1
|
Yuan X, Wu T, Lu T, Ye J. Effects of Zinc and Strontium Doping on In Vitro Osteogenesis and Angiogenesis of Calcium Silicate/Calcium Phosphate Cement. ACS Biomater Sci Eng 2023; 9:5761-5771. [PMID: 37676927 DOI: 10.1021/acsbiomaterials.3c00193] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023]
Abstract
Based on multiple biological functions (mainly osteogenesis and angiogenesis) of bioactive ions, Zn/Sr-doped calcium silicate/calcium phosphate cements (Zn/Sr-CS/CPCs, including 10Zn-CS/CPC, 20Sr-CS/CPC, and 10Zn/20Sr-CS/CPC) were prepared by the addition of Zn and Sr dual active ions into CS/CPC to further accelerate its bone regeneration in this study. The physicochemical and biological properties of the Zn/Sr-CS/CPCs were systematically investigated. The results showed that the setting time was slightly prolonged, the compressive strength and porosity did not change much, and all groups maintained good injectability after the doping of Zn and Sr. Besides, the doping of Zn and Sr had little effect on the phase and microstructure of hydrated products of CS/CPC. The degradation rate of Zn/Sr-CS/CPCs decreased after doping with Zn and Sr. In mouse bone marrow mesenchymal stem cells (mBMSC) experiments, all Zn/Sr-CS/CPCs stimulated the viability, adhesion, proliferation, and alkaline phosphatase (ALP) activity together with osteogenesis-related genes (ALP, Runx2, Col-I, OCN, and OPN). The further addition of Zn and Sr played better and synergistic roles in in vitro osteogenesis. Thereinto, 10Zn/20Sr-CS/CPC manifested the optimum in vitro osteogenic performance. As for human umbilical vein endothelial cell (HUVEC) experiments, the incorporation of CS doped with Zn and Sr into CPC possessed good vascularization properties of proliferation, NO secretion, tube formation, and the expression of angiogenesis-related genes (VEGF, bFGF, and eNOS). In conclusion, the doping of Zn and Sr into CS/CPC could exhibit excellent osteogenesis and good angiogenesis potentials and 10Zn/20Sr-CS/CPC could be considered as a promising candidate in bone repair.
Collapse
Affiliation(s)
- Xinyuan Yuan
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| | - Tingting Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Key Lab of Medical Electronic Instruments and Polymer Material Products, Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 510536, P. R. China
| | - Teliang Lu
- Department of Orthopedics, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou 510080, P. R. China
| | - Jiandong Ye
- School of Materials Science and Engineering and Key Laboratory of Biomedical Materials of Ministry of Education, South China University of Technology, Guangzhou 510641, P. R. China
- National Engineering Research Center for Tissue Restoration and Reconstruction, Guangzhou 510006, P. R. China
| |
Collapse
|
2
|
Skrajnowska D, Idkowiak J, Szterk A, Ofiara K, Augustyniak K, Bobrowska-Korczak B. Effect of Nano- and Microzinc Supplementation on the Mineral Composition of Bones of Rats with Induced Mammary Gland Cancer. Foods 2023; 12:foods12061348. [PMID: 36981273 PMCID: PMC10047967 DOI: 10.3390/foods12061348] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 03/15/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
BACKGROUND The aim of this study was to determine changes in the mineral composition of the bones of rats with chemically induced mammary gland cancer and to attempt to establish whether a specific diet modification involving the inclusion of zinc ions in two forms-nano and micro-will affect the mineral composition of the bones. METHODS Female Sprague-Dawley rats were used for the research. The animals were randomly assigned to three experimental groups. All animals were fed a standard diet (Labofeed H), and selected groups additionally received zinc nanoparticles or microparticles in the amount of 4.6 mg/mL. To induce mammary cancer, the animals were given 7,12-dimethyl-1,2-benz[a]anthracene. The content of Ag, As, B, Ba, Cd, Cr, Cu, Mn, Ni, Pb, Rb, Se, Sr, Tl, U, and V was determined using ICP-MS, while that of Ca, Fe, K, Mg, Na, and Zn was determined using FAAS. RESULTS The use of a diet enriched with zinc nano- or microparticles significantly influenced the content of the elements tested. In the bones of rats fed a diet with zinc nanoparticles, changes were found in the content of Ca, Mg, Zn, Cd, U, V, and Tl, while in the case of the diet supplemented with zinc microparticles, there were differences in six elements-Ca, Mg, B, Cd, Ag, and Pb-compared to animals receiving an unsupplemented diet. CONCLUSIONS The content of elements in the bone tissue of rats in the experimental model indicates disturbances of mineral metabolism in the tissue at an early stage of mammary cancer.
Collapse
Affiliation(s)
- Dorota Skrajnowska
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Jakub Idkowiak
- Department of Analytical Chemistry, Faculty of Chemical Technology, University of Pardubice, Studentská 573, CZ-532 10 Pardubice, Czech Republic
| | - Arkadiusz Szterk
- Transfer of Science sp. z o. o., Strzygłowska 15, 04-872 Warsaw, Poland
| | - Karol Ofiara
- Transfer of Science sp. z o. o., Strzygłowska 15, 04-872 Warsaw, Poland
| | - Kinga Augustyniak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| | - Barbara Bobrowska-Korczak
- Department of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha 1, 02-097 Warsaw, Poland
| |
Collapse
|
3
|
Almulhim KS, Syed MR, Alqahtani N, Alamoudi M, Khan M, Ahmed SZ, Khan AS. Bioactive Inorganic Materials for Dental Applications: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6864. [PMID: 36234205 PMCID: PMC9573037 DOI: 10.3390/ma15196864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Over time, much attention has been given to the use of bioceramics for biomedical applications; however, the recent trend has been gaining traction to apply these materials for dental restorations. The bioceramics (mainly bioactive) are exceptionally biocompatible and possess excellent bioactive and biological properties due to their similar chemical composition to human hard tissues. However, concern has been noticed related to their mechanical properties. All dental materials based on bioactive materials must be biocompatible, long-lasting, mechanically strong enough to bear the masticatory and functional load, wear-resistant, easily manipulated, and implanted. This review article presents the basic structure, properties, and dental applications of different bioactive materials i.e., amorphous calcium phosphate, hydroxyapatite, tri-calcium phosphate, mono-calcium phosphate, calcium silicate, and bioactive glass. The advantageous properties and limitations of these materials are also discussed. In the end, future directions and proposals are given to improve the physical and mechanical properties of bioactive materials-based dental materials.
Collapse
Affiliation(s)
- Khalid S. Almulhim
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mariam Raza Syed
- UWA Dental School, The University of Western Australia, Crawley 6009, Australia
| | - Norah Alqahtani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Marwah Alamoudi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore 54600, Pakistan
| | - Syed Zubairuddin Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
4
|
Alkhursani SA, Ghobashy MM, Al-Gahtany SA, Meganid AS, Abd El-Halim SM, Ahmad Z, Khan FS, Atia GAN, Cavalu S. Application of Nano-Inspired Scaffolds-Based Biopolymer Hydrogel for Bone and Periodontal Tissue Regeneration. Polymers (Basel) 2022; 14:3791. [PMID: 36145936 PMCID: PMC9504130 DOI: 10.3390/polym14183791] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
This review's objectives are to provide an overview of the various kinds of biopolymer hydrogels that are currently used for bone tissue and periodontal tissue regeneration, to list the advantages and disadvantages of using them, to assess how well they might be used for nanoscale fabrication and biofunctionalization, and to describe their production processes and processes for functionalization with active biomolecules. They are applied in conjunction with other materials (such as microparticles (MPs) and nanoparticles (NPs)) and other novel techniques to replicate physiological bone generation more faithfully. Enhancing the biocompatibility of hydrogels created from blends of natural and synthetic biopolymers can result in the creation of the best scaffold match to the extracellular matrix (ECM) for bone and periodontal tissue regeneration. Additionally, adding various nanoparticles can increase the scaffold hydrogel stability and provide a number of biological effects. In this review, the research study of polysaccharide hydrogel as a scaffold will be critical in creating valuable materials for effective bone tissue regeneration, with a future impact predicted in repairing bone defects.
Collapse
Affiliation(s)
- Sheikha A. Alkhursani
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Mohamed Mohamady Ghobashy
- Radiation Research of Polymer Chemistry Department, National Center for Radiation Research and Technology (NCRRT), Atomic Energy Authority, Cairo 11787, Egypt
| | | | - Abeer S. Meganid
- Faculty of Science and Humanities-Jubail, Imam Abdulrahman Bin Faisal University, Jubail 31441, Saudi Arabia
| | - Shady M. Abd El-Halim
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, October 6 University, 6th of October City, Giza 12585, Egypt
| | - Zubair Ahmad
- Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Farhat S. Khan
- Biology Department, College of Arts and Sciences, Dehran Al-Junub, King Khalid University, Abha 61413, Saudi Arabia
| | - Gamal Abdel Nasser Atia
- Department of Oral Medicine, Periodontology and Diagnosis, Faculty of Dentistry, Suez Canal University, Ismailia 41522, Egypt
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
5
|
Abdalla MM, Lung CYK, Bijle MN, Yiu CKY. Physicochemical Properties and Inductive Effect of Calcium Strontium Silicate on the Differentiation of Human Dental Pulp Stem Cells for Vital Pulp Therapies: An In Vitro Study. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5854. [PMID: 36079235 PMCID: PMC9457449 DOI: 10.3390/ma15175854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
The development of biomaterials that exhibit profound bioactivity and stimulate stem cell differentiation is imperative for the success and prognosis of vital pulp therapies. The objectives were to (1) synthesize calcium strontium silicate (CSR) ceramic through the sol−gel process (2) investigate its physicochemical properties, bioactivity, cytocompatibility, and its stimulatory effect on the differentiation of human dental pulp stem cells (HDPSC). Calcium silicate (CS) and calcium strontium silicate (CSR) were synthesized by the sol−gel method and characterized by x-ray diffraction (XRD). Setting time, compressive strength, and pH were measured. The in vitro apatite formation was evaluated by SEM-EDX and FTIR. The NIH/3T3 cell viability was assessed using an MTT assay. The differentiation of HDPSC was evaluated using alkaline phosphatase activity (ALP), and Alizarin red staining (ARS). Ion release of Ca, Sr, and Si was measured using inductive coupled plasma optical emission spectroscopy (ICP-OES). XRD showed the synthesis of (CaSrSiO4). The initial and final setting times were significantly shorter in CSR (5 ± 0.75 min, 29 ± 1.9 min) than in CS (8 ± 0.77 min, 31 ± 1.39 min), respectively (p < 0.05). No significant difference in compressive strength was found between CS and CSR (p > 0.05). CSR demonstrated higher apatite formation and cell viability than CS. The ALP activity was significantly higher in CSR 1.16 ± 0.12 than CS 0.92 ± 0.15 after 14 d of culture (p < 0.05). ARS showed higher mineralization in CSR than CS after 14 and 21 d culture times. CSR revealed enhanced differentiation of HDPSC, physicochemical properties, and bioactivity compared to CS.
Collapse
Affiliation(s)
- Mohamed Mahmoud Abdalla
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
- Dental Biomaterials, Faculty of Dental Medicine, Al-Azhar University, Cairo 11651, Egypt
| | - Christie Y. K. Lung
- Dental Materials Science, Applied Oral Sciences, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| | - Mohammed Nadeem Bijle
- Paediatric Dentistry, Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Cynthia Kar Yung Yiu
- Paediatric Dentistry, Faculty of Dentistry, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
6
|
Li K, Lu X, Liu S, Wu X, Xie Y, Zheng X. Boron-incorporated micro/nano-topographical calcium silicate coating dictates osteo/angio-genesis and inflammatory response toward enhanced osseointegration. Biol Trace Elem Res 2021; 199:3801-3816. [PMID: 33405083 DOI: 10.1007/s12011-020-02517-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 11/24/2020] [Indexed: 12/12/2022]
Abstract
Orthopedic implant coatings with optimal surface features to achieve favorable osteo/angio-genesis and inflammatory response would be of great importance. However, to date, few coatings are capable of fully satisfying these requirements. In this work, to take advantage of the structural complexity of micro/nano-topography and benefits of biological trace elements, two types of boron-containing nanostructures (nanoflakes and nanolamellars) were introduced onto plasma-sprayed calcium silicate (F-BCS and L-BCS) coatings via hydrothermal treatment. The C-CS coating using deionized water as hydrothermal medium served as control. Boron-incorporated CS coating stimulated osteoblastic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). Specifically, the combination of β1 integrin-vinculin-mediated cell spreading and activation of bone morphogenetic protein signaling pathway acted synergistically to cause significant upregulation of runt-related transcription factor 2 (RUNX2) protein and Runx2 gene expression in BMSCs on the F-BCS coating surface, which induced the transcription of downstream osteogenic differentiation marker genes. F-BCS coating allowed specific boron ion release, which favored angiogenesis as evidenced by the enhanced migration and tube formation of human umbilical vein endothelial cells in the coating extract. Boron-incorporated coatings significantly suppressed the expression of toll-like receptor adaptor genes in RAW264.7 macrophages and subsequently the degradation of nuclear factor-κB inhibitor α, accompanied by the inactivation of the downstream pro-inflammatory genes. In vivo experiments confirmed that F-BCS-coated Ti implant possessed enhanced osseointegration compared with L-BCS- and C-CS-coated implants. These data highlighted the synergistic effect of specific nanotopography and boron release from orthopedic implant coating on improvement of osseointegration.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiang Lu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Shiwei Liu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xiaodong Wu
- Department of Orthopedic, Changzheng Hospital, Naval Medical University, Shanghai, People's Republic of China.
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, People's Republic of China.
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, People's Republic of China.
| |
Collapse
|
7
|
Yoo KH, Kim YI, Yoon SY. Physicochemical and Biological Properties of Mg-Doped Calcium Silicate Endodontic Cement. MATERIALS (BASEL, SWITZERLAND) 2021; 14:1843. [PMID: 33917786 PMCID: PMC8068188 DOI: 10.3390/ma14081843] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 12/31/2022]
Abstract
Calcium silicate-based cement has been widely used for endodontic repair. However, it has a long setting time and needs to shorten setting time. This study investigated the effects of magnesium (Mg) ion on the setting reaction, mechanical properties, and biological properties of calcium silicate cement (CSC). Sol-gel route was used to synthesize Mg ion-doped calcium silicate cement. Synthesized cement was formulated with the addition of different contents of Mg ion, according to 0, 1, 3, 5 mol% of Mg ion-doped calcium silicate. The synthesized cements were characterized with X-ray diffraction (XRD), Fourier transformed infrared spectroscopy (FT-IR), and scanning electron microscopy (SEM). We also evaluated the physicochemical and biological properties of cement, such as the setting time, compressive strength, micro-hardness, simulated body fluid (SBF) immersion, cytotoxicity, and cell differentiation tests. As a result, the Mg ion improves the hydration properties of calcium silicate cement, and the setting time is reduced by increasing the amounts of Mg ion. However, the mechanical properties deteriorated with increasing Mg ion, and 1 and 3 mol% Mg-doped calcium silicate had appropriate mechanical properties. Also, the results of biological properties such as cytotoxicity, ALP activity, and ARS staining improved with Mg ion. Consequently, the optimal condition is 3 mol% of Mg ion-doped calcium silicate (3%Mg-CSC).
Collapse
Affiliation(s)
- Kyung-Hyeon Yoo
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea;
| | - Yong-Il Kim
- Department of Orthodontics, Dental Research Institute, Pusan National University, Yangsan 50612, Korea
| | - Seog-Young Yoon
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
8
|
Ferrández-Montero A, Eguiluz A, Vazquez E, Guerrero JD, Gonzalez Z, Sanchez-Herencia AJ, Ferrari B. Controlled SrR Delivery by the Incorporation of Mg Particles on Biodegradable PLA-Based Composites. Polymers (Basel) 2021; 13:polym13071061. [PMID: 33800563 PMCID: PMC8036937 DOI: 10.3390/polym13071061] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/21/2021] [Accepted: 03/25/2021] [Indexed: 12/17/2022] Open
Abstract
Among several ions playing a vital role in the body, Sr2+ and Mg2+ are involved in the mechanism of bone formation, making them especially useful for bone tissue engineering applications. Recently, polylactic acid (PLA)/Mg composites have emerged as a promising family of biomaterials due to their inherent biocompatibility and biodegradability properties. In these composites, polymer and bio-metal have a synergetic effect—while the PLA inhibits the Mg fast reactivity, Mg provides bioactivity to the inert polymer buffering the medium pH during degradation. Meanwhile, the typical form of administrating Sr2+ to patients is through the medication strontium ranelate (SrR), which increases the bone mineral density. Following this interesting research line, a new group of composites, which integrates Mg particles and SrR charged onto halloysite nanotubes (HNT) in a polymeric matrix, was proposed. PLA/Mg/SrR–HNT composites have been processed following a colloidal route, obtaining homogenous composites granulated and film-shaped. The drug delivery profile was evaluated in terms of in vitro lixiviation/dissolution paying special attention to the synergism of both ions release. The combination of two of the most reported ions involved in bone regeneration in the composite biomaterial may generate extra interest in bone healing applications.
Collapse
Affiliation(s)
- Ana Ferrández-Montero
- Institute of Ceramic and Glass (ICV), Spanish National Research Council (CSIC), 28049 Madrid, Spain; (A.E.); (E.V.); (J.D.G.); (Z.G.); (A.J.S.-H.); (B.F.)
- Laboratory of Physicochemistry of Polymers and Interfaces (LPPI), CY Cergy Paris University, Neuville-sur-Oise, 95031 Cergy, France
- Correspondence:
| | - Alvaro Eguiluz
- Institute of Ceramic and Glass (ICV), Spanish National Research Council (CSIC), 28049 Madrid, Spain; (A.E.); (E.V.); (J.D.G.); (Z.G.); (A.J.S.-H.); (B.F.)
| | - Elena Vazquez
- Institute of Ceramic and Glass (ICV), Spanish National Research Council (CSIC), 28049 Madrid, Spain; (A.E.); (E.V.); (J.D.G.); (Z.G.); (A.J.S.-H.); (B.F.)
| | - Joab David Guerrero
- Institute of Ceramic and Glass (ICV), Spanish National Research Council (CSIC), 28049 Madrid, Spain; (A.E.); (E.V.); (J.D.G.); (Z.G.); (A.J.S.-H.); (B.F.)
| | - Zoilo Gonzalez
- Institute of Ceramic and Glass (ICV), Spanish National Research Council (CSIC), 28049 Madrid, Spain; (A.E.); (E.V.); (J.D.G.); (Z.G.); (A.J.S.-H.); (B.F.)
- Inorganic Chemistry and Chemical Engineering Department, University of Córdoba, Campus de Rabanales 14071 Córdoba, Spain
| | - Antonio Javier Sanchez-Herencia
- Institute of Ceramic and Glass (ICV), Spanish National Research Council (CSIC), 28049 Madrid, Spain; (A.E.); (E.V.); (J.D.G.); (Z.G.); (A.J.S.-H.); (B.F.)
| | - Begoña Ferrari
- Institute of Ceramic and Glass (ICV), Spanish National Research Council (CSIC), 28049 Madrid, Spain; (A.E.); (E.V.); (J.D.G.); (Z.G.); (A.J.S.-H.); (B.F.)
| |
Collapse
|
9
|
O’Connor JP, Kanjilal D, Teitelbaum M, Lin SS, Cottrell JA. Zinc as a Therapeutic Agent in Bone Regeneration. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2211. [PMID: 32408474 PMCID: PMC7287917 DOI: 10.3390/ma13102211] [Citation(s) in RCA: 112] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/03/2020] [Accepted: 05/08/2020] [Indexed: 11/28/2022]
Abstract
Zinc is an essential mineral that is required for normal skeletal growth and bone homeostasis. Furthermore, zinc appears to be able to promote bone regeneration. However, the cellular and molecular pathways through which zinc promotes bone growth, homeostasis, and regeneration are poorly understood. Zinc can positively affect chondrocyte and osteoblast functions, while inhibiting osteoclast activity, consistent with a beneficial role for zinc in bone homeostasis and regeneration. Based on the effects of zinc on skeletal cell populations and the role of zinc in skeletal growth, therapeutic approaches using zinc to improve bone regeneration are being developed. This review focuses on the role of zinc in bone growth, homeostasis, and regeneration while providing an overview of the existing studies that use zinc as a bone regeneration therapeutic.
Collapse
Affiliation(s)
- J. Patrick O’Connor
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Deboleena Kanjilal
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Marc Teitelbaum
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Sheldon S. Lin
- Department of Orthopaedics, Rutgers-New Jersey Medical School, Newark, NJ 07103, USA;
- School of Graduate Studies, Rutgers, the State University of New Jersey, 185 South Orange Avenue, Newark, NJ 07103, USA; (D.K.); (M.T.)
| | - Jessica A. Cottrell
- Department of Biological Sciences, Seton Hall University, 400 South Orange Avenue, South Orange, NJ 07079, USA;
| |
Collapse
|
10
|
Chen B, You Y, Ma A, Song Y, Jiao J, Song L, Shi E, Zhong X, Li Y, Li C. Zn-Incorporated TiO 2 Nanotube Surface Improves Osteogenesis Ability Through Influencing Immunomodulatory Function of Macrophages. Int J Nanomedicine 2020; 15:2095-2118. [PMID: 32273705 PMCID: PMC7109325 DOI: 10.2147/ijn.s244349] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/29/2020] [Indexed: 12/13/2022] Open
Abstract
PURPOSE Zinc (Zn), an essential trace element in the body, has stable chemical properties, excellent osteogenic ability and moderate immunomodulatory property. In the present study, a Zn-incorporated TiO2 nanotube (TNT) was fabricated on titanium (Ti) implant material. We aimed to evaluate the influence of nano-scale topography and Zn on behaviors of murine RAW 264.7 macrophages. Moreover, the effects of Zn-incorporated TNT surface-regulated macrophages on the behaviors and osteogenic differentiation of murine MC3T3-E1 osteoblasts were also investigated. METHODS TNT coatings were firstly fabricated on a pure Ti surface using anodic oxidation, and then nano-scale Zn particles were incorporated onto TNTs by the hydrothermal method. Surface topography, chemical composition, roughness, hydrophilicity, Zn release pattern and protein adsorption ability of the Zn-incorporated TiO2 nanotube surface were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), surface profiler, contact angle test, Zn release test and protein adsorption test. The cell behaviors and both pro-inflammatory (M1) and pro-regenerative (M2) marker gene and protein levels in macrophages cultured on Zn-incorporated TNTs surfaces with different TNT diameters were detected. The supernatants of macrophages were extracted and preserved as conditioned medium (CM). Furthermore, the behaviors and osteogenic properties of osteoblasts cultured in CM on various surfaces were evaluated. RESULTS The release profile of Zn on Zn-incorporated TNT surfaces revealed a controlled release pattern. Macrophages cultured on Zn-incorporated TNT surfaces displayed enhanced gene and protein expression of M2 markers, and M1 markers were moderately inhibited, compared with the LPS group (the inflammation model). When cultured in CM, osteoblasts cultured on Zn-incorporated TNTs showed strengthened cell proliferation, adhesion, osteogenesis-related gene expression, alkaline phosphatase activity and extracellular mineralization, compared with their TNT counterparts and the Ti group. CONCLUSION This study suggests that the application of Zn-incorporated TNT surfaces may establish an osteogenic microenvironment and accelerate bone formation. It provided a promising strategy of Ti surface modification for a better applicable prospect.
Collapse
Affiliation(s)
- Bo Chen
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yapeng You
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Aobo Ma
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Yunjia Song
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Jian Jiao
- Department of Stomatology, Tianjin Medical University General Hospital, Tianjin, People’s Republic of China
| | - Liting Song
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Enyu Shi
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Xue Zhong
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Ying Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Changyi Li
- School of Dentistry, Stomatological Hospital, Tianjin Medical University, Tianjin, People’s Republic of China
| |
Collapse
|
11
|
Li K, Liu S, Hu T, Razanau I, Wu X, Ao H, Huang L, Xie Y, Zheng X. Optimized Nanointerface Engineering of Micro/Nanostructured Titanium Implants to Enhance Cell-Nanotopography Interactions and Osseointegration. ACS Biomater Sci Eng 2020; 6:969-983. [PMID: 33464841 DOI: 10.1021/acsbiomaterials.9b01717] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The success of orthopedic implants requires rapid and complete osseointegration which relies on an implant surface with optimal features. To enhance cellular function in response to the implant surface, micro- and nanoscale topography have been suggested as essential. The aim of this study was to identify an optimized Ti nanostructure and to introduce it onto a titanium plasma-sprayed titanium implant (denoted NTPS-Ti) to confer enhanced immunomodulatory properties for optimal osseointegration. To this end, three types of titania nanostructures, namely, nanowires, nanonests, and nanoflakes, were achieved on hydrothermally prepared Ti substrates. The nanowire surface modulated protein conformation and directed integrin binding and specificity in such a way as to augment the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs) and induce a desirable osteoimmune response of RAW264.7 macrophages. In a coculture system, BMSCs on the optimized micro/nanosurface exerted enhanced effects on nonactivated or lipopolysaccharide-stimulated macrophages, causing them to adopt a less inflammatory macrophage profile. The enhanced immunomodulatory properties of BMSCs grown on NTPS-Ti depended on a ROCK-medicated cyclooxygenase-2 (COX2) pathway to increase prostaglandin E2 (PGE2) production, as evidenced by decreased production of PGE2 and concurrent inhibition of immunomodulatory properties after treatment with ROCK or COX2 inhibitors. In vivo evaluation showed that the NTPS-Ti implant resulted in enhanced osseointegration compared with the TPS-Ti and Ti implants. The results obtained in our study may provide a prospective approach for enhancing osseointegration and supporting the application of micro/nanostructured Ti implants.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Shiwei Liu
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Tao Hu
- Department of Spine Surgery, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, P. R. China
| | - Ihar Razanau
- Science and Technology Park of BNTU "Polytechnic", Minsk 220013, Belarus
| | - Xiaodong Wu
- Department of Spine Surgery, Changzheng Hospital, Second Military Medical University, Shanghai 200003, P. R. China
| | - Haiyong Ao
- School of Materials Science and Engineering, East China Jiao Tong University, Nanchang 330013, P. R. China
| | - Liping Huang
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials CAS, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai 200050, P. R. China
| |
Collapse
|
12
|
Zhou W, Wang T, Gan Y, Yang J, Zhu H, Wang A, Wang Y, Xi W. Effect of micropore/microsphere topography and a silicon-incorporating modified titanium plate surface on the adhesion and osteogenic differentiation of BMSCs. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 48:230-241. [PMID: 31851839 DOI: 10.1080/21691401.2019.1699829] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Wuchao Zhou
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine of Jiangxi Province, Medical College of Nanchang University, Nanchang, China
| | - Tiesheng Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine of Jiangxi Province, Medical College of Nanchang University, Nanchang, China
- Department of Oral and Maxillofacial Surgery, Pingxiang People's Hospital, Pingxiang, China
| | - Yanzi Gan
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine of Jiangxi Province, Medical College of Nanchang University, Nanchang, China
| | - Jian Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine of Jiangxi Province, Medical College of Nanchang University, Nanchang, China
| | - Hongshui Zhu
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine of Jiangxi Province, Medical College of Nanchang University, Nanchang, China
| | - Anxun Wang
- Department of Oral and Maxillofacial Surgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yujiang Wang
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine of Jiangxi Province, Medical College of Nanchang University, Nanchang, China
| | - Weihong Xi
- Department of Oral and Maxillofacial Surgery, Affiliated Stomatological Hospital of Nanchang University, The Key Laboratory of Oral Biomedicine of Jiangxi Province, Medical College of Nanchang University, Nanchang, China
| |
Collapse
|
13
|
Wang S, Liu L, Zhou X, Yang D, Shi Z, Hao Y. Effect of strontium-containing on the properties of Mg-doped wollastonite bioceramic scaffolds. Biomed Eng Online 2019; 18:119. [PMID: 31829229 PMCID: PMC6907205 DOI: 10.1186/s12938-019-0739-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Bone scaffold is one of the most effective methods to treat bone defect. The ideal scaffold of bone tissue should not only provide space for bone tissue growth, but also have sufficient mechanical strength to support the bone defect area. Moreover, the scaffold should provide a customized size or shape for the patient's bone defect. METHODS In this study, strontium-containing Mg-doped wollastonite (Sr-CSM) bioceramic scaffolds with controllable pore size and pore structure were manufactured by direct ink writing 3D printing. Biological properties of Sr-CSM scaffolds were evaluated by apatite formation ability, in vitro proliferation ability of rabbit bone-marrow stem cells (rBMSCs), and alkaline phosphatase (ALP) activity using β-TCP and Mg-doped wollastonite (CSM) scaffolds as control. The compression strength of three scaffold specimens was probed after completely drying them while been submerged in Tris-HCl solution for 0, 2,4 and 6 weeks. RESULTS The mechanical test results showed that strontium-containing Mg-doped wollastonite (Sr-CSM) scaffolds had acceptable initial compression strength (56 MPa) and maintained good mechanical stability during degradation in vitro. Biological experiments showed that Sr-CSM scaffolds had a better apatite formation ability. Cell experiments showed that Sr-CSM scaffold had a higher cell proliferation ability compared with β-TCP and CSM scaffold. The higher ALP activity of Sr-CSM scaffold indicates that it can better stimulate osteoblastic differentiation and bone mineralization. CONCLUSIONS Therefore, Sr-CSM scaffolds not only have acceptable compression strength, but also have higher osteogenesis bioactivity, which can be used in bone tissue engineering scaffolds.
Collapse
Affiliation(s)
- Su Wang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Linlin Liu
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China.
| | - Xin Zhou
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Danfeng Yang
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhang'ao Shi
- School of Mechanical Engineering, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yongqiang Hao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedics, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| |
Collapse
|
14
|
Sedelnikova MB, Komarova EG, Sharkeev YP, Ugodchikova AV, Tolkacheva TV, Rau JV, Buyko EE, Ivanov VV, Sheikin VV. Modification of titanium surface via Ag-, Sr- and Si-containing micro-arc calcium phosphate coating. Bioact Mater 2019; 4:224-235. [PMID: 31406950 PMCID: PMC6684518 DOI: 10.1016/j.bioactmat.2019.07.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/01/2019] [Accepted: 07/16/2019] [Indexed: 11/19/2022] Open
Abstract
The current research is devoted to the study of the modification of the titanium implants by the micro-arc oxidation with bioactive calcium phosphate coatings containing Ag or Sr and Si elements. The coatings' microstructure, phase composition, morphology, physicochemical and biological properties were examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDX) and X-ray diffraction (XRD). Ag-containing and Sr-Si-incorporated coatings were formed in alkaline and acid electrolytes, respectively. The formation of the coatings occurred at different ranges of the applied voltages, which led to the significant difference in the coatings properties. The trace elements Ag, Sr and Si participated intensively in the plasma-chemical reactions of the micro-arc coatings formation. Ag-containing coatings demonstrated strong antibacterial effect against Staphylococcus aureus AТСС 6538-P. MTT in vitro test with 3T3-L1 fibroblasts showed no cytotoxicity appearance on Sr-Si-incorporated coatings.
Collapse
Affiliation(s)
- Mariya B. Sedelnikova
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, Tomsk, 634055, Russia
| | - Ekaterina G. Komarova
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, Tomsk, 634055, Russia
| | - Yurii P. Sharkeev
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, Tomsk, 634055, Russia
- National Research Tomsk Polytechnic University, Lenina Prospect 30, Tomsk, 634050, Russia
| | - Anna V. Ugodchikova
- National Research Tomsk Polytechnic University, Lenina Prospect 30, Tomsk, 634050, Russia
| | - Tatiana V. Tolkacheva
- Institute of Strength Physics and Materials Science of SB RAS, Academicheskii Prospect 2/4, Tomsk, 634055, Russia
| | - Julietta V. Rau
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere 100, 00133 Roma, Italy
| | - Evgeny E. Buyko
- National Research Tomsk Polytechnic University, Lenina Prospect 30, Tomsk, 634050, Russia
- Siberian State Medical University, Moscovskii Tract 2, Tomsk, 634050, Russia
| | - Vladimir V. Ivanov
- Siberian State Medical University, Moscovskii Tract 2, Tomsk, 634050, Russia
| | - Vladimir V. Sheikin
- Siberian State Medical University, Moscovskii Tract 2, Tomsk, 634050, Russia
| |
Collapse
|
15
|
Wu X, Stroll SI, Lantigua D, Suvarnapathaki S, Camci-Unal G. Eggshell particle-reinforced hydrogels for bone tissue engineering: an orthogonal approach. Biomater Sci 2019; 7:2675-2685. [DOI: 10.1039/c9bm00230h] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Eggshell microparticle-reinforced hydrogels have been fabricated and characterized to obtain mechanically stable and biologically active scaffolds that can direct the differentiation of cells.
Collapse
Affiliation(s)
- Xinchen Wu
- Biomedical Engineering and Biotechnology Program
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Chemical Engineering
| | - Stephanie I. Stroll
- Department of Chemical Engineering
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Biological Sciences
| | - Darlin Lantigua
- Biomedical Engineering and Biotechnology Program
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Chemical Engineering
| | - Sanika Suvarnapathaki
- Biomedical Engineering and Biotechnology Program
- University of Massachusetts Lowell
- Lowell
- USA
- Department of Chemical Engineering
| | - Gulden Camci-Unal
- Department of Chemical Engineering
- University of Massachusetts Lowell
- Lowell
- USA
| |
Collapse
|
16
|
Wang Y, Hua Y, Zhang Q, Yang J, Li H, Li Y, Cao M, Cai Q, Yang X, Zhang X, Li C. Using biomimetically mineralized collagen membranes with different surface stiffness to guide regeneration of bone defects. J Tissue Eng Regen Med 2018; 12:1545-1555. [PMID: 29691999 DOI: 10.1002/term.2670] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2017] [Revised: 01/15/2018] [Accepted: 04/12/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Yao Wang
- School of Dentistry, Hospital of Stomatology; Tianjin Medical University; Tianjin China
| | - Ye Hua
- Department of Stomatology; Tianjin Union Medical Center; Tianjin China
| | - Qian Zhang
- School of Dentistry, Hospital of Stomatology; Tianjin Medical University; Tianjin China
| | - Jie Yang
- School of Dentistry, Hospital of Stomatology; Tianjin Medical University; Tianjin China
| | - Hongjie Li
- School of Dentistry, Hospital of Stomatology; Tianjin Medical University; Tianjin China
| | - Ying Li
- School of Dentistry, Hospital of Stomatology; Tianjin Medical University; Tianjin China
| | - Man Cao
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing China
| | - Qing Cai
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing China
| | - Xiaoping Yang
- Beijing Laboratory of Biomedical Materials, College of Materials Science and Engineering; Beijing University of Chemical Technology; Beijing China
| | - Xu Zhang
- School of Dentistry, Hospital of Stomatology; Tianjin Medical University; Tianjin China
| | - Changyi Li
- School of Dentistry, Hospital of Stomatology; Tianjin Medical University; Tianjin China
| |
Collapse
|
17
|
You M, Li K, Xie Y, Huang L, Zheng X. The Effects of Cerium Valence States at Cerium Oxide Coatings on the Responses of Bone Mesenchymal Stem Cells and Macrophages. Biol Trace Elem Res 2017; 179:259-270. [PMID: 28229387 DOI: 10.1007/s12011-017-0968-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/13/2017] [Indexed: 12/11/2022]
Abstract
Ideal orthopedic coatings should trigger good osteogenic response and limited inflammatory response. The cerium valence states in ceria are associated with their anti-oxidative activity and anti-inflammatory property. In the study, we prepared two kinds of plasma sprayed CeO2 coatings with different Ce4+ concentrations to investigate the effects of Ce valence states on the response of bone mesenchymal stem cells (BMSCs) and macrophage RAW264.7. Both the coatings (CeO2-A and CeO2-B) were characterized via XRD, SEM, and X-ray photoelectron spectroscopy. The CeO2 coatings enhanced osteogenic behaviors of BMSCs in terms of cellular proliferation, alkaline phosphatase (ALP) activity and calcium deposition activity in comparison with the Ti substrate. In particular, the CeO2-B coating (higher Ce4+ concentration) elicited greater effects than the CeO2-A coating (higher Ce3+ concentration). RT-PCR and western blot results suggested that the CeO2-B coating promoted BMSCs osteogenic differentiation through the SMAD-dependent BMP signaling pathway, which activated Runx2 expression and subsequently enhanced the expression of ALP and OCN. With respect to either CeO2-A coating or Ti substrate, the CeO2-B coating exerted greater effects on the macrophages, increasing the anti-inflammatory cytokines (IL-10 and IL-1ra) expression and suppressing the expression of the pro-inflammatory cytokines (TNF-α and IL-6) and ROS production. Furthermore, it also upregulated the expression of osteoinductive molecules (TGF-β1 and BMP2) in the macrophages. The regulation of cerium valence states at plasma sprayed ceria coatings can be a valuable strategy to improve osteogenic properties and alleviate inflammatory response.
Collapse
Affiliation(s)
- Mingyu You
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
- University of Chinese Academy of Sciences, 19 Yuquan Road, Beijing, 100049, People's Republic of China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
| | - Liping Huang
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
| |
Collapse
|
18
|
Yu J, Xu L, Li K, Xie N, Xi Y, Wang Y, Zheng X, Chen X, Wang M, Ye X. Zinc-modified Calcium Silicate Coatings Promote Osteogenic Differentiation through TGF-β/Smad Pathway and Osseointegration in Osteopenic Rabbits. Sci Rep 2017; 7:3440. [PMID: 28611362 PMCID: PMC5469779 DOI: 10.1038/s41598-017-03661-5] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 05/03/2017] [Indexed: 12/19/2022] Open
Abstract
Surface-modified metal implants incorporating different ions have been employed in the biomedical field as bioactive dental implants with good osseointegration properties. However, the molecular mechanism through which surface coatings exert the biological activity is not fully understood, and the effects have been difficult to achieve, especially in the osteopenic bone. In this study, We examined the effect of zinc-modified calcium silicate coatings with two different Zn contents to induce osteogenic differentiation of rat bone marrow-derived pericytes (BM-PCs) and osteogenetic efficiency in ovariectomised rabbits. Ti-6Al-4V with zinc-modified calcium silicate coatings not only enhanced proliferation but also promoted osteogenic differentiation and mineralized matrix deposition of rat BM-PCs as the zinc content and culture time increased in vitro. The associated molecular mechanisms were investigated by Q-PCR and Western blotting, revealing that TGF-β/Smad signaling pathway plays a direct and significant role in regulating BM-PCs osteoblastic differentiation on Zn-modified coatings. Furthermore, in vivo results that revealed Zn-modified calcium silicate coatings significantly promoted new bone formation around the implant surface in osteopenic rabbits as the Zn content and exposure time increased. Therefore, Zn-modified calcium silicate coatings can improve implant osseointegration in the condition of osteopenia, which may be beneficial for patients suffering from osteoporosis-related fractures.
Collapse
Affiliation(s)
- Jiangming Yu
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China.
- National Engineering Research Center for Nanotechnology, Shanghai, 200241, China.
| | - Lizhang Xu
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Ning Xie
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Yanhai Xi
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Yang Wang
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xiongsheng Chen
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China
| | - Meiyan Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Xiaojian Ye
- Department of Orthopaedics, Changzheng Hospital of Second Military Medical University, Shanghai, 200003, China.
| |
Collapse
|
19
|
Li K, Yu J, Xie Y, You M, Huang L, Zheng X. The Effects of Cerium Oxide Incorporation in Calcium Silicate Coating on Bone Mesenchymal Stem Cell and Macrophage Responses. Biol Trace Elem Res 2017; 177:148-158. [PMID: 27761846 DOI: 10.1007/s12011-016-0859-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Accepted: 09/27/2016] [Indexed: 01/06/2023]
Abstract
Ideal coatings for orthopedic implants should be able to induce excellent osseointegration with host bone tissue, which requires good osteogenic responses and limited inflammatory reactions. Cerium oxide (CeO2) ceramics have anti-oxidative properties and can be used to decrease mediators of inflammation, making them attractive for biomedical application. In this study, two kinds of CeO2 incorporated calcium silicate coatings (CS-10Ce and CS-30Ce) were prepared via plasma spraying technique, and the effects of CeO2 addition on the responses of bone mesenchymal stem cells (BMSCs) and RAW264.7 macrophages were evaluated. The CS-10Ce and CS-30Ce coatings were characterized by X-ray diffraction, scanning electron microscopy, and X-ray photoelectron spectroscopy. An increase in CeO2 content in the coatings resulted in enhanced chemical stability and better BMSCs osteogenic behaviors in terms of cell adhesion, proliferation, ALP activity, and mineralized nodule formation. With respect to either ZrO2-added or unmodified CS coating, the CS-30Ce coating elicited higher effects on the macrophages, suppressing the gene expressions of pro-inflammatory (M1) markers (CCR7, IL-6, and TNF-α), while upregulating the expressions of anti-inflammatory (M2) markers (CD206, IL-1ra, and IL-10); moreover, it could also increase the expression of osteoinductive molecules (BMP2 and TGF-β1) by the macrophages. The results suggested that the regulation of BMSCs behaviors and macrophage-mediated responses at the coating's surface was related to CeO2 incorporation. The incorporation of CeO2 in CS coatings can be a valuable strategy to promote osteogenic responses and mitigate inflammatory reactions.
Collapse
Affiliation(s)
- Kai Li
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
| | - Jiangming Yu
- Department of Orthopaedics, Changzheng Hospital, Second Military Medical University, Shanghai, 200003, People's Republic of China
| | - Youtao Xie
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
| | - Mingyu You
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
| | - Liping Huang
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China
| | - Xuebin Zheng
- Key Laboratory of Inorganic Coating Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai, 200050, People's Republic of China.
| |
Collapse
|
20
|
Hu D, Li K, Xie Y, Pan H, Zhao J, Huang L, Zheng X. The combined effects of nanotopography and Sr ion for enhanced osteogenic activity of bone marrow mesenchymal stem cells (BMSCs). J Biomater Appl 2017; 31:1135-1147. [DOI: 10.1177/0885328217692140] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Both surface topography and chemistry have a significant influence on the biological performance of orthopedic implant coatings. In our study, a surface modification strategy embodying bioactive trace element incorporation and nanotopography construction was employed to enhance the osteogenic activity of calcium silicate (Ca-Si) coatings. We developed strontium-loaded nanolayer on plasma sprayed Ca-Si (CS) coating via hydrothermal treatment which was denoted as Sr-NT-CS. The original CS coating and the CS coating modified with similar nanotopography (NT-CS) were studied in parallel. We investigated the cellular effects of surface topography and released Sr ion on the adhesion, proliferation, differentiation, and mineralization of BMSCs and the associated molecular mechanisms. The results indicated that the nanotopography activated integrin β1, promoted the spread of BMSCs into a polygonal osteoblastic shape, and induced higher levels of collagen secretion. The Sr incorporation stimulated osteogenic differentiation and mineralization as indicated by the increases in ALP activity and mineralized nodules formation. The examination of gene expressions revealed that Sr ion exerted the effects by interacting with extracellular calcium sensitive receptor (CaSR), and combined with the nanotopographical cue for the up-regulation of osteogenic master transcription factor Runx2. The promoted Runx2 subsequently affected osteoblast (OB) marker genes (BMP-2, BSP, OPN, and OCN), thus driving BMSCs to differentiate into OBs. Moreover, the Sr incorporation inhibited osteoclastogenesis, as indicated by the down-regulation of interleukin-6 (IL-6) and the inhibition of RANKL/RANK system. Those results suggested that our developed Sr-NT-CS coating have combined the effects of nanotopography and Sr ion for enhanced osteogenic activity of BMSCs.
Collapse
Affiliation(s)
- Dandan Hu
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Kai Li
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Youtao Xie
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Houhua Pan
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Jun Zhao
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Liping Huang
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| | - Xuebin Zheng
- Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China; University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
21
|
Zhang W, Zhao F, Huang D, Fu X, Li X, Chen X. Strontium-Substituted Submicrometer Bioactive Glasses Modulate Macrophage Responses for Improved Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2016; 8:30747-30758. [PMID: 27779382 DOI: 10.1021/acsami.6b10378] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Host immune response induced by foreign bone biomaterials plays an important role in determining their fate after implantation. Hence, it is well worth designing advanced bone substitute materials with beneficial immunomodulatory properties to modulate the host-material interactions. Bioactive glasses (BG), with excellent osteoconductivity and osteoinductivity, are regarded as important biomaterials in the field of bone regeneration. In order to explore a novel BG-based osteoimmunomodulatory implant with the capacity of potentially enhancing bone regeneration, it is a possible way to regulate the local immune microenvironment through manipulating macrophage polarization. In this study, strontium-substituted submicrometer bioactive glass (Sr-SBG) was prepared as an osteoimmunomodulatory bone repair material. To investigate whether the incorporation of Sr into SBG could synergistically improve osteogenesis by altering macrophage response, we systematically evaluated the interaction between Sr-SBG and macrophage during the process of bone regeneration by in vitro biological evaluation and in vivo histological assessment. It was found that the Sr-SBG modulates proper inflammatory status, leading to enhanced osteogenesis of mouse mesenchymal stem cells (mMSCs) and suppressed osteoclastogenesis of RAW 264.7 cells compared to SBG without strontium substitution. In vivo study confirmed that Sr-SBG initiated a less severe immune response and had an improved effect on bone regeneration than SBG, which corresponded with the in vitro evaluation. In conclusion, these findings suggested that Sr-SBG could be a promising immunomodulatory bone repair material designed for improved bone regeneration.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology , Guangzhou 510006, China
| | - Fujian Zhao
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology , Guangzhou 510006, China
| | - Deqiu Huang
- College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | - Xiaoling Fu
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology , Guangzhou 510006, China
| | - Xian Li
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology , Guangzhou 510006, China
| | - Xiaofeng Chen
- Department of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology , Guangzhou 510641, China
- National Engineering Research Center for Tissue Restoration and Reconstruction , Guangzhou 510006, China
- Key Laboratory of Biomedical Materials and Engineering, Ministry of Education, South China University of Technology , Guangzhou 510006, China
| |
Collapse
|