1
|
Raina N, Haque S, Tuli HS, Jain A, Slama P, Gupta M. Optimization and Characterization of a Novel Antioxidant Naringenin-Loaded Hydrogel for Encouraging Re-Epithelization in Chronic Diabetic Wounds: A Preclinical Study. ACS OMEGA 2023; 8:34995-35011. [PMID: 37779948 PMCID: PMC10536028 DOI: 10.1021/acsomega.3c04441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/23/2023] [Indexed: 10/03/2023]
Abstract
Nonhealed wounds are one of the most dangerous side effects of type-2 diabetes, which is linked to a high frequency of bacterial infections around the globe that eventually results in amputation of limbs. The present investigation aimed to explore the drug-loaded (naringenin) hydrogel system for chronic wound healing. The hydrogel membranes comprising Na-alginate with F-127 and poly(vinyl alcohol) were developed to treat chronic wounds using the quality-by-design (QbD) approach. The optimized formulation was tested for various parameters, such as swelling, gel fraction, water vapor transition rate (WVTR), etc. In vitro evaluation indicated that a drug-loaded hydrogel displayed better tissue adhesiveness and can release drugs for a prolonged duration of 12 h. Scratch assay performed on L929 cell lines demonstrated good cell migration. The diabetic wound healing potential of the hydrogel membrane was assessed in streptozotocin-induced male Wistar rats (50 mg/kg). Higher rates of wound closure, re-epithelialization, and accumulation of collagen were seen in in vivo experiments. Histopathologic investigation correspondingly implied that the drug-loaded hydrogel could enhance dermal wound repair. The improved antimicrobial and antioxidant properties with expedited healing indicated that the drug-loaded hydrogel is a perfect dressing for chronic wounds.
Collapse
Affiliation(s)
- Neha Raina
- Department
of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi 110017, India
| | - Shafiul Haque
- Research
and Scientific Studies Unit, College of Nursing and Allied Health
Sciences, Jazan University, Jazan 45142, Saudi Arabia
- Gilbert
and Rose-Marie Chagoury School of Medicine, Lebanese American University, Beirut 11022801, Lebanon
- Centre
of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman 13306, United Arab
Emirates
| | - Hardeep Singh Tuli
- Department
of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering
College, Maharishi Markandeshwar (Deemed
to Be University), Mullana-Ambala 133207, India
| | - Atul Jain
- Department
of Pharmaceutics, Delhi Institute of Pharmaceutical Sciences and Research, Delhi Pharmaceutical Sciences and Research University
(DPSRU), New Delhi 110017, India
| | - Petr Slama
- Laboratory
of Animal Immunology and Biotechnology, Department of Animal Morphology,
Physiology and Genetics, Faculty of AgriSciences, Mendel University in Brno, 61300 Brno, Czech Republic
| | - Madhu Gupta
- Department
of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University (DPSRU), Pushp Vihar, New Delhi 110017, India
| |
Collapse
|
2
|
Amini N, Hivechi A, Asadpour S, Ebrahimzadeh K, Kargozar S, Gholipourmalekabadi M, Nasrolahi A, Ghasemian M, Shafaat A, Mozafari M, Brouki Milan P, Rezapour A. Fabrication and characterization of bilayer scaffolds made of decellularized dermis/nanofibrous collagen for healing of full-thickness wounds. Drug Deliv Transl Res 2023; 13:1766-1779. [PMID: 36701113 DOI: 10.1007/s13346-023-01292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/04/2023] [Indexed: 01/27/2023]
Abstract
Skin tissue engineering has progressed from simple wound dressings to biocompatible materials with desired physico-chemical properties that can deliver regenerative biomolecules. This study describes using a novel biomimetic hybrid scaffold of decellularized dermis/collagen fibers that can continuously deliver stromal cell-derived factor-1 alpha (SDF-1α) for skin regeneration. In diabetic rat models, the idea that sustained SDF-1α infusion could increase the recruitment of CXCR4-positive cells at the injury site and improve wound regeneration was investigated. The morphology of the scaffold, its biocompatibility, and the kinetics of SDF-1 release were all assessed. SDF-1α was successfully incorporated into collagen nanofibers, resulting in a 200-h continuous release profile. The microscopic observations exhibited that cells are attached and proliferated on proposed scaffolds. As evaluated by in vivo study and histological examination, fabricated scaffold with SDF-1α release capacity exhibited a remarkably more robust ability to accelerate wound regeneration than the control group. Besides, the SDF-1α-loaded scaffold demonstrated functional effects on the proliferation and recruitment of CD31 and CXCR4-positive cells in the wound bed. Additionally, no adverse effects such as hyperplasia or scarring were found during the treatment period. It may be concluded that the fabricated hybrid scaffold based on natural polymer opens up a new option for topical administration of bioactive molecules. We believe the SDF-1α-loaded hybrid scaffold has promise for skin tissue engineering.
Collapse
Affiliation(s)
- Naser Amini
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Hivechi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Textile Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Shiva Asadpour
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Kaveh Ebrahimzadeh
- Department of Neurosurgery, Loghman Hakim Hospital, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saeid Kargozar
- Tissue Engineering Research Group (TERG), Department of Anatomy and Cell Biology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mazaher Gholipourmalekabadi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
- Department of Medical Biotechnology, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahvan Nasrolahi
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran
| | - Melina Ghasemian
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Amir Shafaat
- Department of Mechanical Engineering, Arak University of Technology, Arak, Iran
| | - Masoud Mozafari
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, University of Toronto, Toronto, ON, Canada
| | - Peiman Brouki Milan
- Cellular and Molecular Research Centre, Iran University of Medical Sciences, Tehran, Iran.
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Alireza Rezapour
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, Iran.
- Department of Tissue Engineering and Regenerative Medicine, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
3
|
Einipour SK, Sadrjahani M, Rezapour A. Preparation and evaluation of antibacterial wound dressing based on vancomycin-loaded silk/dialdehyde starch nanoparticles. Drug Deliv Transl Res 2022; 12:2778-2792. [PMID: 35224685 DOI: 10.1007/s13346-022-01139-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/13/2022] [Indexed: 12/15/2022]
Abstract
One of the main reasons infected wounds go untreated is that antibiotic-resistant bacteria mainly cause infection. Vancomycin is an antibiotic used against Gram-positive bacteria, such as MRSA, but it has limited intravenous use due to its toxicity. This study describes using a local drug delivery approach at the wound site. The aim is to prepare a silk dressing containing dialdehyde starch nanoparticles loaded with vancomycin that can cure infection through the controlled release of antibiotics. First, the starch was oxidized by sodium periodate solution and converted to dialdehyde starch. Dialdehyde starch was converted into nanoparticles by the microemulsion method. Simultaneously, with nanoparticle formation, the antibiotic vancomycin (VAN), added to the solution, was loaded into the dialdehyde starch nanoparticles (DASNP). The wound dressing (SF/DASNP/VAN) was prepared by adding nanoparticles containing antibiotics to the silk fibroin (SF) solution, and then, the solution containing the nanoparticles was freeze-dried, and the nanoparticles were placed inside the silk matrix. Drug release of dressings was performed by immersion in phosphate-buffered saline, and cytotoxicity by MTT assay and antibacterial properties of dressings were investigated by the inhibition zone method. The morphology of the SF/DASNP/VAN dressing, its biocompatibility, antibacterial efficiency, and antibiotic release kinetics were assessed. The synthesized dressing has the desired biocompatibility with 69% cell viability and shows antibacterial properties against MRSA with a growth inhibition zone diameter of 12 mm. Also, VAN was successfully incorporated into the dressing, resulting in a 144-h continuous release profile. It may be concluded that the fabricated dressing based on silk and dialdehyde starch nanoparticles opens up a new option for topical administration of antibiotics. We believe its properties can be considered a new dressing for infectious wounds by reducing infection associated with controlled drug delivery.
Collapse
Affiliation(s)
- Sajjad Khan Einipour
- Cellular and Molecular Research Centre, School of Medicine, Qom University of Medical Sciences, Qom, Iran
| | - Mehdi Sadrjahani
- Faculty of Textile Engineering, Urmia University of Technology, Urmia, Iran
| | - Alireza Rezapour
- Cellular and Molecular Research Centre, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
- Department of Tissue Engineering and Regenerative Medicine, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
4
|
Amini N, Milan PB, Sarmadi VH, Derakhshanmehr B, Hivechi A, Khodaei F, Hamidi M, Ashraf S, Larijani G, Rezapour A. Microorganism-derived biological macromolecules for tissue engineering. Front Med 2022; 16:358-377. [PMID: 35687278 DOI: 10.1007/s11684-021-0903-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 09/23/2021] [Indexed: 11/04/2022]
Abstract
According to literature, certain microorganism productions mediate biological effects. However, their beneficial characteristics remain unclear. Nowadays, scientists concentrate on obtaining natural materials from live creatures as new sources to produce innovative smart biomaterials for increasing tissue reconstruction in tissue engineering and regenerative medicine. The present review aims to introduce microorganism-derived biological macromolecules, such as pullulan, alginate, dextran, curdlan, and hyaluronic acid, and their available sources for tissue engineering. Growing evidence indicates that these materials can be used as biological material in scaffolds to enhance regeneration in damaged tissues and contribute to cosmetic and dermatological applications. These natural-based materials are attractive in pharmaceutical, regenerative medicine, and biomedical applications. This study provides a detailed overview of natural-based biomaterials, their chemical and physical properties, and new directions for future research and therapeutic applications.
Collapse
Affiliation(s)
- Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran.,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Peiman Brouki Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran. .,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran. .,Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran.,Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Bahareh Derakhshanmehr
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ahmad Hivechi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, 1591639675, Iran.,Department of Pharmaceutics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Fateme Khodaei
- Burn Research Center, Department of Plastic and Reconstructive Surgery, Iran University of Medical Sciences, Tehran, 1591639675, Iran
| | - Masoud Hamidi
- Department of Medical Biotechnology, Faculty of Paramedicine, Guilan University of Medical Sciences, Rasht, 4477166595, Iran
| | - Sara Ashraf
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Ghazaleh Larijani
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, 1477893855, Iran
| | - Alireza Rezapour
- Cellular and Molecular Research Centre, Qom University of Medical Sciences, Qom, 3715835155, Iran. .,Department of Tissue Engineering and Regenerative Medicine, School of Medicine, Qom University of Medical Sciences, Qom, 3715835155, Iran.
| |
Collapse
|
5
|
Gharibi R, Shaker A, Rezapour-Lactoee A, Agarwal S. Antibacterial and Biocompatible Hydrogel Dressing Based on Gelatin- and Castor-Oil-Derived Biocidal Agent. ACS Biomater Sci Eng 2021; 7:3633-3647. [PMID: 34196519 DOI: 10.1021/acsbiomaterials.1c00706] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Favored antibacterial activity associated with excellent biocompatibility, mechanical durability, and exudate handling needs to be addressed by modern dressing to achieve the desired wound healing. This paper deals with developing a new green and facile approach to manufacturing nonleachable antibacterial gelatin-based films for wound dressing. Therefore, a reactive methoxy-silane-functionalized quaternary ammonium compound bearing a fatty amide residue originating from castor oil (Si-CAQ) was initially synthesized. The antibacterial dressings were then fabricated via sol-gel and condensation reactions of the mixture containing gelatin, Si-CAQ, (3-glycidyloxypropyl) trimethoxysilane, and poly(vinyl alcohol). By utilizing bioactive polymers as starting materials and eliminating organic solvents during the dressing preparation, desirable clinical safety could be ensured. The gelatin-based films presented appropriate mechanical properties, such as flexibility and strength, in both dried and hydrated states (tensile strength >6 MPa and elongation >100). It is due to the in situ generations of the inorganic silicon domain in the organic framework via the sol-gel cross-linking process. The prepared dressings exhibited desirable features, including excellent biocompatibility (cell viability >95%), proper wound-exudate-managing characteristics (equilibrium water contact (EWA) 280-350% and water vapor transmission rate (WVTR) 2040-2200 g/m2/day), fluid handling capacity (FHC) (3-3.35 g), as well as commendable hemocompatibility. The promising bactericidal activity of the dressing against Bacillus subtilis, methicillin-resistant Staphylococcus aureus, and Escherichia coli strains with a contact-killing efficacy of 100% could prevent infection development at the wounded area. As evaluated by the wound scratch assay, the desired fibroblast cell growth, migration, and proliferation indicated the capability of the dressing to facilitate the healing process by encouraging fibroblast cell migration to the damaged area. In vivo wound-healing results showed that the prepared biocidal dressing stimulates wound healing and enhances epithelialization, collagen maturation, and vascularization of wounds due to their antibacterial effects and accelerated cellular functions.
Collapse
Affiliation(s)
- Reza Gharibi
- Macromolecular Chemistry II, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.,Department of Organic Chemistry and Polymer, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran
| | - Ali Shaker
- Department of Organic Chemistry and Polymer, Faculty of Chemistry, Kharazmi University, 15719-14911 Tehran, Iran
| | - Alireza Rezapour-Lactoee
- Cellular and Molecular Research Center, Qom University of Medical Sciences, 3736175513 Qom, Iran
| | - Seema Agarwal
- Macromolecular Chemistry II, Bavarian Polymer Institute, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany
| |
Collapse
|