1
|
Dutta D, Graupner N, Müssig J, Brüggemann D. Assembly of Rolled-Up Collagen Constructs on Porous Alumina Textiles. ACS NANOSCIENCE AU 2023; 3:286-294. [PMID: 37601922 PMCID: PMC10436369 DOI: 10.1021/acsnanoscienceau.3c00008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 08/22/2023]
Abstract
Developing new techniques to prepare free-standing tubular scaffolds has always been a challenge in the field of regenerative medicine. Here, we report a new and simple way to prepare free-standing collagen constructs with rolled-up architecture by self-assembling nanofibers on porous alumina (Al2O3) textiles modified with different silanes, carbon or gold. Following self-assembly and cross-linking with glutaraldehyde, collagen nanofibers spontaneously rolled up on the modified Al2O3 textiles and detached. The resulting collagen constructs had an inner diameter of approximately 2 to 4 mm in a rolled-up state and could be easily detached from the underlying textiles. Mechanical testing of wet collagen scaffolds following detachment yielded mean values of 3.5 ± 1.9 MPa for the tensile strength, 41.0 ± 20.8 MPa for the Young's modulus and 8.1 ± 3.7% for the elongation at break. No roll-up was observed on Al2O3 textiles without any modification, where collagen did not assemble into fibers, either. Blends of collagen and chitosan were also found to roll into fibrous constructs on silanized Al2O3 textiles, while fibrinogen nanofibers or blends of collagen and elastin did not yield such structures. Based on these differences, we hypothesize that textile surface charge and protein charge, in combination with the porous architecture of protein nanofibers and differences in mechanical strain, are key factors in inducing a scaffold roll-up. Further studies are required to develop the observed roll-up effect into a reproducible biofabrication process that can enable the controlled production of free-standing collagen-based tubes for soft tissue engineering.
Collapse
Affiliation(s)
- Deepanjalee Dutta
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
| | - Nina Graupner
- The Biological Materials Group, Biomimetics, Faculty 5, HSB - City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany
| | - Jörg Müssig
- The Biological Materials Group, Biomimetics, Faculty 5, HSB - City University of Applied Sciences Bremen, Neustadtswall 30, 28199 Bremen, Germany
| | - Dorothea Brüggemann
- Institute for Biophysics, University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germany
- MAPEX Center for Materials and Processes, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
2
|
Visser Z, Verma SK, Rainey JK, Frampton JP. Loading and Release of Quercetin from Contact-Drawn Polyvinyl Alcohol Fiber Scaffolds. ACS Pharmacol Transl Sci 2022; 5:1305-1317. [PMID: 36524014 PMCID: PMC9745892 DOI: 10.1021/acsptsci.2c00191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Indexed: 11/30/2022]
Abstract
Polymeric drug releasing systems have numerous applications for the treatment of chronic diseases and traumatic injuries. In this study, a simple, cost-effective, and scalable method for dry spinning of crosslinked polyvinyl alcohol (PVA) fibers is presented. This method utilizes an entangled solution of PVA to form liquid bridges that are drawn into rapidly drying fibers through extensional flow. The fibers are crosslinked by a one-pot reaction in which glyoxal is introduced to the PVA solution prior to contact drawing. Failure analysis of fiber formation is used to understand the interplay of polymer concentration, glyoxal concentration, and crosslinking time to identify appropriate formulations for the production of glyoxal-crosslinked PVA fibers. The small molecule quercetin (an anti-inflammatory plant flavonoid) can be added to the one-pot reaction and is shown to be incorporated into the fibers in a concentration-dependent manner. Upon rehydration in an aqueous medium, the glyoxal-crosslinked PVA fiber scaffolds retain their morphology and slowly degrade, as measured over the course of 10 days. As the scaffolds degrade, they release the loaded quercetin, reaching a cumulative release of 56 ± 6% of the loaded drug after 10 days. The bioactivity of the released quercetin is verified by combining quercetin-loaded fibers with contact-drawn polyethylene oxide-type I collagen (PEO-Col) fibers and monitoring the growth of PC12 cells on the fibers. PC12 cells readily attach to the PEO-Col fibers and display increased nerve growth factor-induced elongation and neurite formation in the presence of quercetin-loaded PVA fibers relative to substrates formed from only PEO-Col fibers or PEO-Col and PVA fibers without quercetin.
Collapse
Affiliation(s)
- Zachary
B. Visser
- School
of Biomedical Engineering, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
| | - Surendra Kumar Verma
- School
of Biomedical Engineering, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
| | - Jan K. Rainey
- School
of Biomedical Engineering, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
- Department
of Biochemistry & Molecular Biology, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
- Department
of Chemistry, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
| | - John P. Frampton
- School
of Biomedical Engineering, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
- Department
of Biochemistry & Molecular Biology, Dalhousie University, HalifaxB3H 4R2, Nova Scotia, Canada
| |
Collapse
|
3
|
Wu S, Dong T, Li Y, Sun M, Qi Y, Liu J, Kuss MA, Chen S, Duan B. State-of-the-art review of advanced electrospun nanofiber yarn-based textiles for biomedical applications. APPLIED MATERIALS TODAY 2022; 27:101473. [PMID: 35434263 PMCID: PMC8994858 DOI: 10.1016/j.apmt.2022.101473] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/23/2022] [Accepted: 03/31/2022] [Indexed: 05/02/2023]
Abstract
The pandemic of the coronavirus disease 2019 (COVID-19) has made biotextiles, including face masks and protective clothing, quite familiar in our daily lives. Biotextiles are one broad category of textile products that are beyond our imagination. Currently, biotextiles have been routinely utilized in various biomedical fields, like daily protection, wound healing, tissue regeneration, drug delivery, and sensing, to improve the health and medical conditions of individuals. However, these biotextiles are commonly manufactured with fibers with diameters on the micrometer scale (> 10 μm). Recently, nanofibrous materials have aroused extensive attention in the fields of fiber science and textile engineering because the fibers with nanoscale diameters exhibited obviously superior performances, such as size and surface/interface effects as well as optical, electrical, mechanical, and biological properties, compared to microfibers. A combination of innovative electrospinning techniques and traditional textile-forming strategies opens a new window for the generation of nanofibrous biotextiles to renew and update traditional microfibrous biotextiles. In the last two decades, the conventional electrospinning device has been widely modified to generate nanofiber yarns (NYs) with the fiber diameters less than 1000 nm. The electrospun NYs can be further employed as the primary processing unit for manufacturing a new generation of nano-textiles using various textile-forming strategies. In this review, starting from the basic information of conventional electrospinning techniques, we summarize the innovative electrospinning strategies for NY fabrication and critically discuss their advantages and limitations. This review further covers the progress in the construction of electrospun NY-based nanotextiles and their recent applications in biomedical fields, mainly including surgical sutures, various scaffolds and implants for tissue engineering, smart wearable bioelectronics, and their current and potential applications in the COVID-19 pandemic. At the end, this review highlights and identifies the future needs and opportunities of electrospun NYs and NY-based nanotextiles for clinical use.
Collapse
Key Words
- CNT, carbon nanotube
- COVID-19, coronavirus disease 2019
- ECM, extracellular matrix
- Electrospinning
- FDA, food and drug administration
- GF, gauge factor
- GO, graphene oxide
- HAVIC, human aortic valve interstitial cell
- HAp, hydroxyapatite
- MSC, mesenchymal stem cell
- MSC-SC, MSC derived Schwann cell-like cell
- MWCNT, multiwalled carbon nanotube
- MY, microfiber yarn
- MeGel, methacrylated gelatin
- NGC, nerve guidance conduit
- NHMR, neutral hollow metal rod
- NMD, neutral metal disc
- NY, nanofiber yarn
- Nanoyarns
- PA6, polyamide 6
- PA66, polyamide 66
- PAN, polyacrylonitrile
- PANi, polyaniline
- PCL, polycaprolactone
- PEO, polyethylene oxide
- PGA, polyglycolide
- PHBV, poly(3-hydroxybutyrate-co-3-hydroxyvalerate)
- PLCL, poly(L-lactide-co-ε-caprolactone)
- PLGA, poly(lactic-co-glycolic acid)
- PLLA, poly(L-lactic acid)
- PMIA, poly(m-phenylene isophthalamide)
- PPDO, polydioxanone
- PPy, polypyrrole
- PSA, poly(sulfone amide)
- PU, polyurethane
- PVA, poly(vinyl alcohol)
- PVAc, poly(vinyl acetate)
- PVDF, poly(vinylidene difluoride)
- PVDF-HFP, poly(vinylidene floride-co-hexafluoropropylene)
- PVDF-TrFE, poly(vinylidene fluoride trifluoroethylene)
- PVP, poly(vinyl pyrrolidone)
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- SC, Schwann cell
- SF, silk fibroin
- SWCNT, single-walled carbon nanotube
- TGF-β1, transforming growth factor-β1
- Textile-forming technique
- Tissue scaffolds
- VEGF, vascular endothelial growth factor
- Wearable bioelectronics
- bFGF, basic fibroblast growth factor
Collapse
Affiliation(s)
- Shaohua Wu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ting Dong
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Yiran Li
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mingchao Sun
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Ye Qi
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Jiao Liu
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Mitchell A Kuss
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaojuan Chen
- College of Textiles & Clothing, Qingdao University, Qingdao, China
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program and Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA
- Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA
| |
Collapse
|
4
|
Improving Polysaccharide-Based Chitin/Chitosan-Aerogel Materials by Learning from Genetics and Molecular Biology. MATERIALS 2022; 15:ma15031041. [PMID: 35160985 PMCID: PMC8839503 DOI: 10.3390/ma15031041] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 01/14/2022] [Accepted: 01/26/2022] [Indexed: 12/26/2022]
Abstract
Improved wound healing of burnt skin and skin lesions, as well as medical implants and replacement products, requires the support of synthetical matrices. Yet, producing synthetic biocompatible matrices that exhibit specialized flexibility, stability, and biodegradability is challenging. Synthetic chitin/chitosan matrices may provide the desired advantages for producing specialized grafts but must be modified to improve their properties. Synthetic chitin/chitosan hydrogel and aerogel techniques provide the advantages for improvement with a bioinspired view adapted from the natural molecular toolbox. To this end, animal genetics provide deep knowledge into which molecular key factors decisively influence the properties of natural chitin matrices. The genetically identified proteins and enzymes control chitin matrix assembly, architecture, and degradation. Combining synthetic chitin matrices with critical biological factors may point to the future direction with engineering materials of specific properties for biomedical applications such as burned skin or skin blistering and extensive lesions due to genetic diseases.
Collapse
|
5
|
Wani SP, Shinkar DM, Pingale PL, Boraste SS, Amrutkar SV. Microsponges: An Emerging Formulation Tool for Topical Drug Delivery. PHARMACOPHORE 2022. [DOI: 10.51847/evxrf0bgo6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
6
|
Meeremans M, Van de Walle GR, Van Vlierberghe S, De Schauwer C. The Lack of a Representative Tendinopathy Model Hampers Fundamental Mesenchymal Stem Cell Research. Front Cell Dev Biol 2021; 9:651164. [PMID: 34012963 PMCID: PMC8126669 DOI: 10.3389/fcell.2021.651164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Accepted: 04/06/2021] [Indexed: 12/13/2022] Open
Abstract
Overuse tendon injuries are a major cause of musculoskeletal morbidity in both human and equine athletes, due to the cumulative degenerative damage. These injuries present significant challenges as the healing process often results in the formation of inferior scar tissue. The poor success with conventional therapy supports the need to search for novel treatments to restore functionality and regenerate tissue as close to native tendon as possible. Mesenchymal stem cell (MSC)-based strategies represent promising therapeutic tools for tendon repair in both human and veterinary medicine. The translation of tissue engineering strategies from basic research findings, however, into clinical use has been hampered by the limited understanding of the multifaceted MSC mechanisms of action. In vitro models serve as important biological tools to study cell behavior, bypassing the confounding factors associated with in vivo experiments. Controllable and reproducible in vitro conditions should be provided to study the MSC healing mechanisms in tendon injuries. Unfortunately, no physiologically representative tendinopathy models exist to date. A major shortcoming of most currently available in vitro tendon models is the lack of extracellular tendon matrix and vascular supply. These models often make use of synthetic biomaterials, which do not reflect the natural tendon composition. Alternatively, decellularized tendon has been applied, but it is challenging to obtain reproducible results due to its variable composition, less efficient cell seeding approaches and lack of cell encapsulation and vascularization. The current review will overview pros and cons associated with the use of different biomaterials and technologies enabling scaffold production. In addition, the characteristics of the ideal, state-of-the-art tendinopathy model will be discussed. Briefly, a representative in vitro tendinopathy model should be vascularized and mimic the hierarchical structure of the tendon matrix with elongated cells being organized in a parallel fashion and subjected to uniaxial stretching. Incorporation of mechanical stimulation, preferably uniaxial stretching may be a key element in order to obtain appropriate matrix alignment and create a pathophysiological model. Together, a thorough discussion on the current status and future directions for tendon models will enhance fundamental MSC research, accelerating translation of MSC therapies for tendon injuries from bench to bedside.
Collapse
Affiliation(s)
- Marguerite Meeremans
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, Ithaca, NY, United States
| | - Sandra Van Vlierberghe
- Polymer Chemistry and Biomaterials Group, Centre of Macromolecular Chemistry, Faculty of Sciences, Ghent University, Ghent, Belgium
| | - Catharina De Schauwer
- Comparative Physiology, Faculty of Veterinary Medicine, Ghent University, Merelbeke, Belgium
| |
Collapse
|
7
|
Mechanical and cellular characterization of electrospun poly(l-lactic acid)/gelatin yarns with potential as angiogenesis scaffolds. IRANIAN POLYMER JOURNAL 2021. [DOI: 10.1007/s13726-021-00916-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
8
|
Xie Y, Chen J, Celik H, Akkus O, King MW. Evaluation of an electrochemically aligned collagen yarn for textile scaffold fabrication. Biomed Mater 2021; 16:025001. [PMID: 33494084 DOI: 10.1088/1748-605x/abdf9e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Collagen is the major component of the extracellular matrix in human tissues and widely used in the fabrication of tissue engineered scaffolds for medical applications. However, these forms of collagen gels and films have limitations due to their inferior strength and mechanical performance and their relatively fast rate of degradation. A new form of continuous collagen yarn has recently been developed for potential usage in fabricating textile tissue engineering scaffolds. In this study, we prepared the continuous electrochemical aligned collagen yarns from acid-soluble collagen that was extracted from rat tail tendons (RTTs) using 0.25 M acetic acid. Sodium dodecyl sulfate polyacrylamide gel electrophoresis and Fourier transform infrared spectroscopy confirmed that the major component of the extracted collagen contained alpha 1 and alpha 2 chains and the triple helix structure of Type 1 collagen. The collagen solution was processed to monofilament yarns in continuous lengths by using a rotating electrode electrochemical compaction device. Exposing the non-crosslinked collagen yarns and the collagen yarns crosslinked with 1-ethyl-3-(-3-dimethyl-aminopropyl) carbodiimide hydrochloride to normal physiological hydrolytic degradation conditions showed that both yarns were able to maintain their tensile strength during the first 6 weeks of the study. Cardiosphere-derived cells showed significantly enhanced attachment and proliferation on the collagen yarns compared to synthetic polylactic acid filaments. Moreover, the cells were fully spread and covered the surface of the collagen yarns, which confirmed the superiority of collagen in terms of promoting cellular adhesion. The results of this work indicated that the aligned RTT collagen yarns are favorable for fabricating biotextile scaffolds and are encouraging for further studies of various textile structure for different tissue engineering applications.
Collapse
Affiliation(s)
- Yu Xie
- Wilson College of Textiles, North Carolina State University, Raleigh, North Carolina, United States of America
| | | | | | | | | |
Collapse
|
9
|
Wu S, Zhou R, Zhou F, Streubel PN, Chen S, Duan B. Electrospun thymosin Beta-4 loaded PLGA/PLA nanofiber/ microfiber hybrid yarns for tendon tissue engineering application. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110268. [PMID: 31753373 PMCID: PMC7061461 DOI: 10.1016/j.msec.2019.110268] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 01/08/2023]
Abstract
Microfiber yarns (MY) have been widely employed to construct tendon tissue grafts. However, suboptimal ultrastructure and inappropriate environments for cell interactions limit their clinical application. Herein, we designed a modified electrospinning device to coat poly(lactic-co-glycolic acid) PLGA nanofibers onto polylactic acid (PLA) MY to generate PLGA/PLA hybrid yarns (HY), which had a well-aligned nanofibrous structure, resembling the ultrastructure of native tendon tissues and showed enhanced failure load compared to PLA MY. PLGA/PLA HY significantly improved the growth, proliferation, and tendon-specific gene expressions of human adipose derived mesenchymal stem cells (HADMSC) compared to PLA MY. Moreover, thymosin beta-4 (Tβ4) loaded PLGA/PLA HY presented a sustained drug release manner for 28 days and showed an additive effect on promoting HADMSC migration, proliferation, and tenogenic differentiation. Collectively, the combination of Tβ4 with the nano-topography of PLGA/PLA HY might be an efficient strategy to promote tenogenesis of adult stem cells for tendon tissue engineering.
Collapse
Affiliation(s)
- Shaohua Wu
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; College of Textiles & Clothing, Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao, China
| | - Rong Zhou
- College of Textiles & Clothing, Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao, China; Industrial Research Institute of Nonwoven & Technical Textiles, Qingdao University, Qingdao, China
| | - Fang Zhou
- College of Textiles & Clothing, Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao, China
| | - Philipp N Streubel
- Department of Orthopedic Surgery and Rehabilitation, University of Nebraska Medical Center, Omaha, NE, USA
| | - Shaojuan Chen
- College of Textiles & Clothing, Collaborative Innovation Center of Marine Biomass Fibers, Qingdao University, Qingdao, China.
| | - Bin Duan
- Mary & Dick Holland Regenerative Medicine Program, Division of Cardiology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Surgery, College of Medicine, University of Nebraska Medical Center, Omaha, NE, USA; Department of Mechanical and Materials Engineering, University of Nebraska-Lincoln, Lincoln, NE, USA.
| |
Collapse
|
10
|
Tonndorf R, Aibibu D, Cherif C. Collagen multifilament spinning. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 106:110105. [PMID: 31753356 DOI: 10.1016/j.msec.2019.110105] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/16/2019] [Accepted: 08/20/2019] [Indexed: 12/19/2022]
Abstract
The benefits of fiber based implants and scaffolds for tissue engineering applications are their anisotropic, highly porous, and controllable macro-, micro-, and nanostructure. Collagen is one of the most commonly used material for the fabrication of scaffolds, as this biopolymer is present in the natural extracellular matrix. For textile processing and textile scaffold fabrication methods, multifilament yarns are required, however, only monofilaments can be generated by state-of-the-art collagen spinning. Hence, the research presented in here aimed at the development of a collagen multifilament wet-spinning process in reproducible quality as well as the characterization of non-crosslinked and crosslinked wet-spun multifilament yarns. Wet spun collagen yarns were comprised of 6 single filaments each having a fineness of 5 tex and a diameter of 80 μm. The tensile strength of the glutaraldehyde crosslinked yarns was 169 MPa (Young's modulus 3534 MPa) in the dry state and 40 MPa (Young's modulus 281 MPa) in the wet state. Furthermore, wet spun collagen filaments showed a characteristic fibrillar structure, which was similar the morphological structure of natural collagen fibers. The textile processing of collagen multifilament yarn was demonstrated by means of knitting technology.
Collapse
Affiliation(s)
- Robert Tonndorf
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, Germany.
| | - Dilbar Aibibu
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, Germany
| | - Chokri Cherif
- Institute of Textile Machinery and High Performance Material Technology, Technische Universität Dresden, Germany
| |
Collapse
|
11
|
Rohman G, Langueh C, Ramtani S, Lataillade JJ, Lutomski D, Senni K, Changotade S. The Use of Platelet-Rich Plasma to Promote Cell Recruitment into Low-Molecular-Weight Fucoidan-Functionalized Poly(Ester-Urea-Urethane) Scaffolds for Soft-Tissue Engineering. Polymers (Basel) 2019; 11:E1016. [PMID: 31181822 PMCID: PMC6631166 DOI: 10.3390/polym11061016] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 01/12/2023] Open
Abstract
Due to their elastomeric behavior, polyurethane-based scaffolds can find various applications in soft-tissue engineering. However, their relatively inert surface has to be modified in order to improve cell colonization and control cell fate. The present study focuses on porous biodegradable scaffolds based on poly(ester-urea-urethane), functionalized concomitantly to the scaffold elaboration with low-molecular-weight (LMW) fucoidan; and their bio-activation with platelet rich plasma (PRP) formulations with the aim to promote cell response. The LMW fucoidan-functionalization was obtained in a very homogeneous way, and was stable after the scaffold sterilization and incubation in phosphate-buffered saline. Biomolecules from PRP readily penetrated into the functionalized scaffold, leading to a biological frame on the pore walls. Preliminary in vitro assays were assessed to demonstrate the improvement of scaffold behavior towards cell response. The scaffold bio-activation drastically improved cell migration. Moreover, cells interacted with all pore sides into the bio-activated scaffold forming cell bridges across pores. Our work brought out an easy and versatile way of developing functionalized and bio-activated elastomeric poly(ester-urea-urethane) scaffolds with a better cell response.
Collapse
Affiliation(s)
- Géraldine Rohman
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| | - Credson Langueh
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| | - Salah Ramtani
- LBPS team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 99 avenue Jean-Baptiste Clément, 93430 Villetaneuse, France.
| | - Jean-Jacques Lataillade
- Institut de Recherche Biomédicale des Armées, Unité de Thérapie Cellulaire et Réparation Tissulaire, Site du Centre de Transfusion Sanguine des Armées "Jean Julliard" de Clamart, BP 73, 91223 Brétigny-sur-Orge Cedex, France.
| | - Didier Lutomski
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| | - Karim Senni
- Ecole de biologie Industrielle, 49 avenue des Genottes, 95885 Cergy Cedex, France.
| | - Sylvie Changotade
- Tissue Engineering and Proteomics (TIP) team, CSPBAT UMR CNRS 7244, Université Paris 13, Sorbonne Paris Cité, 74 rue Marcel Cachin, 93000 Bobigny, France.
| |
Collapse
|
12
|
Fabricated tropoelastin-silk yarns and woven textiles for diverse tissue engineering applications. Acta Biomater 2019; 91:112-122. [PMID: 31004842 DOI: 10.1016/j.actbio.2019.04.029] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 03/23/2019] [Accepted: 04/11/2019] [Indexed: 12/13/2022]
Abstract
Electrospun yarns offer substantial opportunities for the fabrication of elastic scaffolds for flexible tissue engineering applications. Currently available yarns are predominantly made of synthetic elastic materials. Thus scaffolds made from these yarns typically lack cell signaling cues. This can result in poor integration or even rejection on implantation, which drive demands for a new generation of yarns made from natural biologically compatible materials. Here, we present a new type of cell-attractive, highly twisted protein-based yarns made from blended tropoelastin and silk fibroin. These yarns combine physical and biological benefits by being rendered elastic and bioactive through the incorporation of tropoelastin and strengthened through the presence of silk fibroin. Remarkably, the process delivered multi-meter long yarns of tropoelastin-silk mixture that were conducive to fabrication of meshes on hand-made frames. The resulting hydrated meshes are elastic and cell interactive. Furthermore, subcutaneous implantation of the meshes in mice demonstrates their tolerance and persistence over 8 weeks. This combination of mechanical properties, biocompatibility and processability into diverse shapes and patterns underscores the value of these materials and platform technology for tissue engineering applications. STATEMENT OF SIGNIFICANCE: Synthetic yarns are used to fabricate textile materials for various applications such as surgical meshes for hernia repair and pelvic organ prolapse. However, synthetic materials lack the attractive biological and physical cues characteristic of extracellular matrix and there is a demand for materials that can minimize postoperative complications. To address this need, we made yarns from a combination of recombinant human tropoelastin and silk fibroin using a modified electrospinning approach that blended these proteins into functional yarns. Prior to this study, no protein-based yarns using tropoelastin were available for the fabrication of functional textile materials. Multimeter-long, uniform and highly twisted yarns based on these proteins were elastic and cell interactive and demonstrated processing to yield textile fabrics. By using these yarns to weave fabrics, we demonstrate that an elastic human matrix protein blend can deliver a versatile platform technology to make textiles that can be explored for efficacy in tissue repair.
Collapse
|
13
|
Tonndorf R, Gossla E, Aibibu D, Lindner M, Gelinsky M, Cherif C. Corrigendum: Wet spinning and riboflavin crosslinking of collagen type I/III filaments (2019
Biomed. Mater.
14
015007). Biomed Mater 2019. [DOI: 10.1088/1748-605x/ab0870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Srisuk P, Bishi DK, Berti FV, Silva CJR, Kwon IK, Correlo VM, Reis RL. Eumelanin Nanoparticle-Incorporated Polyvinyl Alcohol Nanofibrous Composite as an Electroconductive Scaffold for Skeletal Muscle Tissue Engineering. ACS APPLIED BIO MATERIALS 2018; 1:1893-1905. [DOI: 10.1021/acsabm.8b00465] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Pathomthat Srisuk
- 3B’s Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga 4805-017, Portugal
- Division of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences, Khon Kaen University, 123 Mittraphab Highway, Mueang
District, Khon Kaen 40002, Thailand
| | - Dillip K. Bishi
- 3B’s Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga 4805-017, Portugal
| | - Fernanda V. Berti
- 3B’s Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga 4805-017, Portugal
- Department of Chemical and Food Engineering, Federal University of Santa Catarina, Florianópolis, Santa Catarina 88040, Brazil
| | - Carlos J. R. Silva
- Department/Center of Chemistry, Universidade do Minho, Braga 4710-057, Portugal
| | - Il Keun Kwon
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02477, Republic of Korea
| | - Vitor M. Correlo
- 3B’s Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga 4805-017, Portugal
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães 4805-017, Portugal
| | - Rui L. Reis
- 3B’s Research Group, I3Bs, Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, Avepark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, Barco, Guimarães 4805-017, Portugal
- ICVS/3B’s, PT Government Associate Laboratory, Braga 4805-017, Portugal
- Department of Dental Materials, School of Dentistry, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02477, Republic of Korea
- The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, Avepark, Barco, Guimarães 4805-017, Portugal
| |
Collapse
|
15
|
Tonndorf R, Gossla E, Aibibu D, Lindner M, Gelinsky M, Cherif C. Wet spinning and riboflavin crosslinking of collagen type I/III filaments. Biomed Mater 2018; 14:015007. [DOI: 10.1088/1748-605x/aaebda] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
16
|
Biomaterials in Tendon and Skeletal Muscle Tissue Engineering: Current Trends and Challenges. MATERIALS 2018; 11:ma11071116. [PMID: 29966303 PMCID: PMC6073924 DOI: 10.3390/ma11071116] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 06/20/2018] [Accepted: 06/25/2018] [Indexed: 12/17/2022]
Abstract
Tissue engineering is a promising approach to repair tendon and muscle when natural healing fails. Biohybrid constructs obtained after cells’ seeding and culture in dedicated scaffolds have indeed been considered as relevant tools for mimicking native tissue, leading to a better integration in vivo. They can also be employed to perform advanced in vitro studies to model the cell differentiation or regeneration processes. In this review, we report and analyze the different solutions proposed in literature, for the reconstruction of tendon, muscle, and the myotendinous junction. They classically rely on the three pillars of tissue engineering, i.e., cells, biomaterials and environment (both chemical and physical stimuli). We have chosen to present biomimetic or bioinspired strategies based on understanding of the native tissue structure/functions/properties of the tissue of interest. For each tissue, we sorted the relevant publications according to an increasing degree of complexity in the materials’ shape or manufacture. We present their biological and mechanical performances, observed in vitro and in vivo when available. Although there is no consensus for a gold standard technique to reconstruct these musculo-skeletal tissues, the reader can find different ways to progress in the field and to understand the recent history in the choice of materials, from collagen to polymer-based matrices.
Collapse
|
17
|
Peixoto T, Pereira FAM, Silva PL, Guedes RM, Torres J, Lopes MA. Fibrous structures in augmentation for rotator cuff repair: an experimental comparison. Biomed Phys Eng Express 2018. [DOI: 10.1088/2057-1976/aac63e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
18
|
Bakhshandeh B, Zarrintaj P, Oftadeh MO, Keramati F, Fouladiha H, Sohrabi-Jahromi S, Ziraksaz Z. Tissue engineering; strategies, tissues, and biomaterials. Biotechnol Genet Eng Rev 2018; 33:144-172. [PMID: 29385962 DOI: 10.1080/02648725.2018.1430464] [Citation(s) in RCA: 109] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Current tissue regenerative strategies rely mainly on tissue repair by transplantation of the synthetic/natural implants. However, limitations of the existing strategies have increased the demand for tissue engineering approaches. Appropriate cell source, effective cell modification, and proper supportive matrices are three bases of tissue engineering. Selection of appropriate methods for cell stimulation, scaffold synthesis, and tissue transplantation play a definitive role in successful tissue engineering. Although the variety of the players are available, but proper combination and functional synergism determine the practical efficacy. Hence, in this review, a comprehensive view of tissue engineering and its different aspects are investigated.
Collapse
Affiliation(s)
- Behnaz Bakhshandeh
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Payam Zarrintaj
- b School of Chemical Engineering, College of Engineering , University of Tehran , Tehran , Iran
| | - Mohammad Omid Oftadeh
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran.,c Stem Cell Technology Research Center , Tehran , Iran
| | - Farid Keramati
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Hamideh Fouladiha
- a Department of Biotechnology, College of Science , University of Tehran , Tehran , Iran
| | - Salma Sohrabi-Jahromi
- d Gottingen Center for Molecular Biosciences , Georg August University , Göttingen , Germany
| | | |
Collapse
|
19
|
Wu RX, Yin Y, He XT, Li X, Chen FM. Engineering a Cell Home for Stem Cell Homing and Accommodation. ACTA ACUST UNITED AC 2017; 1:e1700004. [PMID: 32646164 DOI: 10.1002/adbi.201700004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/27/2017] [Indexed: 12/14/2022]
Abstract
Distilling complexity to advance regenerative medicine from laboratory animals to humans, in situ regeneration will continue to evolve using biomaterial strategies to drive endogenous cells within the human body for therapeutic purposes; this approach avoids the need for delivering ex vivo-expanded cellular materials. Ensuring the recruitment of a significant number of reparative cells from an endogenous source to the site of interest is the first step toward achieving success. Subsequently, making the "cell home" cell-friendly by recapitulating the natural extracellular matrix (ECM) in terms of its chemistry, structure, dynamics, and function, and targeting specific aspects of the native stem cell niche (e.g., cell-ECM and cell-cell interactions) to program and steer the fates of those recruited stem cells play equally crucial roles in yielding a therapeutically regenerative solution. This review addresses the key aspects of material-guided cell homing and the engineering of novel biomaterials with desirable ECM composition, surface topography, biochemistry, and mechanical properties that can present both biochemical and physical cues required for in situ tissue regeneration. This growing body of knowledge will likely become a design basis for the development of regenerative biomaterials for, but not limited to, future in situ tissue engineering and regeneration.
Collapse
Affiliation(s)
- Rui-Xin Wu
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xiao-Tao He
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Xuan Li
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| | - Fa-Ming Chen
- State Key Laboratory of Military Stomatology, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P. R. China.,National Clinical Research Center for Oral Diseases, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, P.R. China
| |
Collapse
|
20
|
Brünler R, Aibibu D, Wöltje M, Anthofer AM, Cherif C. In silico modeling of structural and porosity properties of additive manufactured implants for regenerative medicine. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:810-817. [PMID: 28482595 DOI: 10.1016/j.msec.2017.03.105] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 03/12/2017] [Indexed: 12/25/2022]
Abstract
Additive manufacturing technologies are a promising technology towards patient-specific implants for applications in regenerative medicine. The Net-Shape-Nonwoven technology is used to manufacture structures from short fibers with interconnected pores and large functional surfaces that are predestined for cell adhesion and growth. The present study reports on a modeling approach with a particular focus on the specific structural properties. The overall porosities and mean pore-sizes of the digital models are simulated according to liquid-displacement porosity in a tool implemented in the modeling software. This allows adjusting the process parameters fiber length and fiber diameter to generate biomimetic structures with pore-sizes adapted to the requirements of the tissue that is to be replaced. Modeling the structural and porosity properties of scaffolds and implants leads to an efficient use of the processed biomaterials as the trial-and-error method is avoided.
Collapse
Affiliation(s)
- Ronny Brünler
- Institute of Textile Machinery and High Performance Material Technology (ITM), Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany.
| | - Dilbar Aibibu
- Institute of Textile Machinery and High Performance Material Technology (ITM), Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Michael Wöltje
- Institute of Textile Machinery and High Performance Material Technology (ITM), Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Anna-Maria Anthofer
- Institute of Textile Machinery and High Performance Material Technology (ITM), Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
| | - Chokri Cherif
- Institute of Textile Machinery and High Performance Material Technology (ITM), Technische Universität Dresden, Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
21
|
Biomaterials as Tendon and Ligament Substitutes: Current Developments. REGENERATIVE STRATEGIES FOR THE TREATMENT OF KNEE JOINT DISABILITIES 2017. [DOI: 10.1007/978-3-319-44785-8_17] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|