1
|
ten Brink T, Damanik F, Rotmans JI, Moroni L. Unraveling and Harnessing the Immune Response at the Cell-Biomaterial Interface for Tissue Engineering Purposes. Adv Healthc Mater 2024; 13:e2301939. [PMID: 38217464 PMCID: PMC11468937 DOI: 10.1002/adhm.202301939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
Biomaterials are defined as "engineered materials" and include a range of natural and synthetic products, designed for their introduction into and interaction with living tissues. Biomaterials are considered prominent tools in regenerative medicine that support the restoration of tissue defects and retain physiologic functionality. Although commonly used in the medical field, these constructs are inherently foreign toward the host and induce an immune response at the material-tissue interface, defined as the foreign body response (FBR). A strong connection between the foreign body response and tissue regeneration is suggested, in which an appropriate amount of immune response and macrophage polarization is necessary to trigger autologous tissue formation. Recent developments in this field have led to the characterization of immunomodulatory traits that optimizes bioactivity, the integration of biomaterials and determines the fate of tissue regeneration. This review addresses a variety of aspects that are involved in steering the inflammatory response, including immune cell interactions, physical characteristics, biochemical cues, and metabolomics. Harnessing the advancing knowledge of the FBR allows for the optimization of biomaterial-based implants, aiming to prevent damage of the implant, improve natural regeneration, and provide the tools for an efficient and successful in vivo implantation.
Collapse
Affiliation(s)
- Tim ten Brink
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Febriyani Damanik
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| | - Joris I. Rotmans
- Department of Internal MedicineLeiden University Medical CenterAlbinusdreef 2Leiden2333ZAThe Netherlands
| | - Lorenzo Moroni
- Complex Tissue Regeneration DepartmentMERLN Institute for Technology‐Inspired Regenerative MedicineMaastricht UniversityUniversiteitssingel 40Maastricht6229ERThe Netherlands
| |
Collapse
|
2
|
Ding L, Wang H, Li J, Liu D, Bai J, Yuan Z, Yang J, Bian L, Zhao X, Li B, Chen S. Preparation and characterizations of an injectable and biodegradable high-strength iron-bearing brushite cement for bone repair and vertebral augmentation applications. Biomater Sci 2022; 11:96-107. [PMID: 36445030 DOI: 10.1039/d2bm01535h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Brushite cements have good osteoconductive and resorbable properties, but the low mechanical strength and poor injectability limit their clinical applications in load-bearing conditions and minimally invasive surgery. In this study, an injectable brushite cement that contains monocalcium phosphate monohydrate (MCPM) and β-tricalcium phosphate (β-TCP) as its solid phase and ammonium ferric citrate (AFC) solution as the aqueous medium was designed to have high mechanical strength. The optimized formulation achieved a compressive strength of 62.8 ± 7.2 MPa, which is above the previously reported values of hand-mixing brushite cements. The incorporation of AFC prolonged the setting times and greatly enhanced the injectability and degradation properties of the cements. In vitro and in vivo experiments demonstrated that the brushite cements exhibited good biocompatibility and bone regeneration capacity. The novel brushite cement is promising for bone healing in load-bearing applications.
Collapse
Affiliation(s)
- Luguang Ding
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Jiaying Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Dachuan Liu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Jianzhong Bai
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Zhangqin Yuan
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Jiaojiao Yang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610065, China
| | - Lu Bian
- Department of Orthopaedics, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Xijiang Zhao
- Department of Orthopaedics, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu 214122, China.
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| | - Song Chen
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu 215006, China.
| |
Collapse
|
3
|
Xiao Z, Fu D, Zhang L, Fan W, Shen X, Qi X. Bone healing study of alendronate combined with enoxaparin sodium bone cement in rabbits with bone defects. J Orthop Surg Res 2022; 17:431. [PMID: 36175933 PMCID: PMC9524070 DOI: 10.1186/s13018-022-03330-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/21/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND To observe the effect of enoxaparin sodium-polymethyl methacrylate (ES-PMMA) bone cement supplemented with alendronate (AN) on bone repair of bone defects in New Zealand rabbits. METHODS Twenty-seven New Zealand rabbits were randomly divided into ES/AN, ES-PMMA and PMMA groups, with a total of 27 New Zealand rabbits. The drugs loaded in 40 g bone cement powder were as follows: ES/AN group 8000 AxaIU enoxaparin (ES) and 200 mg alendronate (AN), ES-PMMA group 8000 AxaIU enoxaparin (ES), PMMA group without drugs. A bone defect model with a length of 10 mm and a diameter of 5 mm was made from the left tibia of rabbits, and the prepared bone cement was placed in the tibia defect. At 4 weeks, 8 weeks and 12 weeks after the operation, 3 rabbits in each group were sacrificed, and left tibia samples were collected for histological scoring, HE staining and Masson staining. Bone mineral density and new bone volume were measured by imaging, and the related data were processed by one-way ANOVA and least significance difference (LSD) post hoc test. RESULTS (1) Bone mineral density (BMD, mg/mm3) around the bone defect: at the 4th week, BMD in the ES/AN group was higher than that in the PMMA group; at the 8th week, the BMD in the ES/AN group was significantly higher than that in the other two groups; and at the 12th week, the BMD in the ES/AN group was significantly higher than that in the other two groups. (2) New bone volume (BV, mm3): at the 4th week, BV in the ES/AN group was significantly higher than that in the other two groups, BV in the ES/AN group was significantly higher than that in the other two groups at the 8th and 12th weeks, and BV in the ES-PMMA group was higher than that in the PMMA group. (3) Histological score: at the 4th and 8th weeks, the histological score of the ES/AN group was higher than that of the PMMA group, and at the 12th week, the histological score of the ES/AN group was higher than that of the other two groups. (4) Cortical bone thickness (μm): at the 4th, 8th and 12th weeks, the cortical bone thickness in the ES/AN group was higher than that in the other two groups, and the cortical bone thickness in the ES-PMMA group was higher than that in the PMMA group. (5) The percentage of mature area of new bone in the ES/AN group was higher than that in the other two groups at the 4th week, and at the 8th and 12th weeks, the percentage of mature area of new bone in the ES/AN group and ES-PMMA group was significantly higher than that in the PMMA group. CONCLUSION (1) Enoxaparin sodium bone cement supplemented with alendronate was superior to enoxaparin sodium bone cement and PMMA bone cement in promoting bone repair of tibial bone defects in New Zealand rabbits. (2) Enoxaparin sodium bone cement is superior to PMMA bone cement in promoting bone repair, showing a certain osteogenic potential.
Collapse
Affiliation(s)
- Zhihang Xiao
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Dehao Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Li Zhang
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Weiye Fan
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Xiaoyu Shen
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China
| | - Xiangbei Qi
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijiazhuang, 050035, People's Republic of China.
| |
Collapse
|
4
|
The Effect of Germanium-Loaded Hydroxyapatite Biomaterials on Bone Marrow Mesenchymal Stem Cells Growth. Cells 2022; 11:cells11192993. [PMID: 36230954 PMCID: PMC9563598 DOI: 10.3390/cells11192993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 09/20/2022] [Accepted: 09/22/2022] [Indexed: 11/22/2022] Open
Abstract
Hydroxyapatite (HA) is a hard mineral component of mineralized tissues, mainly composed of calcium and phosphate. Due to its bioavailability, HA is potentially used for the repair and regeneration of mineralized tissues. For this purpose, the properties of HA are significantly improved by adding natural and synthetic materials. In this sense, the germanium (Ge) mineral was loaded in HA biomaterial by cold isostatic pressure for the first time and characterization and biocompatibility using bone marrow mesenchymal stem cells (BM-MSCs) were investigated. The addition of Ge at 5% improved the solubility (3.32%), stiffness (18.34 MPa), water holding (31.27%) and biodegradation (21.87%) properties of HA, compared to control. Compared to all composite biomaterials, the drug-releasing behavior of HA-3% Ge was higher at pH 1 and 3 and the maximum drug release was obtained at pH 7 and 9 with HA-5% Ge biomaterials. Among the different mediums tested, the DMEM-medium showed a higher drug release rate, especially at 60 min. HA-Ge biomaterials showed better protein adhesion and apatite layer formation, which ultimately proves the compatibility in BM-MSCs culture. Except for higher concentrations of HA (5 and 10 mg/mL), the different concentrations of Ge and HA and wells coated with 1% of HA-1% Ge had higher BM-MSCs growth than control. All these findings concluded that the fabricated HA biomaterials loaded with Ge could be the potential biomaterial for culturing mammalian cells towards mineralized tissue repair and regeneration.
Collapse
|
5
|
Fadeeva IV, Deyneko DV, Forysenkova AA, Morozov VA, Akhmedova SA, Kirsanova VA, Sviridova IK, Sergeeva NS, Rodionov SA, Udyanskaya IL, Antoniac IV, Rau JV. Strontium Substituted β-Tricalcium Phosphate Ceramics: Physiochemical Properties and Cytocompatibility. Molecules 2022; 27:molecules27186085. [PMID: 36144818 PMCID: PMC9505591 DOI: 10.3390/molecules27186085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/08/2022] [Accepted: 09/13/2022] [Indexed: 11/30/2022] Open
Abstract
Sr2+-substituted β-tricalcium phosphate (β-TCP) powders were synthesized using the mechano-chemical activation method with subsequent pressing and sintering to obtain ceramics. The concentration of Sr2+ in the samples was 0 (non-substituted TCP, as a reference), 3.33 (0.1SrTCP), and 16.67 (0.5SrTCP) mol.% with the expected Ca3(PO4)2, Ca2.9Sr0.1(PO4)2, and Ca2.5Sr0.5(PO4)2 formulas, respectively. The chemical compositions were confirmed by the energy-dispersive X-ray spectrometry (EDX) and the inductively coupled plasma optical emission spectroscopy (ICP-OES) methods. The study of the phase composition of the synthesized powders and ceramics by the powder X-ray diffraction (PXRD) method revealed that β-TCP is the main phase in all compounds except 0.1SrTCP, in which the apatite (Ap)-type phase was predominant. TCP and 0.5SrTCP ceramics were soaked in the standard saline solution for 21 days, and the phase analysis revealed the partial dissolution of the initial β-TCP phase with the formation of the Ap-type phase and changes in the microstructure of the ceramics. The Sr2+ ion release from the ceramic was measured by the ICP-OES. The human osteosarcoma MG-63 cell line was used for viability, adhesion, spreading, and cytocompatibility studies. The results show that the introduction of Sr2+ ions into the β-TCP improved cell adhesion, proliferation, and cytocompatibility of the prepared samples. The obtained results provide a base for the application of the Sr2+-substituted ceramics in model experiments in vivo.
Collapse
Affiliation(s)
- Inna V. Fadeeva
- A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninskie, 49, 119334 Moscow, Russia
| | - Dina V. Deyneko
- Department of Chemistry, Lomonosov Moscow State University, 1, Leninskie Gory, 119991 Moscow, Russia
- Laboratory of Arctic Mineralogy and Material Sciences, Kola Science Centre, Russian Academy of Sciences, 14 Fersman Str., 184209 Apatity, Russia
| | - Anna A. Forysenkova
- A.A. Baikov Institute of Metallurgy and Material Science RAS, Leninskie, 49, 119334 Moscow, Russia
| | - Vladimir A. Morozov
- Department of Chemistry, Lomonosov Moscow State University, 1, Leninskie Gory, 119991 Moscow, Russia
| | - Suraya A. Akhmedova
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
| | - Valentina A. Kirsanova
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
| | - Irina K. Sviridova
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
| | - Natalia S. Sergeeva
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
- Academician Yarygin Department of Biology, Federal State Autonomous Educational Institution of Higher Education Russian National Research Medical University Named after N.I. Pirogov, Str. Ostrovityanova, 1, 117997 Moscow, Russia
| | - Sergey A. Rodionov
- Herzen Moscow Research Institute of Oncology—Branch of the Federal State Budgetary Institutio, National Medical Research Center for Radiology of the Ministry of Health of Russia, 2nd Botkinsky Pr-d, 3, 125284 Moscow, Russia
- N.N. Priorov National Medical Research Center of Traumatology and Orthopaedics, 10 Priorova Str., 127299 Moscow, Russia
| | - Irina L. Udyanskaya
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russia
| | - Iulian V. Antoniac
- Department of Metallic Materials Science and Physical Metallurg, University Politehnica of Bucharest, Street Splaiul Independentei No 313, Sector 6, 060042 Bucharest, Romania
| | - Julietta V. Rau
- Department of Analytical, Physical and Colloid Chemistry, Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University, Trubetskaya 8, Build. 2, 119991 Moscow, Russia
- Istituto di Struttura della Materia, Consiglio Nazionale delle Ricerche (ISM-CNR), Via del Fosso del Cavaliere, 100-00133 Rome, Italy
- Correspondence:
| |
Collapse
|
6
|
Dubus M, Scomazzon L, Ledouble C, Braux J, Beljebbar A, Van Gulick L, Baldit A, Gorin C, Alem H, Bouland N, Britton M, Schiavi J, Vaughan TJ, Mauprivez C, Kerdjoudj H. Hybrid Mineral/Organic Material Induces Bone Bridging and Bone Volume Augmentation in Rat Calvarial Critical Size Defects. Cells 2022; 11:cells11182865. [PMID: 36139439 PMCID: PMC9497222 DOI: 10.3390/cells11182865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/22/2022] Open
Abstract
In craniofacial bone defects, the promotion of bone volume augmentation remains a challenge. Finding strategies for bone regeneration such as combining resorbable minerals with organic polymers would contribute to solving the bone volume roadblock. Here, dicalcium phosphate dihydrate, chitosan and hyaluronic acid were used to functionalize a bone-side collagen membrane. Despite an increase in the release of inflammatory mediators by human circulating monocytes, the in vivo implantation of the functionalized membrane allowed the repair of a critical-sized defect in a calvaria rat model with de novo bone exhibiting physiological matrix composition and structural organization. Microtomography, histological and Raman analysis combined with nanoindentation testing revealed an increase in bone volume in the presence of the functionalized membrane and the formation of woven bone after eight weeks of implantation; these data showed the potential of dicalcium phosphate dihydrate, chitosan and hyaluronic acid to induce an efficient repair of critical-sized bone defects and establish the importance of thorough multi-scale characterization in assessing biomaterial outcomes in animal models.
Collapse
Affiliation(s)
- Marie Dubus
- Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne Ardenne, EA 4691 Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Loïc Scomazzon
- Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne Ardenne, EA 4691 Reims, France
| | - Charlotte Ledouble
- Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne Ardenne, EA 4691 Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, 51100 Reims, France
- Pôle Médecine Bucco-Dentaire, Hôpital Maison Blanche, Centre Hospitalier Universitaire de Reims, 51100 Reims, France
| | - Julien Braux
- Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne Ardenne, EA 4691 Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, 51100 Reims, France
- Pôle Médecine Bucco-Dentaire, Hôpital Maison Blanche, Centre Hospitalier Universitaire de Reims, 51100 Reims, France
| | - Abdelilah Beljebbar
- BioSpecT EA 7506, Université de Reims Champagne Ardenne, 51100 Reims, France
- UFR de Pharmacie, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Laurence Van Gulick
- BioSpecT EA 7506, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Adrien Baldit
- Ecole Nationale d’Ingénieurs de Metz, CNRS, LEM3, Université de Lorraine, 57078 Metz, France
| | - Caroline Gorin
- URP2496, Pathologies, UFR Odontologie, Imagerie et Biothérapies Orofaciales et Plateforme Imagerie du Vivant, Université Paris Cité, 92120 Montrouge, France
- AP-HP, Services Médecines Bucco-Dentaire (GH Paris Sud-Sorbonne Université), 92120 Montrouge, France
| | - Halima Alem
- CNRS, IJL, Université de Lorraine, 54500 Nancy, France
| | - Nicole Bouland
- Service d’Anatomo-Pathologie, Université de Reims Champagne Ardenne, 51100 Reims, France
| | - Marissa Britton
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland, H91 HX31 Galway, Ireland
| | - Jessica Schiavi
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland, H91 HX31 Galway, Ireland
| | - Ted J. Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, National University of Ireland, H91 HX31 Galway, Ireland
| | - Cédric Mauprivez
- Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne Ardenne, EA 4691 Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, 51100 Reims, France
- Pôle Médecine Bucco-Dentaire, Hôpital Maison Blanche, Centre Hospitalier Universitaire de Reims, 51100 Reims, France
| | - Halima Kerdjoudj
- Biomatériaux et Inflammation en Site Osseux (BIOS), Université de Reims Champagne Ardenne, EA 4691 Reims, France
- UFR d’Odontologie, Université de Reims Champagne Ardenne, 51100 Reims, France
- Correspondence:
| |
Collapse
|
7
|
Kumar TSS, Madhumathi K, Jayasree R. Eggshell Waste: A Gold Mine for Sustainable Bioceramics. J Indian Inst Sci 2022. [DOI: 10.1007/s41745-022-00291-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
8
|
Insuasti‐Cruz E, Suárez‐Jaramillo V, Mena Urresta KA, Pila‐Varela KO, Fiallos‐Ayala X, Dahoumane SA, Alexis F. Natural Biomaterials from Biodiversity for Healthcare Applications. Adv Healthc Mater 2022; 11:e2101389. [PMID: 34643331 DOI: 10.1002/adhm.202101389] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 09/20/2021] [Indexed: 12/22/2022]
Abstract
Natural biomaterials originating during the growth cycles of all living organisms have been used for many applications. They span from bioinert to bioactive materials including bioinspired ones. As they exhibit an increasing degree of sophistication, natural biomaterials have proven suitable to address the needs of the healthcare sector. Here the different natural healthcare biomaterials, their biodiversity sources, properties, and promising healthcare applications are reviewed. The variability of their properties as a result of considered species and their habitat is also discussed. Finally, some limitations of natural biomaterials are discussed and possible future developments are provided as more natural biomaterials are yet to be discovered and studied.
Collapse
Affiliation(s)
- Erick Insuasti‐Cruz
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | | | | | - Kevin O. Pila‐Varela
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Xiomira Fiallos‐Ayala
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| | - Si Amar Dahoumane
- Department of Chemical Engineering Polytech Montreal Montreal Quebec H3C 3A7 Canada
- Center for Advances in Water and Air Quality (CAWAQ) Lamar University Beaumont TX 77710 USA
| | - Frank Alexis
- School of Biological Sciences & Engineering Yachay Tech University Urcuquí 100119 Ecuador
| |
Collapse
|
9
|
de França Silva Azevedo AC, Morúa OC, de Lima GG, da Silva HN, da Silva Ferreira J, Fook MVL, de Sá MJC. Brushite bone cement containing polyethylene glycol for bone regeneration. Biomed Mater Eng 2021; 33:221-233. [PMID: 34864647 DOI: 10.3233/bme-211308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Bone cements aid in bone regeneration; however, if the handling time is not well established for the material to harden, complications may arise. OBJECTIVE This work investigates the effect of using polyethylene glycol (PEG) and characterize it in brushite bone cement in order to obtain desirable handling times as well as its regeneration in vivo to analyse if addition of this polymer may significantly modify its properties. METHODS PEG 4000 was synthesised with wollastonite by phosphorization reaction in order to form brushite which was further cured by oven drying. They were further characterised and tested in vivo as tibial bone defect model using rabbits. RESULTS Addition of PEG exhibited handling times of 60 min with a low increase in temperature when curing. Brushite phase of ∼71% was obtained after cement hardening with good compressive strength (25 MPa) and decent values of porosity (33%). In vivo presented that, at 40 days postoperatively, accelerated bone neoformation with partial consolidation at 30 days and total after 60 days when using bone cement. CONCLUSIONS Addition of PEG does not disrupt the beneficial properties of the bone cement and can be a potential alternative for control the time-temperature profile of hardening these materials.
Collapse
Affiliation(s)
| | - Otto Cumberbatch Morúa
- Programa de Pós-Graduação em Medicina Veterinária (PPGMV), Universidade Federal de Campina Grande (UFCG), Campina Grande, Paraíba, Brazil
| | - Gabriel Goetten de Lima
- Programa de Pós-Graduação em Engenharia e Ciência dos Materiais - PIPE, Universidade Federal do Paraná, Curitiba, Paraná, Brazil.,Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| | - Henrique Nunes da Silva
- Programa de Pós-Graduação em Medicina Veterinária (PPGMV), Universidade Federal de Campina Grande (UFCG), Campina Grande, Paraíba, Brazil
| | | | - Marcus Vinicius Lia Fook
- Programa de Pós-Graduação em Medicina Veterinária (PPGMV), Universidade Federal de Campina Grande (UFCG), Campina Grande, Paraíba, Brazil
| | - Marcelo Jorge Cavalcanti de Sá
- CERTBIO, Universidade Federal de Campina Grande (UFCG), Campina Grande, Paraíba, Brazil.,Materials Research Institute, Athlone Institute of Technology, Athlone, Ireland
| |
Collapse
|
10
|
Rohmadi R, Harwijayanti W, Ubaidillah U, Triyono J, Diharjo K, Utomo P. In Vitro Degradation and Cytotoxicity of Eggshell-Based Hydroxyapatite: A Systematic Review and Meta-Analysis. Polymers (Basel) 2021; 13:3223. [PMID: 34641039 PMCID: PMC8512377 DOI: 10.3390/polym13193223] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/17/2021] [Indexed: 12/01/2022] Open
Abstract
OBJECTIVE This review focuses on the in vitro degradation of eggshell-based hydroxyapatite for analyzing the weight loss of hydroxyapatite when applied in the human body. Cytotoxicity tests were used to observe cell growth and morphological effects. A systematic review and meta-analysis were conducted to observe the weight loss and viable cells of hydroxyapatite when used for implants. METHOD Based on the Population, Intervention, Comparison, and Outcome (PICO) strategy, the articles used for literature review were published in English on SCOPUS, PubMed, and Google Scholar from 1 January 2012 to 22 May 2021. Data regarding existing experiments in the literature articles the in vitro degradation and cytotoxicity testing of eggshell-based hydroxyapatite determined the biocompatibility of the materials. A meta-analysis was conducted to calculate the mean difference between the solutions and soaking times used for degradation and the stem cells used for cytotoxicity. RESULTS From 231 relevant studies, 71 were chosen for full-text analysis, out of which 33 articles met the inclusion criteria for degradation and cytotoxicity analysis. A manual search of the field of study resulted in three additional articles. Thus, 36 articles were included in this systematic review. SIGNIFICANCE The aim of this study was to highlight the importance of the biocompatibility of eggshell-based hydroxyapatite. The weight loss and viability cells of eggshell-based hydroxyapatite showed optimum results for viable cells requirements above 70%, and there is a weight loss of eggshell-based hydroxyapatite for a material implant. The meta-analysis indicated significant differences in the weight loss of eggshell-based hydroxyapatite materials with different soaking times and solutions used. The various kinds of stem cells for incubation of cultured cells in contact with a device, either directly or through diffusions with various kinds of stem cells from animals and humans, yielded viability cells above 70%.
Collapse
Affiliation(s)
- Rohmadi Rohmadi
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia; (R.R.); (W.H.); (J.T.); (K.D.)
| | - Widyanita Harwijayanti
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia; (R.R.); (W.H.); (J.T.); (K.D.)
| | - Ubaidillah Ubaidillah
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia; (R.R.); (W.H.); (J.T.); (K.D.)
| | - Joko Triyono
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia; (R.R.); (W.H.); (J.T.); (K.D.)
| | - Kuncoro Diharjo
- Mechanical Engineering Department, Faculty of Engineering, Universitas Sebelas Maret, Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia; (R.R.); (W.H.); (J.T.); (K.D.)
| | - Pamudji Utomo
- Department Orthopaedic Traumatology, Prof Dr. R. Soeharso Orthopaedic Hospital Surakarta/Faculty of Medicine, Universitas Sebelas Maret Jalan Ir. Sutami 36A, Kentingan, Surakarta 57126, Indonesia;
| |
Collapse
|
11
|
The Influence of Eggshell on Bone Regeneration in Preclinical In Vivo Studies. BIOLOGY 2020; 9:biology9120476. [PMID: 33352877 PMCID: PMC7766478 DOI: 10.3390/biology9120476] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 12/13/2020] [Accepted: 12/17/2020] [Indexed: 12/11/2022]
Abstract
Simple Summary The aim of this study is to review the available information on the use of avian eggshell as bone regeneration material. Five databases were searched up to October 2020. Animal studies with a bone defect model using eggshell as a grafting material were included. Risk of bias and the quality of the papers were assessed. Overall, a total of 581 studies were included in the study, 187 after duplicate removal. Using the inclusion and exclusion criteria 167 records were further excluded. The full text of the remaining 20 articles was assessed for eligibility and included in the review. There were different methods of obtaining eggshell for grafting purposes. Eggshell is a biocompatible grafting material, with bone formation capabilities. It forms new bone similar to other products currently in use in clinical practice. It can be combined with other materials to enhance its proprieties. Eggshell is a promising biomaterial to be used in bone grafting procedures, though further research is needed. Abstract The aim of this study is to systemically review the available evidence on the in vivo behavior of eggshell as a guided bone regeneration substitute material. Five databases (PubMed, Cochrane, Web of Science, Scopus, EMBASE) were searched up to October 2020. In vivo animal studies with a bone defect model using eggshell as a grafting material were included. Risk of bias was assessed using SYRCLE tool and the quality assessment using the ARRIVE guidelines. Overall, a total of 581 studies were included in the study, 187 after duplicate removal. Using the inclusion and exclusion criteria 167 records were further excluded. The full text of the remaining 20 articles was assessed for eligibility and included in the qualitative and quantitative assessment synthesis. There were different methods of obtaining eggshell grafting materials. Eggshell is a biocompatible grafting material, with osteoconduction proprieties. It forms new bone similar to Bio-Oss and demineralized freeze-dried bone matrix. It can be combined with other materials to enhance its proprieties. Due to the high variability of the procedures, animals, production and assessment methods, no meta-analysis could be performed. Eggshell might be considered a promising biomaterial to be used in bone grafting procedures, though further research is needed.
Collapse
|
12
|
Opris H, Bran S, Dinu C, Baciut M, Prodan DA, Mester A, Baciut G. Clinical applications of avian eggshell-derived hydroxyapatite. Bosn J Basic Med Sci 2020; 20:430-437. [PMID: 32651970 PMCID: PMC7664787 DOI: 10.17305/bjbms.2020.4888] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Accepted: 07/04/2020] [Indexed: 12/13/2022] Open
Abstract
The search for bone reconstruction materials and methods is an ongoing challenge. The aim of this review is to systemically search the available literature concerning the clinical performance of eggshell as a substitute material in guided bone regeneration in oral surgery. Five databases (PubMed, Cochrane, Web of Science, Scopus, and Embase) were searched up to February 2020. Clinical trials that used eggshell as a bone substitute material were included in the review. Animal and in vivo studies were excluded from the review. ROBINS-I was used to evaluate the risk of bias. A total of 840 studies were retrieved, out of which 55 full-text articles were screened. Five studies were finally included: one study showed critical and four serious risk of bias. A total of 74 patients and 88 intervention sites were included in the five studies. Clinical and radiological evaluation showed complete healing during the follow-ups. Statistically significant radiological and clinical evidence of new bone formation was achieved for socket preservation, grafting after third molar extraction, and cystic/apicectomy grafting. One patient with complications was reported. Histological analysis and micro computed tomography confirmed that it promotes bone regeneration. A comparison with synthetic hydroxyapatite showed similar healing characteristics. Within the limitations of the included studies, the eggshell can be safely and efficiently used in guided bone regeneration procedures, but more research is needed to completely evaluate the full potential of this material.
Collapse
Affiliation(s)
- Horia Opris
- Department of Maxillofacial Surgery and Implantology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Simion Bran
- Department of Maxillofacial Surgery and Implantology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Cristian Dinu
- Department of Maxillofacial Surgery and Implantology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Mihaela Baciut
- Department of Maxillofacial Surgery and Implantology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Daiana Antoaneta Prodan
- Department of Maxillofacial Surgery and Implantology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Alexandru Mester
- Department of Oral Health, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Grigore Baciut
- Department of Maxillofacial Surgery and Implantology, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| |
Collapse
|
13
|
Rocha CR, Chávez‐Flores D, Zuverza‐Mena N, Duarte A, Rocha‐Gutiérrez BA, Zaragoza‐Contreras EA, Flores‐Gallardo S. Surface organo‐modification of hydroxyapatites to improve
PLA
/
HA
compatibility. J Appl Polym Sci 2020. [DOI: 10.1002/app.49293] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Carmen R. Rocha
- Centro de Investigación en Materiales Avanzados S.C. Department of Engineering and Materials Chemistry, Miguel de Cervantes No. 120, Complejo Industrial Chihuahua C.P. 31136, Chihuahua, Chihuahua Mexico
- Universidad Autónoma de Chihuahua Campus Universitario No. 2, C.P. 31125, Chihuahua, Chihuahua Mexico
| | - David Chávez‐Flores
- Universidad Autónoma de Chihuahua Campus Universitario No. 2, C.P. 31125, Chihuahua, Chihuahua Mexico
| | - Nubia Zuverza‐Mena
- Analytical Chemistry DepartmentThe Connecticut Agricultural Experiment Station 123 Huntington St., New Haven Connecticut USA
| | - Alma Duarte
- Centro de Investigación en Materiales Avanzados S.C. Department of Engineering and Materials Chemistry, Miguel de Cervantes No. 120, Complejo Industrial Chihuahua C.P. 31136, Chihuahua, Chihuahua Mexico
| | | | - Erasto Armando Zaragoza‐Contreras
- Centro de Investigación en Materiales Avanzados S.C. Department of Engineering and Materials Chemistry, Miguel de Cervantes No. 120, Complejo Industrial Chihuahua C.P. 31136, Chihuahua, Chihuahua Mexico
| | - Sergio Flores‐Gallardo
- Centro de Investigación en Materiales Avanzados S.C. Department of Engineering and Materials Chemistry, Miguel de Cervantes No. 120, Complejo Industrial Chihuahua C.P. 31136, Chihuahua, Chihuahua Mexico
| |
Collapse
|