1
|
Elbeltagi S, Abdel Shakor AB, M Alharbi H, Tawfeek HM, Aldosari BN, E Eldin Z, Amin BH, Abd El-Aal M. Synergistic effects of quercetin-loaded CoFe 2O 4@Liposomes regulate DNA damage and apoptosis in MCF-7 cancer cells: based on biophysical magnetic hyperthermia. Drug Dev Ind Pharm 2024; 50:561-575. [PMID: 38832870 DOI: 10.1080/03639045.2024.2363231] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 05/29/2024] [Indexed: 06/06/2024]
Abstract
INTRODUCTION Breast cancer (BC) is the most common malignancy in women globally. Significant progress has been made in developing structural nanoparticles (NPs) and formulations for targeted smart drug delivery (SDD) of pharmaceuticals, improving the precision of tumor cell targeting in therapy. SIGNIFICANCE Magnetic hyperthermia (MHT) treatment using magneto-liposomes (MLs) has emerged as a promising adjuvant cancer therapy. METHODS CoFe2O4 magnetic NPs (MNPs) were conjugated with nanoliposomes to form MLs, and the anticancer drug quercetin (Que) was loaded into MLs, forming Que-MLs composites for antitumor approach. The aim was to prepare Que-MLs for DD systems (DDS) under an alternating magnetic field (AMF), termed chemotherapy/hyperthermia (chemo-HT) techniques. The encapsulation efficiency (EE), drug loading capacity (DL), and drug release (DR) of Que and Que-MLs were evaluated. RESULTS The results confirmed successful Que-loading on the surface of MLs, with an average diameter of 38 nm and efficient encapsulation into MLs (69%). In vitro, experimental results on MCF-7 breast cells using MHT showed high cytotoxic effects of novel Que-MLs on MCF-7 cells. Various analyses, including cytotoxicity, apoptosis, cell migration, western blotting, fluorescence imaging, and cell membrane internalization, were conducted. The Acridine Orange-ethidium bromide double fluorescence test identified 35% early and 55% late apoptosis resulting from Que-MLs under the chemo-HT group. TEM results indicated MCF-7 cell membrane internalization and digestion of Que-MLs, suggesting the presence of early endosome-like vesicles on the cytoplasmic periphery. CONCLUSIONS Que-MLs exhibited multi-modal chemo-HT effects, displaying high toxicity against MCF-7 BC cells and showing promise as a potent cytotoxic agent for BC chemotherapy.
Collapse
Affiliation(s)
- Shehab Elbeltagi
- Department of Physics-Biophysics, Faculty of Science, New Valley University, New Valley, Egypt
| | - Abo Bakr Abdel Shakor
- Department of Zoology, Faculty of Science, Assiut University, Assiut, Egypt
- School of biotechnology, Badr University in Assiut (BUA), Egypt
| | - Hanan M Alharbi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Hesham M Tawfeek
- Industrial Pharmacy Department, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Basmah N Aldosari
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Zienab E Eldin
- Department of Material Science and nanotechnology, (PSAS), Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
- Center for Material Science, Zewail City of Science and Technology, Giza, Egypt
| | - Basma H Amin
- The Regional Center for Mycology and Biotechnology (RCMB), Al - Azhar University, Egypt
| | - Mohamed Abd El-Aal
- Chemistry Department, Faculty of Science, Assiut University, Assiut, Egypt
| |
Collapse
|
2
|
Guigou C, Lalande A, Millot N, Belharet K, Bozorg Grayeli A. Use of Super Paramagnetic Iron Oxide Nanoparticles as Drug Carriers in Brain and Ear: State of the Art and Challenges. Brain Sci 2021; 11:358. [PMID: 33799690 PMCID: PMC7998448 DOI: 10.3390/brainsci11030358] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/02/2021] [Accepted: 03/05/2021] [Indexed: 12/16/2022] Open
Abstract
Drug delivery and distribution in the central nervous system (CNS) and the inner ear represent a challenge for the medical and scientific world, especially because of the blood-brain and the blood-perilymph barriers. Solutions are being studied to circumvent or to facilitate drug diffusion across these structures. Using superparamagnetic iron oxide nanoparticles (SPIONs), which can be coated to change their properties and ensure biocompatibility, represents a promising tool as a drug carrier. They can act as nanocarriers and can be driven with precision by magnetic forces. The aim of this study was to systematically review the use of SPIONs in the CNS and the inner ear. A systematic PubMed search between 1999 and 2019 yielded 97 studies. In this review, we describe the applications of the SPIONS, their design, their administration, their pharmacokinetic, their toxicity and the methods used for targeted delivery of drugs into the ear and the CNS.
Collapse
Affiliation(s)
- Caroline Guigou
- Department of Otolaryngology-Head and Neck Surgery, Dijon University Hospital, 21000 Dijon, France;
- ImVia Laboratory, EA 7535, Université Bourgogne Franche-Comté, 21079 Dijon, France;
| | - Alain Lalande
- ImVia Laboratory, EA 7535, Université Bourgogne Franche-Comté, 21079 Dijon, France;
| | - Nadine Millot
- Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR 6303, CNRS, Université Bourgogne Franche-Comté, BP 47870, 21078 Dijon, France;
| | - Karim Belharet
- Laboratoire PRISME, JUNIA Campus Centre, 36000 Châteauroux, France;
| | - Alexis Bozorg Grayeli
- Department of Otolaryngology-Head and Neck Surgery, Dijon University Hospital, 21000 Dijon, France;
- ImVia Laboratory, EA 7535, Université Bourgogne Franche-Comté, 21079 Dijon, France;
| |
Collapse
|
3
|
Biomimetic Magnetoliposomes as Oxaliplatin Nanocarriers: In Vitro Study for Potential Application in Colon Cancer. Pharmaceutics 2020; 12:pharmaceutics12060589. [PMID: 32599905 PMCID: PMC7356838 DOI: 10.3390/pharmaceutics12060589] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/22/2020] [Accepted: 06/23/2020] [Indexed: 12/24/2022] Open
Abstract
Current chemotherapy for colorectal cancer (CRC) includes the use of oxaliplatin (Oxa), a first-line cytotoxic drug which, in combination with irinotecan/5-fluorouracil or biologic agents, increases the survival rate of patients. However, the administration of this drug induces side effects that limit its application in patients, making it necessary to develop new tools for targeted chemotherapy. MamC-mediated biomimetic magnetic nanoparticles coupled with Oxa (Oxa-BMNPs) have been previously demonstrated to efficiently reduce the IC50 compared to that of soluble Oxa. However, their strong interaction with the macrophages revealed toxicity and possibility of aggregation. In this scenario, a further improvement of this nanoassembly was necessary. In the present study, Oxa-BMNPs nanoassemblies were enveloped in phosphatidylcholine unilamellar liposomes (both pegylated and non-pegylated). Our results demonstrate that the addition of both a lipid cover and further pegylation improves the biocompatibility and cellular uptake of the Oxa-BMNPs nanoassemblies without significantly reducing their cytotoxic activity in colon cancer cells. In particular, with the pegylated magnetoliposome nanoformulation (a) hemolysis was reduced from 5% to 2%, being now hematocompatibles, (b) red blood cell agglutination was reduced, (c) toxicity in white blood cells was eliminated. This study represents a truly stepforward in this area as describes the production of one of the very few existing nanoformulations that could be used for a local chemotherapy to treat CRC.
Collapse
|
4
|
Nie W, Zhang B, Pan R, Wang S, Yan X, Tan J. Surface Modification with Chondroitin Sulfate Targets Nanoparticles to the Neuronal Cell Membrane in the Substantia Nigra. ACS Chem Neurosci 2020; 11:197-204. [PMID: 31867955 DOI: 10.1021/acschemneuro.9b00597] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Localizing nanoparticles on or near cell membranes in vivo remains a big challenge. We present a cell membrane targeting complex based on chondroitin sulfate (CS)-conjugated superparamagnetic iron oxide nanoparticles (CS-SPIONs). After SPIONs were injected into the substantia nigra of rats, the subcellular distributions of SPIONs with and without CS modification have been evaluated by transmission electron microscopy (TEM) analysis. CS-SPIONs exhibited low toxicity and low endocytosis and were highly distributed in the extracellular spaces nearing neuronal cell bodies and synapses. This can be attributed to the nature of CS, one of the main components of perineuronal nets with the tendency to surround neuronal cell bodies, dendrites, and synapses. It is expected that CS-SPIONs have a great potential for therapies requiring targeting of or approach to cell membranes.
Collapse
Affiliation(s)
- Wan Nie
- Key Laboratory of Nonferrous and Materials Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004, China
| | - Baolin Zhang
- Key Laboratory of Nonferrous and Materials Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004, China
| | - Ru Pan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 109 North 2nd Huan Cheng Road, Guilin 541004, China
| | - Sheng Wang
- Key Laboratory of Nonferrous and Materials Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004, China
| | - Xianjia Yan
- Key Laboratory of Nonferrous and Materials Processing Technology, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Jian Gan Road 12, Guilin 541004, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, 109 North 2nd Huan Cheng Road, Guilin 541004, China
| |
Collapse
|
5
|
Preparation of Ag/UiO-66-NH2 and its application in photocatalytic reduction of Cr(VI) under visible light. RESEARCH ON CHEMICAL INTERMEDIATES 2019. [DOI: 10.1007/s11164-019-03865-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
6
|
Wang S, Zhang B, Su L, Nie W, Han D, Han G, Zhang H, Chong C, Tan J. Subcellular distributions of iron oxide nanoparticles in rat brains affected by different surface modifications. J Biomed Mater Res A 2019; 107:1988-1998. [PMID: 31067350 DOI: 10.1002/jbm.a.36711] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 03/07/2019] [Accepted: 05/02/2019] [Indexed: 12/31/2022]
Abstract
The impact of the surface modification on the subcellular distribution of nanoparticles in the brain remains elusive. The nanoparticles prepared by conjugating polyethylene glycol and maleic anhydride-coated superparamagnetic iron oxide nanoparticles (Mal-SPIONs) with bovine serum albumin (BSA/Mal-SPIONs) and with Arg-Gly-Asp peptide (RGD/Mal-SPIONs) were injected into the rat substantia nigra. Observation of transmission electron microscopy (TEM) samples obtained 24 h after perfusion showed that abundant RGD/Mal-SPIONs accumulated in the myelin sheath, dendrites, axon terminals and mitochondria, and on cell membranes in the brain tissue near the injection site. For rats injected with BSA/Mal-SPIONs, a few nanoparticles accumulated in the myelin sheath, axon terminals, endoplasmic reticulum, mitochondria, Golgi, and lysosomes of neurons and glial cells while least SPIONs in rats injected with Mal-SPIONs were found. TEM pictures showed some Mal-SPIONs were expelled out of the brain. RGD/Mal-SPIONs diffused extensively to the thalamus, frontal cortex, temporal lobe, olfactory bulb, and brain stem after injection. Only a few BSA/Mal-SPIONs diffused to the afore-mentioned brain areas. This work reveals different surface modifications on the iron oxide nanoparticles play crucial roles in their distribution and diffusion in the rat brains.
Collapse
Affiliation(s)
- Sheng Wang
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Baolin Zhang
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Lichao Su
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Wan Nie
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Dong Han
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Guihua Han
- Key Laboratory of New Processing Technology for Nonferrous Metal and Materials, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China.,Guangxi Key Laboratory of Optical and Electronic Materials and Devices, College of Materials Science and Engineering, Guilin University of Technology, Guilin, China
| | - Hao Zhang
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Chuangang Chong
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Jie Tan
- Guangxi Key Laboratory of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| |
Collapse
|