1
|
Marek R, Eichler J, Schwarze UY, Fischerauer S, Suljevic O, Berger L, Löffler JF, Uggowitzer PJ, Weinberg AM. Long-term in vivo degradation of Mg-Zn-Ca elastic stable intramedullary nails and their influence on the physis of juvenile sheep. BIOMATERIALS ADVANCES 2023; 150:213417. [PMID: 37087913 DOI: 10.1016/j.bioadv.2023.213417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/28/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023]
Abstract
The use of bioresorbable magnesium (Mg)-based elastic stable intramedullary nails (ESIN) is highly promising for the treatment of pediatric long-bone fractures. Being fully resorbable, a removal surgery is not required, preventing repeated physical and psychological stress for the child. Further, the osteoconductive properties of the material support fracture healing. Nowadays, ESIN are exclusively implanted in a non-transphyseal manner to prevent growth discrepancies, although transphyseal implantation would often be required to guarantee optimized fracture stabilization. Here, we investigated the influence of trans-epiphyseally implanted Mg-Zinc (Zn)-Calcium (Ca) ESIN on the proximal tibial physis of juvenile sheep over a period of three years, until skeletal maturity was reached. We used the two alloying systems ZX10 (Mg-1Zn-0.3Ca, in wt%) and ZX00 (Mg-0.3Zn-0.4Ca, in wt%) for this study. To elaborate potential growth disturbances such as leg-length differences and axis deviations we used a combination of in vivo clinical computed tomography (cCT) and ex vivo micro CT (μCT), and also performed histology studies on the extracted bones to obtain information on the related tissue. Because there is a lack of long-term data regarding the degradation performance of magnesium-based implants, we used cCT and μCT data to evaluate the implant volume, gas volume and degradation rate of both alloying systems over a period of 148 weeks. We show that transepiphyseal implantation of Mg-Zn-Ca ESIN has no negative influence on the longitudinal bone growth in juvenile sheep, and that there is no axis deviation observed in all cases. We also illustrate that 95 % of the ESIN degraded over nearly three years, converging the time point of full resorption. We thus conclude that both, ZX10 and ZX00, constitute promising implant materials for the ESIN technique.
Collapse
Affiliation(s)
- R Marek
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria.
| | - J Eichler
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| | - U Y Schwarze
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria; Department of Dental Medicine and Oral Health, Medical University of Graz, 8010 Graz, Austria
| | - S Fischerauer
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| | - O Suljevic
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| | - L Berger
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - J F Löffler
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - P J Uggowitzer
- Laboratory of Metal Physics and Technology, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland; Chair of Nonferrous Metallurgy, Montanuniversitaet Leoben, 8700 Leoben, Austria
| | - A-M Weinberg
- Department of Orthopaedics and Traumatology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
2
|
Zheng Q, Wang Z, Sun Z, Wen J, Duan T, Zhang B. In vivo and in vitro performances of chitosan-coated Mg-Zn-Zr-Gd-Ca alloys as bone biodegradable materials in rat models. J Biomater Appl 2022; 36:1786-1799. [PMID: 35276054 DOI: 10.1177/08853282211052385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mg alloys have attracted significant attention as promising biomedical materials, specifically as fixation materials for promoting fracture healing. However, their unsatisfactory corrosion resistances hinder further clinical applications and thus require attention. This study aims to determine the performance of novel chitosan-coated Mg-1Zn-0.3Zr-2Gd-1Ca alloy and its ability to promote the healing of osteoporotic fractures. Moreover, its corrosion resistance and biocompatibility were assessed. Performance degradations of the samples were measured via electrochemical tests, weight loss test and morphological analysis, and the uncoated and chitosan-coated fixations were compared based on their effects on biocompatibility via the cytotoxicity test, X-rays, and hematoxylin and eosin staining. The effect of bone growth and healing was investigated via immunohistochemical test. Results of the electrochemical tests indicated that compared with the bare body, chitosan-coated Mg-Zn-Ca-Zr-Gd alloys improved by one order of magnitude. Additionally, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and weight loss test demonstrated that the corrosion resistance of the chitosan-coated Mg alloy is better than that of the uncoated alloy. In addition, cytotoxicity analysis indicated that the viability and morphology of the chitosan-coated alloy groups were superior to the uncoated groups in vitro. During in vivo analysis, chitosan-coated and uncoated Mg-1Zn-0.3Zr-2Gd-1Ca alloys were implanted into ovariectomized SD female rats with osteoporotic fractures for 1, 2, and 3 weeks. No displacement and shedding were observed through X-rays, and pathological analyses proved that the material was not harmful for liver and kidney tissues. Immunohistochemistry revealed that the chitosan-coated Mg-Zn-Ca-Zr-Gd alloy material contributed to the healing of osteoporotic fractures in the SD rat models. In conclusion, this study demonstrated the chitosan-coated Mg-Zn-Ca-Zr-Gd alloys have improved corrosion resistance and biocompatibility. Moreover, the alloy was found to accelerate the healing of osteoporotic fractures in SD rat models. Therefore, it has significant potential as a fixation material for osteoporotic fractures.
Collapse
Affiliation(s)
- Qiuxia Zheng
- Department of surgery, Central Laboratory of Luoyang Central Hospital, 74623The Luoyang Central Hospital affiliated of Zhengzhou University, Luoyang, China
| | - Zhanhui Wang
- Department of surgery, Central Laboratory of Luoyang Central Hospital, 74623The Luoyang Central Hospital affiliated of Zhengzhou University, Luoyang, China
| | - Zongbin Sun
- Department of surgery, Central Laboratory of Luoyang Central Hospital, 74623The Luoyang Central Hospital affiliated of Zhengzhou University, Luoyang, China
| | - Jiuba Wen
- School of Material Science and Engine, 74623Henan University of science and technology, Luoyang, China
| | - Tinghe Duan
- Department of surgery, Central Laboratory of Luoyang Central Hospital, 74623The Luoyang Central Hospital affiliated of Zhengzhou University, Luoyang, China
| | - Bingbing Zhang
- Key Laboratory of Molecular Medicine for Liver Injury and Repair, 74623Henan University of science and technology, Luoyang, China
| |
Collapse
|
3
|
Zheng Q, Sun Z, Wang Z, Duan T, Xu K, Cai M, Wang B. Corrosion and biocompatibility behaviours of microarc oxidation/phytic acid coated magnesium alloy clips for use in cholecystectomy in a rabbit model. RSC Adv 2021; 11:20730-20736. [PMID: 35479380 PMCID: PMC9033993 DOI: 10.1039/d0ra09275d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 05/14/2021] [Indexed: 12/17/2022] Open
Abstract
With the popularisation of laparoscopic cholecystectomy, ligation clips have been commonly used for ligating the cystic duct and cystic artery. However, non-degradable clips remain in the body long-term, which significantly increases the risk of the clip becoming detached. Thus, magnesium alloys have attracted tremendous attention owing to their biodegradability and good biocompatibility. However, the poor corrosion resistance hinders the clinical application of magnesium alloys with microarc oxidation/phytic acid (MAO/PA) composite coatings as protective coatings. Here, these alloys were used to hinder the rapid material degradation in aqueous solution. Electrochemical tests were conducted to evaluate the in vivo degradation behaviour in simulated body fluid (SBF) for Mg-Zn-Y-Nd alloys, and scanning electron microscopy (SEM) was used to observe the micromorphology of in vivo clip degradation. Cell toxicity, cell adhesion, and flow cytometry were performed in vitro to detect cytocompatibility. Biochemical detection of serum magnesium, serum creatinine (CREA), blood urea nitrogen (BUN), alanine transaminase (ALT), and alanine aminotransferase (AST), and haematoxylin-eosin (HE) staining of the heart, liver, and kidney tissues in vivo was conducted to determine the biocompatibility properties after surgery. Electrochemical measurements and SEM images revealed that the MAO/PA-coated magnesium alloy delayed corrosion in SBF. The apoptosis rate increased slightly with increased extract concentration. Nevertheless, MAO/PA-coated magnesium alloys still exhibited good cytocompatibility. No obvious abnormality was observed in the blood biochemical test or HE staining. Thus, MAO/PA-coated magnesium alloys exhibit better corrosion than bare magnesium. In addition, Mg-Zn-Y-Nd and MAO/PA-coated magnesium alloys exhibited no cytotoxicity, good adhesion, and biosafety.
Collapse
Affiliation(s)
- Qiuxia Zheng
- Department of Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University 288 Zhongzhou Road Luoyang 471000 China +86 379 6389 2095 +86 379 6389 2095
| | - Zongbin Sun
- Department of Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University 288 Zhongzhou Road Luoyang 471000 China +86 379 6389 2095 +86 379 6389 2095
| | - Zhanhui Wang
- Department of Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University 288 Zhongzhou Road Luoyang 471000 China +86 379 6389 2095 +86 379 6389 2095
| | - Tinghe Duan
- Department of Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University 288 Zhongzhou Road Luoyang 471000 China +86 379 6389 2095 +86 379 6389 2095
| | - Kai Xu
- Department of Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University 288 Zhongzhou Road Luoyang 471000 China +86 379 6389 2095 +86 379 6389 2095
| | - Mengmeng Cai
- Department of Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University 288 Zhongzhou Road Luoyang 471000 China +86 379 6389 2095 +86 379 6389 2095
| | - Bi Wang
- Department of Surgery, Luoyang Central Hospital Affiliated to Zhengzhou University 288 Zhongzhou Road Luoyang 471000 China +86 379 6389 2095 +86 379 6389 2095
| |
Collapse
|
4
|
Cheng X, Qu Y, Kang C, Kang M, Dong R, Zhao J. Development of new medical Mg-Zn-Ca-Y alloy and in-vitro and in-vivo evaluations of its biological characteristics. MATERIALS TODAY COMMUNICATIONS 2021; 26:102002. [DOI: 10.1016/j.mtcomm.2020.102002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2025]
|
5
|
Yu X, Li D, Liu Y, Ding P, He X, Zhao Y, Chen M, Liu D. In vitro and in vivo studies on the degradation and biosafety of Mg-Zn-Ca-Y alloy hemostatic clip with the carotid artery of SD rat model. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 115:111093. [PMID: 32600697 DOI: 10.1016/j.msec.2020.111093] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/25/2020] [Accepted: 05/11/2020] [Indexed: 02/07/2023]
Abstract
An Mg-Zn-Ca-Y alloy operative clip was developed to overcome the drawbacks of the Ti clips such as ion dissolution inflammation, interference imaging diagnosis, and the potential harm that permanent retention brings to the patient. The structure optimization design of the hemostatic clip was carried out by the finite element numerical simulation method to realize the matching between the structure design and the material properties. Hot extrusion and wire cutting process was used to prepare the Mg-Zn-Ca-Y alloy operative clip. Corrosion degradation behavior of Mg-Zn-Ca-Y alloy in vitro was investigated using electrochemical noise (EN) and immersion test in Simulated body fluid (SBF). The carotid artery of SD rats was clipped using the Mg-Zn-Ca-Y operative clip to evaluate occlusion safety and the complete corrosion degradation behavior and biocompatibility of Mg-Zn-Ca-Y alloy clip in vivo were investigated using micro-computed tomography, histological analysis, and blood biochemical indicators. It was found that the newly designed Mg-Zn-Ca-Y clip can successfully ligate the carotid artery, and no blood leakage occurred after surgery. After eight months, the Mg-Zn-Ca-Y clip degraded utterly. Histological analysis and various blood biochemical parameters in SD rat serum samples collected at different time periods showed no tissue inflammation around the clips.
Collapse
Affiliation(s)
- Xiao Yu
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Dongyang Li
- Tianjin Medical University General Hospital, Department of General Surgery, Tianjin 300070, China
| | - Yuanchao Liu
- Tianjin Medical University General Hospital, Department of General Surgery, Tianjin 300070, China
| | - Pengfei Ding
- School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xianghui He
- Tianjin Medical University General Hospital, Department of General Surgery, Tianjin 300070, China
| | - Yue Zhao
- School of Mechanical, Materials & Mechatronic Engineering, University of Wollongong, NSW2522, Australia
| | - Minfang Chen
- Tianjin Key Laboratory for Photoelectric Materials and Devices, Tianjin 300384, China
| | - Debao Liu
- National Demonstration Center for Experimental Function Materials Education, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
6
|
Wang Z, Zheng Q, Guan S, Sun Z, Liu S, Zhang B, Duan T, Xu K. In vitro and in vivo assessment of the biocompatibility of an paclitaxel-eluting poly-l-lactide-coated Mg-Zn-Y-Nd alloy stent in the intestine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110087. [PMID: 31546433 DOI: 10.1016/j.msec.2019.110087] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/21/2019] [Accepted: 08/14/2019] [Indexed: 10/26/2022]
Affiliation(s)
- Zhanhui Wang
- Luoyang Central Hospital affiliated to Zhengzhou University, Luoyang 471000, China.
| | - Qiuxia Zheng
- The Second Affiliated Hospital of Zhengzhou University, Zhengzhou 450003, China
| | - Shaokang Guan
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 45002, China.
| | - Zongbin Sun
- Luoyang Central Hospital affiliated to Zhengzhou University, Luoyang 471000, China
| | - Shaopeng Liu
- Luoyang Central Hospital affiliated to Zhengzhou University, Luoyang 471000, China
| | - Bingbing Zhang
- Luoyang Central Hospital affiliated to Zhengzhou University, Luoyang 471000, China
| | - Tinghe Duan
- Luoyang Central Hospital affiliated to Zhengzhou University, Luoyang 471000, China
| | - Kai Xu
- Luoyang Central Hospital affiliated to Zhengzhou University, Luoyang 471000, China
| |
Collapse
|
7
|
Zhang N, Zhao D, Liu N, Wu Y, Yang J, Wang Y, Xie H, Ji Y, Zhou C, Zhuang J, Wang Y, Yan J. Assessment of the degradation rates and effectiveness of different coated Mg-Zn-Ca alloy scaffolds for in vivo repair of critical-size bone defects. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2018; 29:138. [PMID: 30120628 PMCID: PMC6105203 DOI: 10.1007/s10856-018-6145-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 08/01/2018] [Indexed: 05/24/2023]
Abstract
Surgical repair of bone defects remains challenging, and the search for alternative procedures is ongoing. Devices made of Mg for bone repair have received much attention owing to their good biocompatibility and mechanical properties. We developed a new type of scaffold made of a Mg-Zn-Ca alloy with a shape that mimics cortical bone and can be filled with morselized bone. We evaluated its durability and efficacy in a rabbit ulna-defect model. Three types of scaffold-surface coating were evaluated: group A, no coating; group B, a 10-μm microarc oxidation coating; group C, a hydrothermal duplex composite coating; and group D, an empty-defect control. X-ray and micro-computed tomography(micro-CT) images were acquired over 12 weeks to assess ulnar repair. A mechanical stress test indicated that bone repair within each group improved significantly over time (P < 0.01). The degradation behavior of the different scaffolds was assessed by micro-CT and quantified according to the amount of hydrogen gas generated; these measurements indicated that the group C scaffold better resisted corrosion than did the other scaffold types (P < 0.05). Calcein fluorescence and histology revealed that greater mineral densities and better bone responses were achieved for groups B and C than for group A, with group C providing the best response. In conclusion, our Mg-Zn-Ca-alloy scaffold effectively aided bone repair. The group C scaffold exhibited the best corrosion resistance and osteogenesis properties, making it a candidate scaffold for repair of bone defects.
Collapse
Affiliation(s)
- Nan Zhang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
- The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, People's Republic of China
| | - Dewei Zhao
- The Affiliated Zhongshan hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Na Liu
- The Second Affiliated Hospital of Qiqihar Medical College, Qiqihar, Heilongjiang, People's Republic of China
| | - Yunfeng Wu
- Harbin Institute of Technology, Harbin, Heilongjiang, People's Republic of China
| | - Jiahui Yang
- The Affiliated Zhongshan hospital of Dalian University, Dalian, Liaoning, People's Republic of China
| | - Yuefei Wang
- Qiqihar Medical College, Qiqihar, Heilongjiang, People's Republic of China
| | - Huanxin Xie
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Ye Ji
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Changlong Zhou
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Jinpeng Zhuang
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China
| | - Yaming Wang
- Harbin Institute of Technology, Harbin, Heilongjiang, People's Republic of China
| | - Jinglong Yan
- The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, People's Republic of China.
| |
Collapse
|
8
|
Ibrahim H, Esfahani SN, Poorganji B, Dean D, Elahinia M. Resorbable bone fixation alloys, forming, and post-fabrication treatments. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 70:870-888. [DOI: 10.1016/j.msec.2016.09.069] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 08/31/2016] [Accepted: 09/28/2016] [Indexed: 12/13/2022]
|
9
|
Mostofi S, Bonyadi Rad E, Wiltsche H, Fasching U, Szakacs G, Ramskogler C, Srinivasaiah S, Ueçal M, Willumeit R, Weinberg AM, Schaefer U. Effects of Corroded and Non-Corroded Biodegradable Mg and Mg Alloys on Viability, Morphology and Differentiation of MC3T3-E1 Cells Elicited by Direct Cell/Material Interaction. PLoS One 2016; 11:e0159879. [PMID: 27459513 PMCID: PMC4961286 DOI: 10.1371/journal.pone.0159879] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 07/08/2016] [Indexed: 12/23/2022] Open
Abstract
This study investigated the effect of biodegradable Mg and Mg alloys on selected properties of MC3T3-E1 cells elicited by direct cell/material interaction. The chemical composition and morphology of the surface of Mg and Mg based alloys (Mg2Ag and Mg10Gd) were analysed by scanning electron microscopy (SEM) and EDX, following corrosion in cell culture medium for 1, 2, 3 and 8 days. The most pronounced difference in surface morphology, namely crystal formation, was observed when Pure Mg and Mg2Ag were immersed in cell medium for 8 days, and was associated with an increase in atomic % of oxygen and a decrease of surface calcium and phosphorous. Crystal formation on the surface of Mg10Gd was, in contrast, negligible at all time points. Time-dependent changes in oxygen, calcium and phosphorous surface content were furthermore not observed for Mg10Gd. MC3T3-E1 cell viability was reduced by culture on the surfaces of corroded Mg, Mg2Ag and Mg10Gd in a corrosion time-independent manner. Cells did not survive when cultured on 3 day pre-corroded Pure Mg and Mg2Ag, indicating crystal formation to be particular detrimental in this regard. Cell viability was not affected when cells were cultured on non-corroded Mg and Mg alloys for up to 12 days. These results suggest that corrosion associated changes in surface morphology and chemical composition significantly hamper cell viability and, thus, that non-corroded surfaces are more conducive to cell survival. An analysis of the differentiation potential of MC3T3-E1 cells cultured on non-corroded samples based on measurement of Collagen I and Runx2 expression, revealed a down-regulation of these markers within the first 6 days following cell seeding on all samples, despite persistent survival and proliferation. Cells cultured on Mg10Gd, however, exhibited a pronounced upregulation of collagen I and Runx2 between days 8 and 12, indicating an enhancement of osteointegration by this alloy that could be valuable for in vivo orthopedic applications.
Collapse
Affiliation(s)
- Sepideh Mostofi
- Department of Orthopedics and Orthopedic Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Ehsan Bonyadi Rad
- Department of Orthopedics and Orthopedic Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Helmar Wiltsche
- Institute of Analytical Chemistry and Food Chemistry, Graz University of Technology, 8010 Graz, Austria
| | - Ulrike Fasching
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, 8036 Graz, Austria
| | - Gabor Szakacs
- Helmholtz-Zentrum Geesthacht, Institute of Material Research, Geesthacht, Germany
| | - Claudia Ramskogler
- Institute of Materials Science and Welding; Graz University of Technology, 8010 Graz, Austria
| | - Sriveena Srinivasaiah
- Department of Orthopedics and Orthopedic Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Muammer Ueçal
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, 8036 Graz, Austria
| | - Regine Willumeit
- Helmholtz-Zentrum Geesthacht, Institute of Material Research, Geesthacht, Germany
| | - Annelie-Martina Weinberg
- Department of Orthopedics and Orthopedic Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Ute Schaefer
- Research Unit Experimental Neurotraumatology, Department of Neurosurgery, Medical University Graz, 8036 Graz, Austria
- * E-mail:
| |
Collapse
|