1
|
Motaharinia A, Drelich JW, Sharif S, Ismail AF, Naeimi F, Glover A, Ebrahiminejad M, Bakhsheshi-Rad HR. Overview of porous magnesium-based scaffolds: development, properties and biomedical applications. MATERIALS FUTURES 2025; 4:012401. [PMID: 39758543 PMCID: PMC11694181 DOI: 10.1088/2752-5724/ad9493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/16/2024] [Accepted: 10/31/2024] [Indexed: 01/07/2025]
Abstract
Magnesium (Mg) and its alloys are revolutionizing the field of interventional surgeries in the medical industry. Their high biocompatibility, biodegradability, and a similar elastic modulus to natural bone make porous Mg-based structures potential candidates for orthopedic implants and tissue engineering scaffolding. However, fabricating and machining porous Mg-based structures is challenging due to their complexity and difficulties in achieving uniform or gradient porosity. This review aims to thoroughly explore various fabrication procedures used to create metallic scaffolds, with a specific focus on those made from Mg-based alloys. Both traditional manufacturing techniques, including the directional solidification of metal-gas eutectic technique, pattern casting, methods using space holders, and modern fabrication methods, which are based on additive manufacturing, are covered in this review article. Furthermore, the paper highlights the most important findings of recent studies on Mg-based scaffolds in terms of their microstructure specifications, mechanical properties, degradation and corrosion behavior, antibacterial activity, and biocompatibility (both in vivo and in vitro). While extensive research has been conducted to optimize manufacturing parameters and qualities of Mg-based scaffolds for use in biomedical applications, specifically for bone tissue engineering applications, further investigation is needed to fabricate these scaffolds with specific properties, such as high resistance to corrosion, good antibacterial properties, osteoconductivity, osteoinductivity, and the ability to elicit a favorable response from osteoblast-like cell lines. The review concludes with recommendations for future research in the field of medical applications.
Collapse
Affiliation(s)
- Amir Motaharinia
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Jaroslaw W Drelich
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Safian Sharif
- Advanced Manufacturing Research Group, Faculty of Mechanical Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Center (AMTEC), Universiti Teknologi Malaysia, Johor Bahru 81310, Johor, Malaysia
| | - Farid Naeimi
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Alexandra Glover
- Department of Materials Science and Engineering, Michigan Technological University, Houghton, MI 49931, United States of America
| | - Mahshid Ebrahiminejad
- Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| | - Hamid Reza Bakhsheshi-Rad
- Advanced Materials Research Center, Department of Materials Engineering, Najafabad Branch, Islamic Azad University, Najafabad, Iran
| |
Collapse
|
2
|
Tarif CM, Mandal S, Chakraborty B, Sarkar K, Mukherjee P, Roy M, Nandi SK. In vitro and in vivo assessment of decellularized platelet-rich fibrin-loaded strontium doped porous magnesium phosphate scaffolds in bone regeneration. J Mech Behav Biomed Mater 2023; 138:105587. [PMID: 36446181 DOI: 10.1016/j.jmbbm.2022.105587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
The present work reports the effect of decellularized platelet-rich fibrin (dPRF) loaded strontium (Sr) doped porous magnesium phosphate (MgP) bioceramics on biocompatibility, biodegradability, and bone regeneration. Sustained release of growth factors from dPRF is a major objective here, which conformed to the availability of dPRF on the scaffold surface even after 7 days of in vitro degradation. dPRF-incorporated MgP scaffolds were implanted in the rabbit femoral bone defect and bone rejuvenation was confirmed by radiological examination, histological examination, fluorochrome labeling study, and micro-CT. μ-CT examination of the regained bone samples exhibited that invasion of mature bone in the pores of the MgP2Sr-dPRF sample was higher than the MgP2Sr which indicated better bone maturation capability of this composition. Quantifiable assessment using oxytetracycline labeling showed 73.55 ± 1.12% new osseous tissue regeneration for MgP2Sr-dPRF samples in contrast to 65.47 ± 1.16% for pure MgP2Sr samples, after 3 months of implantation. Histological analysis depicted the presence of abundant osteoblastic and osteoclastic cells in dPRF-loaded Sr-doped MgP samples as compared to other samples. Radiological studies also mimicked similar results in the MgP2Sr-dPRF group with intact periosteal lining and significant bridging callus formation. The present results indicated that dPRF-loaded Sr-doped magnesium phosphate bioceramics have good biocompatibility, bone-forming ability, and suitable biodegradability in bone regeneration.
Collapse
Affiliation(s)
- Chaudhuri Mohammad Tarif
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, India
| | - Santanu Mandal
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology - Kharagpur, Kharagpur, 721302, India
| | - Bijayashree Chakraborty
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, India
| | - Kaushik Sarkar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology - Kharagpur, Kharagpur, 721302, India
| | - Prasenjit Mukherjee
- Department of Veterinary Clinical Complex, West Bengal University of Animal and Fishery Sciences, Mohanpur, Nadia, India
| | - Mangal Roy
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology - Kharagpur, Kharagpur, 721302, India.
| | - Samit Kumar Nandi
- Department of Veterinary Surgery and Radiology, West Bengal University of Animal and Fishery Sciences, Kolkata, 700037, India.
| |
Collapse
|
3
|
Singh Y, Saxena A, Singh SP, Verma MK, Kumar A, Kumar A, Mrigesh M, Saxena MK. Calcium phosphate adjuvanted nanoparticles of outer membrane proteins of Salmonella Typhi as a candidate for vaccine development against Typhoid fever. J Med Microbiol 2022; 71. [PMID: 35476604 DOI: 10.1099/jmm.0.001529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Introduction. The conventional adjuvants used in vaccines have limitations like induction of an imbalanced Th1 and Th2 immune response. To overcome this limitation, novel adjuvants and newer forms of existing adjuvants like calcium phosphate nanoparticles are being tested.Hypothesis/Gap Statement. Calcium phosphate adjuvanted outer membrane proteins vaccine may work as an efficient, safe and cost effective vaccine against Salmonella Typhi.Aim. Our goals were to evaluate the potential of calcium phosphate nanoparticles as an adjuvant using outer membrane proteins (Omps) of Salmonella Typhi as antigens for immune response, with montanide (commercially available adjuvant) as control, and its toxicity in rats.Methodology. Calcium phosphate adjuvanted outer membrane proteins nanoparticles were synthesized and characterized. The efficacy of vaccine formulation in mice and toxicity assay were carried out in rats.Results. The calcium phosphate nanoparticles varying in size between 20-50 nm had entrapment efficiency of 41.5% and loading capacity of 54%. The calcium phosphate nanoparticle-Omps vaccine formulation (nanoparticle-Omps) induced a strong humoral immune response, which was significantly higher than the control group for the entire period of study. In the montanide-Omps group the initial very high immune response declined steeply and then remained steady. The immune response induced by nanoparticle-Omps did not change appreciably. The cell mediated immune response as measured by lymphocyte proliferation assay and delayed type hypersensitivity test showed a higher response (P<0.01) for the nanoparticles-Omps group as compared to montanide-Omps group. The bacterial clearance assay also showed higher clearance in the nanoparticles-Omps group as compared to montanide-Omps group (approx 1.4%). The toxicity analysis in rats showed no difference in the values of toxicity biomarkers and blood chemistry parameters, revealing vaccine formulation was non-toxic in rats.Conclusion. Calcium phosphate nanoparticles as adjuvant in vaccines is safe, have good encapsulation and loading capacity and induce a strong cell mediated, humoral and protective immune response.
Collapse
Affiliation(s)
- Yashpal Singh
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, Pantnagar, Uttarakhand, India
| | - Anjani Saxena
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - S P Singh
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Manish Kumar Verma
- Department of Veterinary Pharmacology & Toxicology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Arun Kumar
- Department of Veterinary Surgery and Radiology, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Avadhesh Kumar
- Department of Veterinary & Animal Husbandry Extension Education, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Meena Mrigesh
- Department of Veterinary Anatomy, College of Veterinary & Animal Sciences, Pantnagar, Uttarakhand, India
| | - Mumtesh Kumar Saxena
- Department of Animal Genetics & Breeding, College of Veterinary & Animal Sciences G.B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand, India
| |
Collapse
|
4
|
Strategies to Control In Vitro Degradation of Mg Scaffolds Processed by Powder Metallurgy. METALS 2022. [DOI: 10.3390/met12040566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Magnesium scaffolds are biodegradable, biocompatible, bioactive porous scaffolds, which find applications within tissue engineering. The presence of porosity increases surface area and enhances cell proliferation and tissue ingrowth. These characteristics make Mg scaffolds key materials to enhance the healing processes of tissues such as cartilage and bone. However, along with the increment of porosity, the corrosion of magnesium within a physiological environment occurs faster. It is, therefore, necessary to control the degradation rate of Mg scaffolds in order to maintain their mechanical properties during the healing process. Several studies have been performed to increase Mg scaffolds’ corrosion resistance. The different approaches include the modification of the Mg surface by conversion coatings or deposited coatings. The nature of the coatings varies from ceramics such as hydroxyapatite and calcium phosphates to polymers such as polycaprolactone or gelatin. In this work, we propose a novel approach to generating a protective bilayer coating on the Mg scaffold surface composed of a first layer of naturally occurring Mg corrosion products (hydroxide and phosphates) and a second layer of a homogeneous and biocompatible coating of polylactic acid. The Mg scaffolds were fabricated from Mg powder by means of powder metallurgy using ammonium bicarbonate as a space holder. The size and amount of porosity were controlled using different size distributions of space holders. We addressed the influence of scaffold pore size on the conversion and deposition processes and how the coating process influences the in vitro degradation of the scaffolds.
Collapse
|
5
|
Augustin J, Feichtner F, Waselau AC, Julmi S, Klose C, Wriggers P, Maier HJ, Meyer-Lindenberg A. Effect of pore size on tissue ingrowth and osteoconductivity in biodegradable Mg alloy scaffolds. J Appl Biomater Funct Mater 2022; 20:22808000221078168. [PMID: 35189733 DOI: 10.1177/22808000221078168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Magnesium has mechanical properties similar to those of bone and is being considered as a potential bone substitute. In the present study, two different pore sized scaffolds of the Mg alloy LAE442, coated with magnesium fluoride, were compared. The scaffolds had interconnecting pores of either 400 (p400) or 500 µm (p500). ß-TCP served as control. Ten scaffolds per time group (6, 12, 24, 36 weeks) were implanted in the trochanter major of rabbits. Histological analyses, µCT scans, and SEM/EDX were performed. The scaffolds showed slow volume decreases (week 36 p400: 9.9%; p500: 7.5%), which were accompanied by uncritical gas releases. In contrast, ß-TCP showed accelerated resorption (78.5%) and significantly more new bone inside (18.19 ± 1.47 mm3). Bone fragments grew into p400 (0.17 ± 0.19 mm3) and p500 (0.36 ± 0.26 mm3), reaching the centrally located pores within p500 more frequently. In particular, p400 displayed a more uneven and progressively larger surface area (week 36 p400: 253.22 ± 19.44; p500: 219.19 ± 4.76 mm2). A better osseointegration of p500 was indicated by significantly more trabecular contacts and a 200 µm wide bone matrix being in the process of mineralization and in permanent contact with the scaffold. The number of macrophages and foreign body giant cells were at an acceptable level concerning resorbable biomaterials. In terms of ingrown bone and integrative properties, LAE442 scaffolds could not achieve the results of ß-TCP. In this long-term study, p500 appears to be a biocompatible and more osteoconductive pore size for the Mg alloy LAE442.
Collapse
Affiliation(s)
- Julia Augustin
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franziska Feichtner
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Anja-Christina Waselau
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefan Julmi
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Christian Klose
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Garbsen, Germany
| | - Hans Jürgen Maier
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
6
|
Schmidt M, Waselau AC, Feichtner F, Julmi S, Klose C, Maier HJ, Wriggers P, Meyer-Lindenberg A. In vivo investigation of open-pored magnesium scaffolds LAE442 with different coatings in an open wedge defect. J Appl Biomater Funct Mater 2022; 20:22808000221142679. [PMID: 36545893 DOI: 10.1177/22808000221142679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The magnesium alloy LAE442 showed promising results as a bone substitute in numerous studies in non-weight bearing bone defects. This study aimed to investigate the in vivo behavior of wedge-shaped open-pored LAE442 scaffolds modified with two different coatings (magnesium fluoride (MgF2, group 1)) or magnesium fluoride/calcium phosphate (MgF2/CaP, group 2)) in a partial weight-bearing rabbit tibia defect model. The implantation of the scaffolds was performed as an open wedge corrective osteotomy in the tibia of 40 rabbits and followed for observation periods of 6, 12, 24, and 36 weeks. Radiological and microcomputed tomographic examinations were performed in vivo. X-ray microscopic, histological, histomorphometric, and SEM/EDS analyses were performed at the end of each time period. µCT measurements and X-ray microscopy showed a slight decrease in volume and density of the scaffolds of both coatings. Histologically, endosteal and periosteal callus formation with good bridging and stabilization of the osteotomy gap and ingrowth of bone into the scaffold was seen. The MgF2 coating favored better bridging of the osteotomy gap and more bone-scaffold contacts, especially at later examination time points. Overall, the scaffolds of both coatings met the requirement to withstand the loads after an open wedge corrective osteotomy of the proximal rabbit tibia. However, in addition to the inhomogeneous degradation behavior of individual scaffolds, an accumulation of gas appeared, so the scaffold material should be revised again regarding size dimension and composition.
Collapse
Affiliation(s)
- Marlene Schmidt
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Anja-Christina Waselau
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Franziska Feichtner
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Stefan Julmi
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Christian Klose
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Hans Jürgen Maier
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, Garbsen, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Garbsen, Germany
| | - Andrea Meyer-Lindenberg
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Munich, Munich, Germany
| |
Collapse
|
7
|
Dong J, Tümer N, Putra NE, Zhu J, Li Y, Leeflang MA, Taheri P, Fratila-Apachitei LE, Mol JMC, Zadpoor AA, Zhou J. Extrusion-based 3D printed magnesium scaffolds with multifunctional MgF 2 and MgF 2-CaP coatings. Biomater Sci 2021; 9:7159-7182. [PMID: 34549742 DOI: 10.1039/d1bm01238j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Additively manufactured (AM) biodegradable magnesium (Mg) scaffolds with precisely controlled and fully interconnected porous structures offer unprecedented potential as temporary bone substitutes and for bone regeneration in critical-sized bone defects. However, current attempts to apply AM techniques, mainly powder bed fusion AM, for the preparation of Mg scaffolds, have encountered some crucial difficulties related to safety in AM operations and severe oxidation during AM processes. To avoid these difficulties, extrusion-based 3D printing has been recently developed to prepare porous Mg scaffolds with highly interconnected structures. However, limited bioactivity and a too high rate of biodegradation remain the major challenges that need to be addressed. Here, we present a new generation of extrusion-based 3D printed porous Mg scaffolds that are coated with MgF2 and MgF2-CaP to improve their corrosion resistance and biocompatibility, thereby bringing the AM scaffolds closer to meeting the clinical requirements for bone substitutes. The mechanical properties, in vitro biodegradation behavior, electrochemical response, and biocompatibility of the 3D printed Mg scaffolds with a macroporosity of 55% and a strut density of 92% were evaluated. Furthermore, comparisons were made between the bare scaffolds and the scaffolds with coatings. The coating not only covered the struts but also infiltrated the struts through micropores, resulting in decreases in both macro- and micro-porosity. The bare Mg scaffolds exhibited poor corrosion resistance due to the highly interconnected porous structure, while the MgF2-CaP coatings remarkably improved the corrosion resistance, lowering the biodegradation rate of the scaffolds down to 0.2 mm y-1. The compressive mechanical properties of the bare and coated Mg scaffolds before and during in vitro immersion tests for up to 7 days were both in the range of the values reported for the trabecular bone. Moreover, direct culture of MC3T3-E1 preosteoblasts on the coated Mg scaffolds confirmed their good biocompatibility. Overall, this study clearly demonstrated the great potential of MgF2-CaP coated porous Mg prepared by extrusion-based 3D printing for further development as a bone substitute.
Collapse
Affiliation(s)
- J Dong
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - N Tümer
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - N E Putra
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - J Zhu
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - Y Li
- Beijing Advanced Innovation Center for Materials Genome Engineering, School of Materials Science and Engineering, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - M A Leeflang
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - P Taheri
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - L E Fratila-Apachitei
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - J M C Mol
- Department of Materials Science and Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands
| | - A A Zadpoor
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| | - J Zhou
- Department of Biomechanical Engineering, Delft University of Technology, Delft 2628 CD, The Netherlands.
| |
Collapse
|
8
|
Kleer-Reiter N, Julmi S, Feichtner F, Waselau AC, Klose C, Wriggers P, Maier HJ, Meyer-Lindenberg A. Biocompatibility and degradation of the open-pored magnesium scaffolds LAE442 and La2. Biomed Mater 2021; 16. [PMID: 33827052 DOI: 10.1088/1748-605x/abf5c5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 04/07/2021] [Indexed: 11/11/2022]
Abstract
Porous magnesium implants are of particular interest for application as resorbable bone substitutes, due to their mechanical strength and a Young's modulus similar to bone. The objective of the present study was to compare the biocompatibility, bone and tissue ingrowth, and the degradation behaviour of scaffolds made from the magnesium alloys LAE442 (n= 40) and Mg-La2 (n= 40)in vivo. For this purpose, cylindrical magnesium scaffolds (diameter 4 mm, length 5 mm) with defined, interconnecting pores were produced by investment casting and coated with MgF2. The scaffolds were inserted into the cancellous part of the greater trochanter ossis femoris of rabbits. After implantation periods of 6, 12, 24 and 36 weeks, the bone-scaffold compounds were evaluated usingex vivo µCT80 images, histological examinations and energy dispersive x-ray spectroscopy analysis. The La2 scaffolds showed inhomogeneous and rapid degradation, with inferior osseointegration as compared to LAE442. For the early observation times, no bone and tissue could be observed in the pores of La2. Furthermore, the excessive amount of foreign body cells and fibrous capsule formation indicates insufficient biocompatibility of the La2 scaffolds. In contrast, the LAE442 scaffolds showed slow degradation and better osseointegration. Good vascularization, a moderate cellular response, bone and osteoid-like bone matrix at all implantation periods were observed in the pores of LAE442. In summary, porous LAE442 showed promise as a degradable scaffold for bone defect repair, based on its degradation behaviour and biocompatibility. However, further studies are needed to show it would have the necessary mechanical properties required over time for weight-bearing bone defects.
Collapse
Affiliation(s)
- N Kleer-Reiter
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Veterinärstr. 13, München 80539, Germany
| | - S Julmi
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, An der Universität 2, Garbsen 30823, Germany
| | - F Feichtner
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Veterinärstr. 13, München 80539, Germany
| | - A-C Waselau
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Veterinärstr. 13, München 80539, Germany
| | - C Klose
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, An der Universität 2, Garbsen 30823, Germany
| | - P Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Appelstr. 11, Hannover 30167, Germany
| | - H J Maier
- Institut für Werkstoffkunde (Materials Science), Leibniz Universität Hannover, An der Universität 2, Garbsen 30823, Germany
| | - A Meyer-Lindenberg
- Clinic of Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Veterinärstr. 13, München 80539, Germany
| |
Collapse
|
9
|
Guo X, Xu H, Zhang F, Lu F. Bioabsorbable high-purity magnesium interbody cage: degradation, interbody fusion, and biocompatibility from a goat cervical spine model. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1054. [PMID: 33145273 PMCID: PMC7575937 DOI: 10.21037/atm-20-225] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background Bioabsorbable Mg-based implants have been a focus of orthopedic researches due to their intrinsic advantages in orthopedics surgeries. This study aimed to investigate the performance of bioabsorbable high-purity magnesium (HP Mg, 99.98 wt.%) interbody cages in anterior cervical discectomy and fusion (ACDF) and to evaluate the degradation of HP Mg cages under an interbody microenvironment. Methods ACDF was performed at C2–3 and C4–5, and a HP Mg cage or autologous iliac bone was randomly implanted. At 3, 6, 12 and 24 weeks after surgery, the cervical specimens were harvested to evaluate the fusion status, degradation and biocompatibility by CT, micro-CT, histological examinations and blood tests. Results There was no significant difference in the CT fusion score between cage group and autogenous ilium group at 3 and 6 weeks. At 12 and 24 weeks, the mean CT fusion score in the cage group was markedly lower than in the autogenous ilium group. CT and histological examinations showed bony junctions formed through the middle hole of the cage between upper and lower vertebral bodies in the cage group, but the total fusion area was less than 30%. The degradation rate of cages was relatively rapid within the first 3 weeks and thereafter became stable and slow gradually. The HP Mg cage had good biosecurity and biomechanical characteristics. Conclusions Implantation of Mg-based interbody cage achieves successful histological fusion, while the total fusion area needs to be improved. More studies are needed to improve the bone-cage interface.
Collapse
Affiliation(s)
- Xiuwu Guo
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| | - Haocheng Xu
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Fan Zhang
- Department of Orthopedics, Huashan Hospital, Fudan University, Shanghai, China
| | - Feizhou Lu
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Biofunctional magnesium coated Ti6Al4V scaffold enhances osteogenesis and angiogenesis in vitro and in vivo for orthopedic application. Bioact Mater 2020; 5:680-693. [PMID: 32435721 PMCID: PMC7226632 DOI: 10.1016/j.bioactmat.2020.04.019] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 04/27/2020] [Accepted: 04/28/2020] [Indexed: 12/20/2022] Open
Abstract
The insufficient osteogenesis and osseointegration of porous titanium based scaffold limit its further application. Early angiogenesis is important for scaffold survival. It is necessary to develop a multifunctional surface on titanium scaffold with both osteogenic and angiogenic properties. In this study, a biofunctional magnesium coating is deposited on porous Ti6Al4V scaffold. For osseointegration and osteogenesis analysis, in vitro studies reveal that magnesium-coated Ti6Al4V co-culture with MC3T3-E1 cells can improve cell proliferation, adhesion, extracellular matrix (ECM) mineralization and ALP activity compared with bare Ti6Al4V cocultivation. Additionally, MC3T3-E1 cells cultured with magnesium-coated Ti6Al4V show significantly higher osteogenesis-related genes expression. In vivo studies including fluorochrome labeling, micro-computerized tomography and histological examination of magnesium-coated Ti6Al4V scaffold reveal that new bone regeneration is significantly increased in rabbits after implantation. For angiogenesis studies, magnesium-coated Ti6Al4V improve HUVECs proliferation, adhesion, tube formation, wound-healing and Transwell abilities. HUVECs cultured with magnesium-coated Ti6Al4V display significantly higher angiogenesis-related genes (HIF-1α and VEGF) expression. Microangiography analysis reveal that magnesium-coated Ti6Al4V scaffold can significantly enhance the blood vessel formation. This study enlarges the application scope of magnesium and provides an optional choice to the conventional porous Ti6Al4V scaffold with enhanced osteogenesis and angiogenesis for further orthopedic applications.
Collapse
|
11
|
Gartzke AK, Julmi S, Klose C, Besdo S, Waselau AC, Meyer-Lindenberg A, Maier HJ, Wriggers P. Investigation of degraded bone substitutes made of magnesium alloy using scanning electron microscope and nanoindentation. J Mech Behav Biomed Mater 2020; 109:103825. [PMID: 32543398 DOI: 10.1016/j.jmbbm.2020.103825] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 04/05/2020] [Accepted: 04/20/2020] [Indexed: 11/19/2022]
Abstract
Degradable bone substitutes made of magnesium alloys are an alternative to biological bone grafts. The main advantage is that they can be manufactured location- and patient-specific. To develop and scale appropriate implants using computational models, knowledge about the mechanical properties and especially the change in the properties during the degradation process is essential. Therefore, degraded open-pored implants were investigated using scanning electron microscope and nanoindentation to find their material composition and mechanical properties. Using both techniques the correlation of the material composition and the average modulus was determined. It could be shown that the average modulus of the degradation layer is distinctly lower than that of the base material. The local average modulus of degrading implant highly depends on the magnesium concentration and the accumulation of elements from the environment. A decrease in magnesium concentration leads to a decrease in the average modulus. Thus, the degrading implant had a lower stiffness than the initial structure.
Collapse
Affiliation(s)
- Ann-Kathrin Gartzke
- Institute of Continuum Mechanics, Leibniz University Hannover, Appelstraße 11, 30167, Hannover, Germany.
| | - Stefan Julmi
- Institut für Werkstoffkunde (Materials Science), Leibniz University Hannover, An der Universität 2, 30823, Garbsen, Germany
| | - Christian Klose
- Institut für Werkstoffkunde (Materials Science), Leibniz University Hannover, An der Universität 2, 30823, Garbsen, Germany
| | - Silke Besdo
- Institute of Continuum Mechanics, Leibniz University Hannover, Appelstraße 11, 30167, Hannover, Germany
| | - Anja-Christina Waselau
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Muenchen, Veterinaerstr. 13, 80539, Muenchen, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-University Muenchen, Veterinaerstr. 13, 80539, Muenchen, Germany
| | - Hans Jürgen Maier
- Institut für Werkstoffkunde (Materials Science), Leibniz University Hannover, An der Universität 2, 30823, Garbsen, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz University Hannover, Appelstraße 11, 30167, Hannover, Germany
| |
Collapse
|
12
|
Augustin J, Feichtner F, Waselau AC, Julmi S, Klose C, Wriggers P, Maier HJ, Meyer-Lindenberg A. Comparison of two pore sizes of LAE442 scaffolds and their effect on degradation and osseointegration behavior in the rabbit model. J Biomed Mater Res B Appl Biomater 2020; 108:2776-2788. [PMID: 32170913 DOI: 10.1002/jbm.b.34607] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 01/23/2020] [Accepted: 03/02/2020] [Indexed: 11/09/2022]
Abstract
The magnesium alloy LAE442 emerged as a possible bioresorbable bone substitute over a decade ago. In the present study, using the investment casting process, scaffolds of the Magnesium (Mg) alloy LAE442 with two different and defined pore sizes, which had on average a diameter of 400 μm (p400) and 500 μm (p500), were investigated to evaluate degradation and osseointegration in comparison to a ß-TCP control group. Open-pored scaffolds were implanted in both greater trochanter of rabbits. Ten scaffolds per time group (6, 12, 24, and 36 weeks) and type were analyzed by clinical, radiographic and μ-CT examinations (2D and 3D). None of the scaffolds caused adverse reactions. LAE442 p400 and p500 developed moderate gas accumulation due to the Mg associated in vivo corrosion, which decreased from week 20 for both pore sizes. After 36 weeks, p400 and p500 showed volume decreases of 15.9 and 11.1%, respectively, with homogeneous degradation, whereas ß-TCP lost 74.6% of its initial volume. Compared to p400, osseointegration for p500 was significantly better at week 2 postsurgery due to more frequent bone-scaffold contacts, higher number of trabeculae and higher bone volume in the surrounding area. No further significant differences between the two pore sizes became apparent. However, p500 was close to the values of ß-TCP in terms of bone volume and trabecular number in the scaffold environment, suggesting better osseointegration for the larger pore size.
Collapse
Affiliation(s)
- Julia Augustin
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Franziska Feichtner
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Anja-Christina Waselau
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| | - Stefan Julmi
- Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, Garbsen, Germany
| | - Christian Klose
- Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, Garbsen, Germany
| | - Peter Wriggers
- Institute of Continuum Mechanics, Leibniz Universität Hannover, Hannover, Germany
| | - Hans Jürgen Maier
- Institut für Werkstoffkunde, Leibniz Universität Hannover, An der Universität 2, Garbsen, Germany
| | - Andrea Meyer-Lindenberg
- Clinic for Small Animal Surgery and Reproduction, Ludwig-Maximilians-Universität, Munich, Germany
| |
Collapse
|
13
|
Gartzke AK, Julmi S, Klose C, Waselau AC, Meyer-Lindenberg A, Maier HJ, Besdo S, Wriggers P. A simulation model for the degradation of magnesium-based bone implants. J Mech Behav Biomed Mater 2020; 101:103411. [DOI: 10.1016/j.jmbbm.2019.103411] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/16/2019] [Accepted: 08/28/2019] [Indexed: 01/04/2023]
|
14
|
Julmi S, Krüger AK, Waselau AC, Meyer-Lindenberg A, Wriggers P, Klose C, Maier HJ. Processing and coating of open-pored absorbable magnesium-based bone implants. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:1073-1086. [DOI: 10.1016/j.msec.2018.12.125] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 07/25/2018] [Accepted: 12/28/2018] [Indexed: 11/30/2022]
|
15
|
Wang W, Nune KC, Tan L, Zhang N, Dong J, Yan J, Misra RDK, Yang K. Bone regeneration of hollow tubular magnesium‑strontium scaffolds in critical-size segmental defects: Effect of surface coatings. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 100:297-307. [PMID: 30948064 DOI: 10.1016/j.msec.2019.02.067] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 01/18/2019] [Accepted: 02/16/2019] [Indexed: 12/20/2022]
Abstract
Segmental defects are formidable challenges for orthopedic surgeons that are caused by large osseous defects such as open injury, comminuted fracture as well as other severe traumas and infection. Current treatment options have practical and clinical shortcomings, calling for innovative bone graft materials. This study is related to hollow tubular magnesium‑strontium (MgSr) alloy scaffolds with autologous morselized bone filled inside and three different coatings were individually applied on MgSr scaffolds, respectively, to study the effects of degradation and bioactivity of the grafts on new bone growth. The optimal coating method was screened using immersion tests, cell proliferation and adhesion, alkaline phosphatase (ALP) assay in vitro, and 4 weeks' implantation in a critical-size segmental defect in vivo. More new bone formation was observed by radiographic tests and histology along the ulna defects, when magnesium scaffold grafts were implanted. Meanwhile, depression occurred for blank control group with only autologous morselized bone filled, because of rapid absorption rate of morselized bone during initial implantation. Therefore, biodegradable MgSr alloy grafts showed their potential application in treating the critical-size segmental defects. As for different coating methods, CaP chemically deposited (CaP) coated sample showed least H2 evolution in vivo, demonstrating highest corrosion resistance and relative stable interfaces, however, the least beneficial ion release meanwhile. Micro-arc oxidation coating (MAO) degraded faster comparing with CaP, while with the main composition of MgO. They both indicate insufficient bioactivity in bone formation. The results suggest superior combination of bioactive surface, beneficial ions release and appropriate corrosion rate of Strontium phosphate conversion (SrP) coating, indicating superior comprehensive oeteoconductive and osteoinductive properties of coatings on hollow tubular MgSr alloy scaffold.
Collapse
Affiliation(s)
- W Wang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - K C Nune
- Department of Metallurgical, Material and Biomedical Engineering, The University of Texas at EI Paso, TX 79968, USA
| | - L Tan
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
| | - N Zhang
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - J Dong
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - J Yan
- Department of Orthopedic Surgery, The 2nd Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - R D K Misra
- Department of Metallurgical, Material and Biomedical Engineering, The University of Texas at EI Paso, TX 79968, USA.
| | - K Yang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China.
| |
Collapse
|
16
|
Wu S, Xia B, Mai S, Feng Z, Wang X, Liu Y, Liu R, Li Z, Xiao Y, Chen Z, Chen Z. Sodium Fluoride under Dose Range of 2.4–24 μM, a Promising Osteoimmunomodulatory Agent for Vascularized Bone Formation. ACS Biomater Sci Eng 2018; 5:817-830. [PMID: 33405842 DOI: 10.1021/acsbiomaterials.8b00570] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Shiyu Wu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Binbin Xia
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Sui Mai
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Zhicai Feng
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Xiaoshuang Wang
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Yudong Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Runheng Liu
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Zhipeng Li
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Yin Xiao
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
- Institute of Health and Biomedical Innovation, Queensland University of Technology, 60 Musk Avenue, Kelvin Grove, Brisbane, Queensland 4059, Australia
| | - Zhuofan Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| | - Zetao Chen
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University and Guangdong Provincial Key Laboratory of Stomatology, Guangzhou 510055, P. R. China
| |
Collapse
|
17
|
In vivo tissue engineered bone versus autologous bone: stability and structure. Int J Oral Maxillofac Surg 2017; 46:385-393. [DOI: 10.1016/j.ijom.2016.10.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 07/26/2016] [Accepted: 10/25/2016] [Indexed: 11/17/2022]
|
18
|
Liu J, Rawlinson SC, Hill RG, Fortune F. Fluoride incorporation in high phosphate containing bioactive glasses and in vitro osteogenic, angiogenic and antibacterial effects. Dent Mater 2016; 32:e221-e237. [DOI: 10.1016/j.dental.2016.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/04/2016] [Indexed: 10/21/2022]
|
19
|
Sun W, Zhang G, Tan L, Yang K, Ai H. The fluoride coated AZ31B magnesium alloy improves corrosion resistance and stimulates bone formation in rabbit model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:506-11. [DOI: 10.1016/j.msec.2016.03.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 02/25/2016] [Accepted: 03/06/2016] [Indexed: 10/22/2022]
|
20
|
Rahim MI, Tavares A, Evertz F, Kieke M, Seitz JM, Eifler R, Weizbauer A, Willbold E, Jürgen Maier H, Glasmacher B, Behrens P, Hauser H, Mueller PP. Phosphate conversion coating reduces the degradation rate and suppresses side effects of metallic magnesium implants in an animal model. J Biomed Mater Res B Appl Biomater 2016; 105:1622-1635. [DOI: 10.1002/jbm.b.33704] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 02/05/2016] [Accepted: 04/21/2016] [Indexed: 01/02/2023]
Affiliation(s)
- Muhammad Imran Rahim
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Ana Tavares
- Institute for Multiphase Processes, Leibniz University of Hannover; Appelstrasse 11 30167 Hannover Germany
| | - Florian Evertz
- Institute for Multiphase Processes, Leibniz University of Hannover; Appelstrasse 11 30167 Hannover Germany
| | - Marc Kieke
- Institute for Inorganic Chemistry, Leibniz University of Hannover; Callinstrasse 9 30167 Hannover Germany
| | - Jan-Marten Seitz
- Institute of Materials Science, Leibniz University of Hannover; An der Universität 2 30823 Garbsen Germany
- Department of Materials Science and Engineering; Michigan Technological University; 1400 Townsend Dr. Houghton Michigan 49931
| | - Rainer Eifler
- Institute of Materials Science, Leibniz University of Hannover; An der Universität 2 30823 Garbsen Germany
| | - Andreas Weizbauer
- CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School; Feodor-Lynen-Strasse 31 30625 Hannover Germany
- Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery; Hannover Medical School; Anna-von-Borries-Strasse 1-7 30625 Hannover Germany
| | - Elmar Willbold
- CrossBIT, Center for Biocompatibility and Implant-Immunology, Department of Orthopedic Surgery, Hannover Medical School; Feodor-Lynen-Strasse 31 30625 Hannover Germany
- Laboratory for Biomechanics and Biomaterials, Department of Orthopedic Surgery; Hannover Medical School; Anna-von-Borries-Strasse 1-7 30625 Hannover Germany
| | - Hans Jürgen Maier
- Institute of Materials Science, Leibniz University of Hannover; An der Universität 2 30823 Garbsen Germany
| | - Birgit Glasmacher
- Institute for Multiphase Processes, Leibniz University of Hannover; Appelstrasse 11 30167 Hannover Germany
| | - Peter Behrens
- Institute for Inorganic Chemistry, Leibniz University of Hannover; Callinstrasse 9 30167 Hannover Germany
| | - Hansjörg Hauser
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 38124 Braunschweig Germany
| | - Peter P. Mueller
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 38124 Braunschweig Germany
| |
Collapse
|
21
|
A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration. Sci Rep 2016; 6:24134. [PMID: 27071777 PMCID: PMC4829853 DOI: 10.1038/srep24134] [Citation(s) in RCA: 97] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Accepted: 03/21/2016] [Indexed: 12/05/2022] Open
Abstract
The traditional production methods of porous magnesium scaffolds are difficult to accurately control the pore morphologies and simultaneously obtain appropriate mechanical properties. In this work, two open-porous magnesium scaffolds with different pore size but in the nearly same porosity are successfully fabricated with high-purity Mg ingots through the titanium wire space holder (TWSH) method. The porosity and pore size can be easily, precisely and individually controlled, as well as the mechanical properties also can be regulated to be within the range of human cancellous bone by changing the orientation of pores without sacrifice the requisite porous structures. In vitro cell tests indicate that the scaffolds have good cytocompatibility and osteoblastic differentiation properties. In vivo findings demonstrate that both scaffolds exhibit acceptable inflammatory responses and can be almost fully degraded and replaced by newly formed bone. More importantly, under the same porosity, the scaffolds with larger pore size can promote early vascularization and up-regulate collagen type 1 and OPN expression, leading to higher bone mass and more mature bone formation. In conclusion, a new method is introduced to develop an open-porous magnesium scaffold with controllable microstructures and mechanical properties, which has great potential clinical application for bone reconstruction in the future.
Collapse
|
22
|
Rahim MI, Rohde M, Rais B, Seitz JM, Mueller PP. Susceptibility of metallic magnesium implants to bacterial biofilm infections. J Biomed Mater Res A 2016; 104:1489-99. [DOI: 10.1002/jbm.a.35680] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 01/29/2016] [Accepted: 02/05/2016] [Indexed: 12/29/2022]
Affiliation(s)
- Muhammad Imran Rahim
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| | - Manfred Rohde
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| | - Bushra Rais
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| | - Jan-Marten Seitz
- Institute of Materials Science, Leibniz University of Hannover; An Der Universität 2 Garbsen 30823 Germany
- Department of Materials Science and Engineering; Michigan Technological University; 1400 Townsend Dr Houghton Michigan 49931
| | - Peter P. Mueller
- Helmholtz Centre for Infection Research; Inhoffenstrasse 7 Braunschweig 38124 Germany
| |
Collapse
|
23
|
Rössig C, Angrisani N, Helmecke P, Besdo S, Seitz JM, Welke B, Fedchenko N, Kock H, Reifenrath J. In vivo evaluation of a magnesium-based degradable intramedullary nailing system in a sheep model. Acta Biomater 2015; 25:369-83. [PMID: 26188326 DOI: 10.1016/j.actbio.2015.07.025] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Revised: 07/01/2015] [Accepted: 07/14/2015] [Indexed: 01/10/2023]
Abstract
The biocompatibility and the degradation behavior of the LAE442 magnesium-based intramedullary interlocked nailing system (IM-NS) was assessed in vivo in a comparative study (stainless austenitic steel 1.4441LA) for the first time. IM-NS was implanted into the right tibia (24-week investigation period; nails/screws diameter: 9 mm/3.5 mm, length: 130 mm/15-40 mm) of 10 adult sheep (LAE442, stainless steel, n=5 each group). Clinical and radiographic examinations, in vivo computed tomography (CT), ex vivo micro-computed tomography (μCT), mechanical and histological examinations and element analyses of alloying elements in inner organs were performed. The mechanical examinations (four-point bending) revealed a significant decrease of LAE442 implant stiffness, force at 0.2% offset yield point and maximum force. Periosteal (new bone formation) and endosteal (bone decline) located bone alterations occurred in both groups (LAE442 alloy more pronounced). Moderate gas formation was observed within the LAE442 alloy group. The CT-measured implant volume decreased slightly (not significant). Histologically a predominantly direct bone-to-implant interface existed within the LAE442 alloy group. Formation of a fibrous tissue capsule around the nail occurred in the steel group. Minor inflammatory infiltration was observed in the LAE442 alloy group. Significantly increased quantities of rare earth elements were detected in the LAE442 alloy group. μCT examination showed the beginning of corrosion in dependence of the surrounding tissue. After 24 weeks the local biocompatibility of LAE442 can be considered as suitable for a degradable implant material. STATEMENT OF SIGNIFICANCE An application oriented interlocked intramedullary nailing system in a comparative study (degradable magnesium-based LAE442 alloy vs. steel alloy) was examined in a sheep model for the first time. We focused in particular on the examination of implant degradation by means of (μ-)CT, mechanical properties (four-point bending), clinical compatibility, local bone reactions (X-ray and histology) and possible systemic toxicity (histology and element analyses of inner organs). A significant decrease of magnesium (LAE442 alloy) implant stiffness and maximum force occurred. Moderate not clinically relevant gas accumulation was determined. A predominantly direct bone-to-implant contact existed within the magnesium (LAE442 alloy) group compared to an indirect contact in the steel group. Rare earth element accumulation could be observed in inner organs but H&E staining was inconspicuous.
Collapse
|
24
|
Dorozhkin SV. Calcium orthophosphate coatings on magnesium and its biodegradable alloys. Acta Biomater 2014; 10:2919-2934. [PMID: 24607420 DOI: 10.1016/j.actbio.2014.02.026] [Citation(s) in RCA: 119] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/07/2014] [Accepted: 02/12/2014] [Indexed: 12/01/2022]
Abstract
Biodegradable metals have been suggested as revolutionary biomaterials for bone-grafting therapies. Of these metals, magnesium (Mg) and its biodegradable alloys appear to be particularly attractive candidates due to their non-toxicity and as their mechanical properties match those of bones better than other metals do. Being light, biocompatible and biodegradable, Mg-based metallic implants have several advantages over other implantable metals currently in use, such as eliminating both the effects of stress shielding and the requirement of a second surgery for implant removal. Unfortunately, the fast degradation rates of Mg and its biodegradable alloys in the aggressive physiological environment impose limitations on their clinical applications. This necessitates development of implants with controlled degradation rates to match the kinetics of bone healing. Application of protective but biocompatible and biodegradable coatings able to delay the onset of Mg corrosion appears to be a reasonable solution. Since calcium orthophosphates are well tolerated by living organisms, they appear to be the excellent candidates for such coatings. Nevertheless, both the high chemical reactivity and the low melting point of Mg require specific parameters for successful deposition of calcium orthophosphate coatings. This review provides an overview of current coating techniques used for deposition of calcium orthophosphates on Mg and its biodegradable alloys. The literature analysis revealed that in all cases the calcium orthophosphate protective coatings both increased the corrosion resistance of Mg-based metallic biomaterials and improved their surface biocompatibility.
Collapse
|
25
|
Comparative Study of hydroxyapatite prepared from seashells and eggshells as a bone graft material. Tissue Eng Regen Med 2014. [DOI: 10.1007/s13770-014-0056-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
|