were fabricated in a solvent-free process using a 3D-printing technique. The mass fraction of β-TCP was varied in the range 0-30%, and the structure and compressive modulus of the specimens was characterized. The shape and interconnectivity of the pores was found to be satisfactory, and the compressive modulus of the specimens was comparable with that of human trabecular bone. Human mesenchymal stem cells were seeded on the composites, and various biological evaluations were performed over 9 days. With a mass fraction of β-TCP of 30%, differentiation began earlier; however, the cell proliferation rate was lower. Through the use of mechanical stimulation, however, the proliferation rate recovered, and was comparable with that of the other groups. This stimulation effect was also observed in ECM generation and other biological assays. With mechanical stimulation, expression of osteogenic markers was lower on samples with a β-TCP content of 10 wt% than without β-TCP; however, with mechanical stimulation, the sample with a β-TCP content of 30 wt% exhibited significantly greater expression of those markers than the other samples. We found that mechanical stimulation and the addition of β-TCP interacted closely, and that a mass fraction of β-TCP of 30% was particularly useful as a bone tissue scaffold when accompanied by mechanical stimulation.
Collapse
Affiliation(s)
- So Hee Park
- Department of Biomedical Engineering, Inje University, 197 Inje-ro, Gimhae, 50834 Korea
| | - Su A. Park
- Korea Institute of Machinery and Materials, 156, Gajeongbuk-Ro, Yuseong-Gu, Daejeon, 34103 Korea
| | - Yun Gyeong Kang
- Department of Biomedical Engineering, Inje University, 197 Inje-ro, Gimhae, 50834 Korea
| | - Ji Won Shin
- Department of Biomedical Engineering, Inje University, 197 Inje-ro, Gimhae, 50834 Korea
| | - Young Shik Park
- School of Biological Sciences, Inje University, 197 Inje-ro, Gimhae, 50834 Korea
| | - Seo Rin Gu
- Department of Biomedical Engineering, Inje University, 197 Inje-ro, Gimhae, 50834 Korea
| | - Yan Ru Wu
- Department of Health science and technology, Inje University, 197 Inje-ro, Gimhae, 50834 Korea
| | - Jie Wei
- Engineering Research Center for Biomedical Materials, East China University of Science and Technology, Shanghai, 200237 China
| | - Jung-Woog Shin
- Department of Biomedical Engineering, Inje University, 197 Inje-ro, Gimhae, 50834 Korea
- School of Biological Sciences, Inje University, 197 Inje-ro, Gimhae, 50834 Korea
- Inst. of Aged Life Redesign/ UHARC/Cardiovascular and Metabolic Disease Center, Inje University, 197 Inje-ro, Gimhae, 50834 Korea
| |
Collapse
|
33
|
Malikmammadov E, Tanir TE, Kiziltay A, Hasirci V, Hasirci N. PCL-TCP wet spun scaffolds carrying antibiotic-loaded microspheres for bone tissue engineering. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 29:805-824. [DOI: 10.1080/09205063.2017.1354671] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Elbay Malikmammadov
- Graduate School of Natural and Applied Sciences, Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
| | - Tugba Endogan Tanir
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Central Laboratory, Middle East Technical University, Ankara, Turkey
| | - Aysel Kiziltay
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Central Laboratory, Middle East Technical University, Ankara, Turkey
| | - Vasif Hasirci
- Graduate School of Natural and Applied Sciences, Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Faculty of Arts and Sciences, Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
| | - Nesrin Hasirci
- Graduate School of Natural and Applied Sciences, Department of Micro and Nanotechnology, Middle East Technical University, Ankara, Turkey
- BIOMATEN, Middle East Technical University Center of Excellence in Biomaterials and Tissue Engineering, Ankara, Turkey
- Faculty of Arts and Sciences, Department of Chemistry, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
34
|
Houben A, Van Hoorick J, Van Erps J, Thienpont H, Van Vlierberghe S, Dubruel P. Indirect Rapid Prototyping: Opening Up Unprecedented Opportunities in Scaffold Design and Applications. Ann Biomed Eng 2016; 45:58-83. [PMID: 27080376 DOI: 10.1007/s10439-016-1610-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/04/2016] [Indexed: 01/10/2023]
Abstract
Over the past decades, solid freeform fabrication (SFF) has emerged as the main technology for the production of scaffolds for tissue engineering applications as a result of the architectural versatility. However, certain limitations have also arisen, primarily associated with the available, rather limited range of materials suitable for processing. To overcome these limitations, several research groups have been exploring novel methodologies through which a construct, generated via SFF, is applied as a sacrificial mould for production of the final construct. The technique combines the benefits of SFF techniques in terms of controlled, patient-specific design with a large freedom in material selection associated with conventional scaffold production techniques. Consequently, well-defined 3D scaffolds can be generated in a straightforward manner from previously difficult to print and even "unprintable" materials due to thermomechanical properties that do not match the often strict temperature and pressure requirements for direct rapid prototyping. These include several biomaterials, thermally degradable materials, ceramics and composites. Since it can be combined with conventional pore forming techniques, indirect rapid prototyping (iRP) enables the creation of a hierarchical porosity in the final scaffold with micropores inside the struts. Consequently, scaffolds and implants for applications in both soft and hard tissue regeneration have been reported. In this review, an overview of different iRP strategies and materials are presented from the first reports of the approach at the turn of the century until now.
Collapse
Affiliation(s)
- Annemie Houben
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000, Ghent, Belgium
| | - Jasper Van Hoorick
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000, Ghent, Belgium.,Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Belgium
| | - Jürgen Van Erps
- Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Belgium
| | - Hugo Thienpont
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000, Ghent, Belgium.,Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000, Ghent, Belgium.,Brussels Photonics Team, Department of Applied Physics and Photonics, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Elsene, Belgium
| | - Peter Dubruel
- Polymer Chemistry & Biomaterials Group, Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-Bis, 9000, Ghent, Belgium.
| |
Collapse
|
35
|
Xin X, Liu QQ, Chen CX, Guan YX, Yao SJ. Fabrication of bimodal porous PLGA scaffolds by supercritical CO2foaming/particle leaching technique. J Appl Polym Sci 2016. [DOI: 10.1002/app.43644] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xin Xin
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Qian-Qian Liu
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Chuan-Xin Chen
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Yi-Xin Guan
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| | - Shan-Jing Yao
- College of Chemical and Biological Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
36
|
Makhni MC, Caldwell JME, Saifi C, Fischer CR, Lehman RA, Lenke LG, Lee FY. Tissue engineering advances in spine surgery. Regen Med 2016; 11:211-22. [DOI: 10.2217/rme.16.3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Autograft, while currently the gold standard for bone grafting, has several significant disadvantages including limited supply, donor site pain, hematoma formation, nerve and vascular injury, and fracture. Bone allografts have their own disadvantages including reduced osteoinductive capability, lack of osteoprogenitor cells, immunogenicity and risk of disease transmission. Thus demand exists for tissue-engineered constructs that can produce viable bone while avoiding the complications associated with human tissue grafts. This review will focus on recent advancements in tissue-engineered bone graft substitutes utilizing nanoscale technology in spine surgery applications. An evaluation will be performed of bone graft substitutes, biomimetic 3D scaffolds, bone morphogenetic protein, mesenchymal stem cells and intervertebral disc regeneration strategies.
Collapse
Affiliation(s)
- Melvin C Makhni
- Department of Orthopedic Surgery, New York-Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| | - Jon-Michael E Caldwell
- Department of Orthopedic Surgery, New York-Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| | - Comron Saifi
- The Spine Hospital, Department of Orthopedic Surgery, New York-Presbyterian Healthcare System, Columbia University Medical Center, 5141 Broadway, New York, NY 10034, USA
| | - Charla R Fischer
- The Spine Hospital, Department of Orthopedic Surgery, New York-Presbyterian Healthcare System, Columbia University Medical Center, 5141 Broadway, New York, NY 10034, USA
| | - Ronald A Lehman
- Department of Orthopedic Surgery, New York-Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| | - Lawrence G Lenke
- The Spine Hospital, Department of Orthopedic Surgery, New York-Presbyterian Healthcare System, Columbia University Medical Center, 5141 Broadway, New York, NY 10034, USA
| | - Francis Y Lee
- Department of Orthopedic Surgery, New York-Presbyterian Hospital, Columbia University Medical Center, New York, NY 10032, USA
| |
Collapse
|
37
|
Rodenas-Rochina J, Vidaurre A, Castilla Cortázar I, Lebourg M. Effects of hydroxyapatite filler on long-term hydrolytic degradation of PLLA/PCL porous scaffolds. Polym Degrad Stab 2015. [DOI: 10.1016/j.polymdegradstab.2015.04.015] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
38
|
Peña JA, Gutiérrez SJ, Villamil JC, Agudelo NA, Pérez LD. Policaprolactone/polyvinylpyrrolidone/siloxane hybrid materials: Synthesis and in vitro delivery of diclofenac and biocompatibility with periodontal ligament fibroblasts. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:60-9. [PMID: 26478287 DOI: 10.1016/j.msec.2015.08.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 07/10/2015] [Accepted: 08/07/2015] [Indexed: 12/01/2022]
Abstract
In this paper, we report the synthesis of polycaprolactone (PCL) based hybrid materials containing hydrophilic domains composed of N-vinylpyrrolidone (VP), and γ-methacryloxypropyltrimethoxysilane (MPS). The hybrid materials were obtained by RAFT copolymerization of N-vinylpyrrolidone and MPS using a pre-formed dixanthate-end-functionalized PCL as macro-chain transfer agent, followed by a post-reaction crosslinking step. The composition of the samples was determined by elemental and thermogravimetric analyses. Differential scanning calorimetry and X-ray diffraction indicated that the crystallinity of PCL decreases in the presence of the hydrophilic domains. Scanning electron microscopy images revealed that the samples present an interconnected porous structure on the swelling. Compared to PCL, the hybrid materials presented low water contact angle values and higher elastic modulus. These materials showed controlled release of diclofenac, and biocompatibility with human periodontal ligament fibroblasts.
Collapse
Affiliation(s)
- José A Peña
- Departamento de Química, Pontificia Universidad Javeriana, Bogotá D.C., Colombia
| | - Sandra J Gutiérrez
- Centro de investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá, Colombia.
| | - Jean C Villamil
- Centro de investigaciones Odontológicas, Facultad de Odontología, Pontificia Universidad Javeriana, Bogotá, Colombia
| | | | - León D Pérez
- Grupo de Macromoléculas, Departamento de Química, Universidad Nacional de Colombia, Carrera 45 No 26-85, edificio 451 of. 449, Bogotá D.C. Colombia.
| |
Collapse
|
39
|
Lou T, Wang X, Song G, Gu Z, Yang Z. Structure and properties of PLLA/β-TCP nanocomposite scaffolds for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2015; 26:5366. [PMID: 25578714 DOI: 10.1007/s10856-014-5366-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2014] [Accepted: 09/10/2014] [Indexed: 06/04/2023]
Abstract
One of the key components of tissue engineering is a scaffold with suitable morphology, outstanding mechanical properties, and favorable biocompatibility. In this study, β-tricalcium phosphate (β-TCP) nanoparticles were synthesized and incorporated with poly(L-lactic acid) (PLLA) to fabricate nanocomposite scaffolds by the thermally induced phase separation method. The PLLA/β-TCP nanocomposite scaffolds showed a continuous nanofibrous PLLA matrix with strut diameters of 100-750 nm, interconnected micropores with pore diameters in the range of 0.5-10 μm, and high porosity (>92 %). β-TCP nanoparticles were homogeneously dispersed in the PLLA matrix, which significantly improved the compressive modulus and protein adsorption capacity. The prepared nanocomposite scaffolds provided a suitable microenvironment for osteoblast attachment and proliferation, demonstrating the potential of the PLLA/β-TCP nanocomposite scaffolds in bone tissue engineering applications.
Collapse
Affiliation(s)
- Tao Lou
- Institute of Polymer Materials, Qingdao University, Qingdao, 266071, China,
| | | | | | | | | |
Collapse
|
40
|
Sa MW, Kim JY. 골 재생용 3차원 β-삼인산칼슘/폴리카프로락톤 인공지지체의 제작 및 특성 평가. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0418-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
41
|
New porous polycaprolactone–silica composites for bone regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 40:418-26. [DOI: 10.1016/j.msec.2014.04.024] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 03/15/2014] [Accepted: 04/07/2014] [Indexed: 01/26/2023]
|
42
|
Li Y, Wu ZG, Li XK, Guo Z, Wu SH, Zhang YQ, Shi L, Teoh SH, Liu YC, Zhang ZY. A polycaprolactone-tricalcium phosphate composite scaffold as an autograft-free spinal fusion cage in a sheep model. Biomaterials 2014; 35:5647-59. [DOI: 10.1016/j.biomaterials.2014.03.075] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 03/27/2014] [Indexed: 01/18/2023]
|
43
|
Demirdögen B, Plazas Bonilla CE, Trujillo S, Perilla JE, Elcin AE, Elcin YM, Gómez Ribelles JL. Silica coating of the pore walls of a microporous polycaprolactone membrane to be used in bone tissue engineering. J Biomed Mater Res A 2013; 102:3229-36. [DOI: 10.1002/jbm.a.34999] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2013] [Accepted: 10/03/2013] [Indexed: 01/17/2023]
Affiliation(s)
- B. Demirdögen
- Ankara University, Stem Cell Institute, TEBN Laboratory; Ankara Turkey
- Department of Chemistry, Ankara University, Faculty of Science, TEBN Laboratory; Ankara Turkey
| | - C. E. Plazas Bonilla
- Departamento de Farmacia; Grupo de Procesos Químicos y Bioquímicos; Universidad Nacional de Colombia; Sede Bogotá, Facultad de Ciencias, Bogotá, Código Postal 111321 Colombia
| | - S. Trujillo
- Center for Biomaterials and Tissue Engineering; Universitat Politècnica de València; Camino de Vera, s/n, E-46022 Valencia Spain
| | - J. E. Perilla
- Departamento de Ingeniería Química y Ambiental; Grupo de Procesos Químicos y Bioquímicos; Universidad Nacional de Colombia; Sede Bogotá, Facultad de Ingeniería, Bogotá, Código Postal 111321 Colombia
| | - A. E. Elcin
- Ankara University, Stem Cell Institute, TEBN Laboratory; Ankara Turkey
- Department of Chemistry, Ankara University, Faculty of Science, TEBN Laboratory; Ankara Turkey
| | - Y. M. Elcin
- Ankara University, Stem Cell Institute, TEBN Laboratory; Ankara Turkey
- Department of Chemistry, Ankara University, Faculty of Science, TEBN Laboratory; Ankara Turkey
| | - J. L. Gómez Ribelles
- Center for Biomaterials and Tissue Engineering; Universitat Politècnica de València; Camino de Vera, s/n, E-46022 Valencia Spain
- CIBER en Bioingeniería Biomateriales y Nanomedicina (CIBER-BBN); Valencia España
| |
Collapse
|
44
|
Song MJ, Dean D, Knothe Tate ML. Mechanical modulation of nascent stem cell lineage commitment in tissue engineering scaffolds. Biomaterials 2013; 34:5766-75. [PMID: 23660249 DOI: 10.1016/j.biomaterials.2013.04.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 04/10/2013] [Indexed: 12/19/2022]
Abstract
Taking inspiration from tissue morphogenesis in utero, this study tests the concept of using tissue engineering scaffolds as delivery devices to modulate emergent structure-function relationships at early stages of tissue genesis. We report on the use of a combined computational fluid dynamics (CFD) modeling, advanced manufacturing methods, and experimental fluid mechanics (micro-piv and strain mapping) for the prospective design of tissue engineering scaffold geometries that deliver spatially resolved mechanical cues to stem cells seeded within. When subjected to a constant magnitude global flow regime, the local scaffold geometry dictates the magnitudes of mechanical stresses and strains experienced by a given cell, and in a spatially resolved fashion, similar to patterning during morphogenesis. In addition, early markers of mesenchymal stem cell lineage commitment relate significantly to the local mechanical environment of the cell. Finally, by plotting the range of stress-strain states for all data corresponding to nascent cell lineage commitment (95% CI), we begin to "map the mechanome", defining stress-strain states most conducive to targeted cell fates. In sum, we provide a library of reference mechanical cues that can be delivered to cells seeded on tissue engineering scaffolds to guide target tissue phenotypes in a temporally and spatially resolved manner. Knowledge of these effects allows for prospective scaffold design optimization using virtual models prior to prototyping and clinical implementation. Finally, this approach enables the development of next generation scaffolds cum delivery devices for genesis of complex tissues with heterogenous properties, e.g., organs, joints or interface tissues such as growth plates.
Collapse
Affiliation(s)
- Min Jae Song
- Department of Biomedical Engineering, Case Western Reserve University, 2071 Martin Luther King Jr. Drive, Cleveland, OH 44106-7207, USA
| | | | | |
Collapse
|