1
|
Sathyaraj WV, Pravin YR, Prabakaran L, Gokulnath A, Bhoopathy J, Rajendran S. Therapeutic potency of marine collagen/pectin scaffolds - Fabrication, characterization and evaluation. Eur J Pharmacol 2024; 984:177066. [PMID: 39427858 DOI: 10.1016/j.ejphar.2024.177066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 10/18/2024] [Accepted: 10/18/2024] [Indexed: 10/22/2024]
Abstract
Skin is an important vital organ that must be given proper care and protection from external damage and harmful microbes. If injured, it must be treated with an ideal wound dressing material with potent hemostatic and non-toxic properties. In the present study, fish collagen (FC) was extracted from the fins and tails of Black pomfret (Parastromateus niger). The isolated fish collagen was homogenized with pectin (P) and freeze dried to obtain fish collagen/pectin (FC/P) scaffolds. Scanning electron microscopic analysis showed the porous nature of scaffolds with intermittent holes. UV-Visible and Fourier infrared spectroscopic analyses demonstrated the physicochemical properties of FC/P scaffolds. Hemolytic assay performed using human blood demonstrated the percentage of hemolysis as 0.5 %. In vitro blood clotting assay carried out to determine the hemostatic behaviour displayed the formation of blood clot within 60 s in the presence of FC/P scaffolds. 95 % of cells were viable with the highest concentration of FC/P scaffold used for MTT (3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide) assay. Scratch wound assay demonstrated complete closure of wound in FC/P scaffold treated cells after 48 h of treatment. Chick embryo chorioallantoic membrane (CAM) assay showed the development of new blood vessels within 6 h of incubation with the FC/P scaffolds, thereby proving their angiogenic potency. These results indicate the potential use of FC/P scaffolds as effective biomaterials for tissue regenerative applications.
Collapse
Affiliation(s)
- Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603 103, Tamil Nadu, India.
| | - Yovan Raja Pravin
- Center for Global Health Research, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602105, Tamil Nadu, India
| | - Lokesh Prabakaran
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603 103, Tamil Nadu, India
| | - Anbalagan Gokulnath
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603 103, Tamil Nadu, India
| | - Jayavardhini Bhoopathy
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam, 603 103, Tamil Nadu, India
| | - Selvarajan Rajendran
- Centre for Nano Science and Technology, Alagappa College of Technology Campus, Anna University, Chennai 600 025, Tamil Nadu, India
| |
Collapse
|
2
|
Bhoopathy J, Vedakumari Sathyaraj W, Yesudhason BV, Rajendran S, Dharmalingam S, Seetharaman J, Muthu R, Murugesan R, Raghunandhakumar S, Anandasadagopan SK. Haemostatic potency of sodium alginate/aloe vera/sericin composite scaffolds - preparation, characterisation, and evaluation. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:35-45. [PMID: 38112317 DOI: 10.1080/21691401.2023.2293784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Fabrication of haemostatic materials with excellent antimicrobial, biocompatible and biodegradable properties remains as a major challenge in the field of medicine. Haemostatic agents play vital role in protecting patients and military individuals during emergency situations. Natural polymers serve as promising materials for fabricating haemostatic compounds due to their efficacy in promoting hemostasis and wound healing. In the present work, sodium alginate/aloe vera/sericin (SA/AV/S) scaffold has been fabricated using a simple cost-effective casting method. The prepared SA/AV/S scaffolds were characterised for their physicochemical properties such as scanning electron microscope, UV-visible spectroscopy and Fourier transform infra-red spectroscopy. SA/AV/S scaffold showed good mechanical strength, swelling behaviour and antibacterial activity. In vitro experiments using erythrocytes proved the hemocompatible and biocompatible features of SA/AV/S scaffold. In vitro blood clotting assay performed using human blood demonstrated the haemostatic and blood absorption properties of SA/AV/S scaffold. Scratch wound assay was performed to study the wound healing efficacy of prepared scaffolds. Chick embryo chorioallantoic membrane assay carried out using fertilised embryos proved the angiogenic property of SA/AV/S scaffold. Thus, SA/AV/S scaffold could serve as a potential haemostatic healthcare product due to its outstanding haemostatic, antimicrobial, hemocompatible, biocompatible and angiogenic properties.
Collapse
Affiliation(s)
- Jayavardhini Bhoopathy
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Weslen Vedakumari Sathyaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education, Kelambakkam 603103, Tamil Nadu, India
| | - Beryl Vedha Yesudhason
- Regeneration and Stem Cell Biology Lab, Centre for Molecular and Nanomedical Sciences, International Research Centre, Sathyabama Institute of Science and Technology, Chennai 600119, India
| | - Selvarajan Rajendran
- Centre for Nano Science and Technology, Alagappa College of Technology Campus, Anna University, Chennai 600025, Tamil Nadu, India
| | - Sankari Dharmalingam
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Jayashri Seetharaman
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Ranjitha Muthu
- Department of Research, Karpaga Vinayaga Institute of Medical Science and Research Centre, GST Road, Chinna Kolambakkam, Palayanoor (PO), Tamil Nadu 603308, Tamil Nadu
| | - Ramachandran Murugesan
- Department of Research, Karpaga Vinayaga Institute of Medical Science and Research Centre, GST Road, Chinna Kolambakkam, Palayanoor (PO), Tamil Nadu 603308, Tamil Nadu
| | | | | |
Collapse
|
3
|
Sharifianjazi F, Sharifianjazi M, Irandoost M, Tavamaishvili K, Mohabatkhah M, Montazerian M. Advances in Zinc-Containing Bioactive Glasses: A Comprehensive Review. J Funct Biomater 2024; 15:258. [PMID: 39330233 PMCID: PMC11433484 DOI: 10.3390/jfb15090258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/28/2024] Open
Abstract
Bioactive glasses (BGs) have attracted significant attention in the biomaterials field due to their ability to promote soft and hard tissue regeneration and their potential for various clinical applications. BGs offer enriched features through the integration of different therapeutic inorganic ions within their composition. These ions can trigger specific responses in the body conducive to a battery of applications. For example, zinc, a vital trace element, plays a role in numerous physiological processes within the human body. By incorporating zinc, BGs can inhibit bacterial growth, exert anti-inflammatory effects, and modify bioactivity, promoting better integration with surrounding tissues when used in scaffolds for tissue regeneration. This article reviews recent developments in zinc-containing BGs (ZBGs), focusing on their synthesis, physicochemical, and biological properties. ZBGs represent a significant advancement in applications extending beyond bone regeneration. Overall, their biological roles hold promise for various applications, such as bone tissue engineering, wound healing, and biomedical coatings. Ongoing research continues to explore the potential benefits of ZBGs and to optimize their properties for diverse clinical applications.
Collapse
Affiliation(s)
- Fariborz Sharifianjazi
- Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, Tbilisi 0171, Georgia
- Department of Civil Engineering, School of Science and Technology, The University of Georgia, Tbilisi 0171, Georgia
| | | | - Maryam Irandoost
- Department of Materials and Metallurgical Engineering, Amirkabir University of Technology, Tehran 15916-34311, Iran
| | - Ketevan Tavamaishvili
- School of Medicine, Georgian American University, 10 Merab Aleksidze Street, Tbilisi 0160, Georgia
| | - Mehdi Mohabatkhah
- Department of Engineering, Maku Branch, Islamic Azad University, Azerbaijan 58619-93548, Iran
| | - Maziar Montazerian
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
4
|
Kurowiak J, Klekiel T, Będziński R. Biodegradable Polymers in Biomedical Applications: A Review-Developments, Perspectives and Future Challenges. Int J Mol Sci 2023; 24:16952. [PMID: 38069272 PMCID: PMC10707259 DOI: 10.3390/ijms242316952] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/18/2023] Open
Abstract
Biodegradable polymers are materials that, thanks to their remarkable properties, are widely understood to be suitable for use in scientific fields such as tissue engineering and materials engineering. Due to the alarming increase in the number of diagnosed diseases and conditions, polymers are of great interest in biomedical applications especially. The use of biodegradable polymers in biomedicine is constantly expanding. The application of new techniques or the improvement of existing ones makes it possible to produce materials with desired properties, such as mechanical strength, controlled degradation time and rate and antibacterial and antimicrobial properties. In addition, these materials can take virtually unlimited shapes as a result of appropriate design. This is additionally desirable when it is necessary to develop new structures that support or restore the proper functioning of systems in the body.
Collapse
Affiliation(s)
| | | | - Romuald Będziński
- Department of Biomedical Engineering, Institute of Material and Biomedical Engineering, Faculty of Mechanical Engineering, University of Zielona Góra, Licealna 9 Street, 65-417 Zielona Gora, Poland; (J.K.); (T.K.)
| |
Collapse
|
5
|
Singh M, Shivalingam C, Blessy S, Sekaran S, Sasanka K, Ganapathy D. Zinc and Silver-Infused Calcium Silicate Cement: Unveiling Physicochemical Properties and In Vitro Biocompatibility. Cureus 2023; 15:e48243. [PMID: 38054157 PMCID: PMC10694478 DOI: 10.7759/cureus.48243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/02/2023] [Indexed: 12/07/2023] Open
Abstract
INTRODUCTION Calcium silicate-based types of cement have gained recognition in various dental applications due to their exceptional sealing capabilities, bioactivity, and minimal adaptability. However, these materials have certain shortcomings that can lead to mechanical failures and premature degradation. The inclusion of metal ions into their structure is expected to promote their biological activity. This article focuses on the preparation and characterization of calcium silicate cement to enhance its fundamental material properties, by introducing zinc and silver while retaining its biomaterial characteristics. AIM This study aims to evaluate the biomedical potential of zinc and silver-impregnated bioactive calcium silicate cement. MATERIALS AND METHODS The calcium silicate powder was synthesized via the sol-gel method. Tetraethyl orthosilicate, calcium nitrate, silver nitrate, and zinc nitrate were sequentially added to create the bioactive calcium silicate material. The synthesized particles underwent physicochemical characterization using techniques such as scanning electron microscopy, X-ray diffraction, Raman spectroscopy, and biological characterization through in vitro hemocompatibility assays. RESULTS The study's results revealed the presence of multiple crystalline phases (Ag6Si2O7, Zn2SiO4, CaCO3) as indicated by X-ray diffraction. Raman spectra displayed vibrations associated with Si-O-Si and Zn-O bonding in the zinc and silver-infused bioactive calcium silicate. Scanning electron microscopy confirmed a mixture of spherical and sheet-like morphologies, while energy dispersive spectra confirmed the presence of elements Ca, Si, Zn, Ag, O, and C. In vitro hemocompatibility testing affirmed the material's biocompatible nature. CONCLUSION In conclusion, the zinc and silver-infused calcium silicate cement was successfully synthesized through an in-house procedure and demonstrated biocompatibility. The inclusion of zinc and silver, known for their osteogenic and antimicrobial properties, is anticipated to enhance the cement's biological properties and broaden its utility in dentistry. Further in vitro and in vivo investigations are imperative to validate its clinical applications and elucidate the molecular mechanisms underlying its efficacy.
Collapse
Affiliation(s)
- Meghan Singh
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Chitra Shivalingam
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Sheron Blessy
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Saravanan Sekaran
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Keerthi Sasanka
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| | - Dhanraj Ganapathy
- Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, IND
| |
Collapse
|
6
|
Elahpour N, Niesner I, Bossard C, Abdellaoui N, Montouillout V, Fayon F, Taviot-Guého C, Frankenbach T, Crispin A, Khosravani P, Holzapfel BM, Jallot E, Mayer-Wagner S, Lao J. Zinc-Doped Bioactive Glass/Polycaprolactone Hybrid Scaffolds Manufactured by Direct and Indirect 3D Printing Methods for Bone Regeneration. Cells 2023; 12:1759. [PMID: 37443794 PMCID: PMC10341101 DOI: 10.3390/cells12131759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A novel organic-inorganic hybrid, based on SiO2-CaO-ZnO bioactive glass (BG) and polycaprolactone (PCL), associating the highly bioactive and versatile bioactive glass with clinically established PCL was examined. The BG-PCL hybrid is obtained by acid-catalyzed silica sol-gel process inside PCL solution either by direct or indirect printing. Apatite-formation tests in simulated body fluid (SBF) confirm the ion release along with the hybrid's bone-like apatite forming. Kinetics differ significantly between directly and indirectly printed scaffolds, the former requiring longer periods to degrade, while the latter demonstrates faster calcium phosphate (CaP) formation. Remarkably, Zn diffusion and accumulation are observed at the surface within the newly formed active CaP layer. Zn release is found to be dependent on printing method and immersion medium. Investigation of BG at the atomic scale reveals the ambivalent role of Zn, capable of acting both as a network modifier and as a network former linking the BG silicate network. In addition, hMSCs viability assay proves no cytotoxicity of the Zn hybrid. LIVE/DEAD staining demonstrated excellent cell viability and proliferation for over seven weeks. Overall, this hybrid material either non-doped or doped with a metal trace element is a promising candidate to be translated to clinical applications for bone regeneration.
Collapse
Affiliation(s)
- Nafise Elahpour
- Laboratoire de Physique de Clermont (LPC), Université Clermont Auvergne, CNRS/IN2P3, F-63000 Clermont-Ferrand, France; (N.E.)
| | - Isabella Niesner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Cédric Bossard
- Laboratoire de Physique de Clermont (LPC), Université Clermont Auvergne, CNRS/IN2P3, F-63000 Clermont-Ferrand, France; (N.E.)
| | - Nora Abdellaoui
- Laboratoire de Physique de Clermont (LPC), Université Clermont Auvergne, CNRS/IN2P3, F-63000 Clermont-Ferrand, France; (N.E.)
| | - Valérie Montouillout
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), CNRS-UPR3079, Université Orléans, F-45071 Orléans, France
| | - Franck Fayon
- Conditions Extrêmes et Matériaux: Haute Température et Irradiation (CEMHTI), CNRS-UPR3079, Université Orléans, F-45071 Orléans, France
| | - Christine Taviot-Guého
- Institut de Chimie de Clermont-Ferrand, Université Clermont Auvergne, CNRS/UMR 6296, F-63000 Clermont-Ferrand, France
| | - Tina Frankenbach
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Alexander Crispin
- Institute for Medical Information Processing, Biometry, and Epidemiology (IBE), Ludwig-Maximilians-Universität München, 81377 Munich, Germany
| | - Pardis Khosravani
- Flow Cytometry Core Facility, Biomedical Center, Ludwig-Maximilians-Universität München, 82152 Planegg, Germany
| | - Boris Michael Holzapfel
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Edouard Jallot
- Laboratoire de Physique de Clermont (LPC), Université Clermont Auvergne, CNRS/IN2P3, F-63000 Clermont-Ferrand, France; (N.E.)
| | - Susanne Mayer-Wagner
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Center Munich (MUM), LMU University Hospital, LMU Munich, 80336 Munich, Germany
| | - Jonathan Lao
- Laboratoire de Physique de Clermont (LPC), Université Clermont Auvergne, CNRS/IN2P3, F-63000 Clermont-Ferrand, France; (N.E.)
| |
Collapse
|
7
|
Amaral SS, Lima BSDS, Avelino SOM, Spirandeli BR, Campos TMB, Thim GP, Trichês EDS, Prado RFD, Vasconcellos LMRD. β-TCP/S53P4 Scaffolds Obtained by Gel Casting: Synthesis, Properties, and Biomedical Applications. Bioengineering (Basel) 2023; 10:bioengineering10050597. [PMID: 37237667 DOI: 10.3390/bioengineering10050597] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/05/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
The objective of this study was to investigate the osteogenic and antimicrobial effect of bioactive glass S53P4 incorporated into β-tricalcium phosphate (β-TCP) scaffolds in vitro and the bone neoformation in vivo. β-TCP and β-TCP/S53P4 scaffolds were prepared by the gel casting method. Samples were morphologically and physically characterized through X-ray diffraction (XRD) and scanning electron microscope (SEM). In vitro tests were performed using MG63 cells. American Type Culture Collection reference strains were used to determine the scaffold's antimicrobial potential. Defects were created in the tibia of New Zealand rabbits and filled with experimental scaffolds. The incorporation of S53P4 bioglass promotes significant changes in the crystalline phases formed and in the morphology of the surface of the scaffolds. The β-TCP/S53P4 scaffolds did not demonstrate an in vitro cytotoxic effect, presented similar alkaline phosphatase activity, and induced a significantly higher protein amount when compared to β-TCP. The expression of Itg β1 in the β-TCP scaffold was higher than in the β-TCP/S53P4, and there was higher expression of Col-1 in the β-TCP/S53P4 group. Higher bone formation and antimicrobial activity were observed in the β-TCP/S53P4 group. The results confirm the osteogenic capacity of β-TCP ceramics and suggest that, after bioactive glass S53P4 incorporation, it can prevent microbial infections, demonstrating to be an excellent biomaterial for application in bone tissue engineering.
Collapse
Affiliation(s)
- Suelen Simões Amaral
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Beatriz Samara de Sousa Lima
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Sarah Oliveira Marco Avelino
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Bruno Roberto Spirandeli
- Bioceramics Laboratory, Federal University of São Paulo (UNIFESP), 330 Talim St, São José dos Campos 12231-280, SP, Brazil
| | - Tiago Moreira Bastos Campos
- Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), 50 Mal. Eduardo Gomes Plaza, São José dos Campos 12228-900, SP, Brazil
| | - Gilmar Patrocínio Thim
- Division of Fundamental Sciences, Technological Institute of Aeronautics (ITA), 50 Mal. Eduardo Gomes Plaza, São José dos Campos 12228-900, SP, Brazil
| | - Eliandra de Sousa Trichês
- Bioceramics Laboratory, Federal University of São Paulo (UNIFESP), 330 Talim St, São José dos Campos 12231-280, SP, Brazil
| | - Renata Falchete do Prado
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| | - Luana Marotta Reis de Vasconcellos
- Institute of Science and Technology, São Paulo State University (UNESP), 777 Eng. Francisco José Longo Avenue, São José dos Campos 12245-000, SP, Brazil
| |
Collapse
|
8
|
Ali A, Paladhi A, Hira SK, Singh BN, Pyare R. Bioactive ZnO-assisted 1393 glass scaffold promotes osteogenic differentiation: Some studies. J Biomed Mater Res B Appl Biomater 2023; 111:1059-1073. [PMID: 36583285 DOI: 10.1002/jbm.b.35214] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/31/2022]
Abstract
We developed ZnO-assisted 1393 bioactive glass-based scaffold with suitable mechanical properties through foam replica technique and observed to be suitable for bone tissue engineering application. However, the developed scaffolds' ability to facilitate cellular infiltration and integration was further assessed through in vivo studies in suitable animal model. Herein, the pure 1393 bioactive glass (BG) and ZnO-assisted 1393 bioactive glass- (ZnBGs; 1, 2, 4 mol% ZnO substitution for SiO2 in pure BG is named as Z1BG, Z2BG, Z3BG, respectively) based scaffolds were prepared through sol-gel route, followed by foam replica techniques and characterized by a series of in vitro and some in vivo tests. Different cell lines like normal mouse embryonic cells (NIH/3T3), mouse bone marrow stromal cells (mBMSc), peripheral blood mononuclear cells, that is, lymphocytes and monocytes (PBMC) and U2OS (carcinogenic human osteosarcoma cells) were used in determination and comparative analysis of the biological compatibility of the BG and ZnBGs. Also, the alkaline phosphatase (ALP) activity, and osteogenic gene expression by primer-specific osteopontin (OPN), osteocalcin (OCN), and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) genes were performed to study osteogenic differentiability of the stromal cells in different BGs. Moreover, radiological and histopathological tests were performed in bone defect model of Wister rats to evaluate the in vivo bone regeneration and healing. Interestingly, these studies demonstrate augmented biological compatibility, and superior osteogenic differentiation in ZnBGs, in particular Z3BG than the pure BG in most cases.
Collapse
Affiliation(s)
- Akher Ali
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| | - Ankush Paladhi
- Cellular Immunology Laboratory, Department of Zoology, University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Sumit Kumar Hira
- Cellular Immunology Laboratory, Department of Zoology, University of Burdwan, Purba Bardhaman, West Bengal, India
| | - Bhisham Narayan Singh
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Udupi, Karnataka, India
| | - Ram Pyare
- Department of Ceramic Engineering, Indian Institute of Technology (BHU), Varanasi, Uttar Pradesh, India
| |
Collapse
|
9
|
Hu J, Atsuta I, Luo Y, Wang X, Jiang Q. Promotional Effect and Molecular Mechanism of Synthesized Zinc Oxide Nanocrystal on Zirconia Abutment Surface for Soft Tissue Sealing. J Dent Res 2023; 102:505-513. [PMID: 36883651 DOI: 10.1177/00220345221150161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Studies have confirmed that tooth loss is closely related to systemic diseases, such as obesity, diabetes, cardiovascular diseases, some types of tumors, and Alzheimer's disease. Among many methods for tooth restoration, implant restoration is the most commonly used method. After implantation, long-term stability of implants requires not only good bone bonding but also good soft tissue sealing between implants and surrounding soft tissues. The zirconia abutment is used in clinical implant restoration treatment, but due to the strong biological inertia of zirconia, it is difficult to form stable chemical or biological bonds with surrounding tissues. In this study, we investigated synthesized zinc oxide (ZnO) nanocrystal on the zirconia abutment surface by the hydrothermal method to make it more beneficial for soft tissue early sealing and the molecular mechanism. In vitro experiments found that different hydrothermal treatment temperatures affect the formation of ZnO crystals. The crystal diameter of ZnO changes from micron to nanometer at different temperatures, and the crystal morphology also changes. In vitro, scanning electron microscopy, energy dispersive spectrometry, and real-time polymerase chain reaction results show that ZnO nanocrystal can promote the attachment and proliferation of oral epithelial cells on the surface of zirconia by promoting the binding of laminin 332 and integrin β4, regulating the PI3K/AKT pathway. In vivo, ZnO nanocrystal ultimately promotes the formation of soft tissue seals. Collectively, ZnO nanocrystal can be synthesized on a zirconia surface by hydrothermal treatment. It can help to form a seal between the implant abutment and surrounding soft tissue. This method is beneficial to the long-term stability of the implant and also can be applied to other medical fields.
Collapse
Affiliation(s)
- J Hu
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - I Atsuta
- Division of Advanced Dental Devices and Therapeutics, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | - Y Luo
- Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - X Wang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Q Jiang
- Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
10
|
Antibiofilm Activity of Biocide Metal Ions Containing Bioactive Glasses (BGs): A Mini Review. Bioengineering (Basel) 2022; 9:bioengineering9100489. [PMID: 36290457 PMCID: PMC9598244 DOI: 10.3390/bioengineering9100489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 11/16/2022] Open
Abstract
One of the major clinical issues during the implantation procedure is the bacterial infections linked to biofilms. Due to their tissue localization and the type of bacteria involved, bacterial infections at implant sites are usually difficult to treat, which increases patient morbidity and even mortality. The difficulty of treating biofilm-associated infections and the emergence of multidrug-resistant bacteria are further challenges for the scientific community to develop novel biomaterials with excellent biocompatibility and antibacterial properties. Given their ability to stimulate bone formation and have antibacterial properties, metal ion-doped bioactive glasses (BGs) have received considerable research. This mini review aims to be successful in presenting the developments made about the role of biocide metal ions incorporated into BGs against the development of bacterial biofilms and the spread of nosocomial diseases.
Collapse
|
11
|
Chen Z, Zhang W, Wang M, Backman LJ, Chen J. Effects of Zinc, Magnesium, and Iron Ions on Bone Tissue Engineering. ACS Biomater Sci Eng 2022; 8:2321-2335. [PMID: 35638755 DOI: 10.1021/acsbiomaterials.2c00368] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Large-sized bone defects are a great challenge in clinics and considerably impair the quality of patients' daily life. Tissue engineering strategies using cells, scaffolds, and bioactive molecules to regulate the microenvironment in bone regeneration is a promising approach. Zinc, magnesium, and iron ions are natural elements in bone tissue and participate in many physiological processes of bone metabolism and therefore have great potential for bone tissue engineering and regeneration. In this review, we performed a systematic analysis on the effects of zinc, magnesium, and iron ions in bone tissue engineering. We focus on the role of these ions in properties of scaffolds (mechanical strength, degradation, osteogenesis, antibacterial properties, etc.). We hope that our summary of the current research achievements and our notifications of potential strategies to improve the effects of zinc, magnesium, and iron ions in scaffolds for bone repair and regeneration will find new inspiration and breakthroughs to inspire future research.
Collapse
Affiliation(s)
- Zhixuan Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| | - Mingyue Wang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China
| | - Ludvig J Backman
- Department of Integrative Medical Biology, Anatomy, Umeå University, SE-901 87 Umeå, Sweden.,Department of Community Medicine and Rehabilitation, Physiotherapy, Umeå University, SE-901 87 Umeå, Sweden
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Center for Stem Cell and Regenerative Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou 310058, China
| |
Collapse
|
12
|
Silva SK, Plepis AMG, Martins VDCA, Horn MM, Buchaim DV, Buchaim RL, Pelegrine AA, Silva VR, Kudo MHM, Fernandes JFR, Nazari FM, da Cunha MR. Suitability of Chitosan Scaffolds with Carbon Nanotubes for Bone Defects Treated with Photobiomodulation. Int J Mol Sci 2022; 23:6503. [PMID: 35742948 PMCID: PMC9223695 DOI: 10.3390/ijms23126503] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 12/11/2022] Open
Abstract
Biomaterials have been investigated as an alternative for the treatment of bone defects, such as chitosan/carbon nanotubes scaffolds, which allow cell proliferation. However, bone regeneration can be accelerated by electrotherapeutic resources that act on bone metabolism, such as low-level laser therapy (LLLT). Thus, this study evaluated the regeneration of bone lesions grafted with chitosan/carbon nanotubes scaffolds and associated with LLLT. For this, a defect (3 mm) was created in the femur of thirty rats, which were divided into 6 groups: Control (G1/Control), LLLT (G2/Laser), Chitosan/Carbon Nanotubes (G3/C+CNTs), Chitosan/Carbon Nanotubes with LLLT (G4/C+CNTs+L), Mineralized Chitosan/Carbon Nanotubes (G5/C+CNTsM) and Mineralized Chitosan/Carbon Nanotubes with LLLT (G6/C+CNTsM+L). After 5 weeks, the biocompatibility of the chitosan/carbon nanotubes scaffolds was observed, with the absence of inflammatory infiltrates and fibrotic tissue. Bone neoformation was denser, thicker and voluminous in G6/C+CNTsM+L. Histomorphometric analyses showed that the relative percentage and standard deviations (mean ± SD) of new bone formation in groups G1 to G6 were 59.93 ± 3.04a (G1/Control), 70.83 ± 1.21b (G2/Laser), 70.09 ± 4.31b (G3/C+CNTs), 81.6 ± 5.74c (G4/C+CNTs+L), 81.4 ± 4.57c (G5/C+CNTsM) and 91.3 ± 4.81d (G6/C+CNTsM+L), respectively, with G6 showing a significant difference in relation to the other groups (a ≠ b ≠ c ≠ d; p < 0.05). Immunohistochemistry also revealed good expression of osteocalcin (OC), osteopontin (OP) and vascular endothelial growth factor (VEGF). It was concluded that chitosan-based carbon nanotube materials combined with LLLT effectively stimulated the bone healing process.
Collapse
Affiliation(s)
- Samantha Ketelyn Silva
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Ana Maria Guzzi Plepis
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), Sao Carlos 13566-590, Brazil;
- Sao Carlos Institute of Chemistry, University of Sao Paulo (USP), Sao Carlos 13566-590, Brazil;
| | | | - Marilia Marta Horn
- Physical Chemistry of Nanomaterials, Institute of Chemistry and Center for Interdisciplinary and Nanostructure Science and Technology (CINSaT), University of Kassel, 34109 Kassel, Germany;
| | - Daniela Vieira Buchaim
- Postgraduate Program in Structural and Functional Interactions in Rehabilitation, Postgraduate Department, University of Marilia (UNIMAR), Marília 17525-902, Brazil;
- Teaching and Research Coordination of the Medical School, University Center of Adamantina (UniFAI), Adamantina 17800-000, Brazil
| | - Rogerio Leone Buchaim
- Department of Biological Sciences, Bauru School of Dentistry (FOB/USP), University of Sao Paulo, Bauru 17012-901, Brazil;
- Graduate Program in Anatomy of Domestic and Wild Animals, Faculty of Veterinary Medicine and Animal Science, University of Sao Paulo, Sao Paulo 05508-270, Brazil
| | | | - Vinícius Rodrigues Silva
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Mateus Hissashi Matsumoto Kudo
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - José Francisco Rebello Fernandes
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Fabricio Montenegro Nazari
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
| | - Marcelo Rodrigues da Cunha
- Department of Morphology and Pathology, Jundiaí Medical School, Jundiaí 13202-550, Brazil; (S.K.S.); (V.R.S.); (M.H.M.K.); (J.F.R.F.); (F.M.N.)
- Interunits Graduate Program in Bioengineering (EESC/FMRP/IQSC), University of Sao Paulo (USP), Sao Carlos 13566-590, Brazil;
| |
Collapse
|
13
|
Ghelich P, Kazemzadeh-Narbat M, Najafabadi AH, Samandari M, Memic A, Tamayol A. (Bio)manufactured Solutions for Treatment of Bone Defects with Emphasis on US-FDA Regulatory Science Perspective. ADVANCED NANOBIOMED RESEARCH 2022; 2:2100073. [PMID: 35935166 PMCID: PMC9355310 DOI: 10.1002/anbr.202100073] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Bone defects, with second highest demand for surgeries around the globe, may lead to serious health issues and negatively influence patient lives. The advances in biomedical engineering and sciences have led to the development of several creative solutions for bone defect treatment. This review provides a brief summary of bone graft materials, an organized overview of top-down and bottom-up (bio)manufacturing approaches, plus a critical comparison between advantages and limitations of each method. We specifically discuss additive manufacturing techniques and their operation mechanisms in detail. Next, we review the hybrid methods and promising future directions for bone grafting, while giving a comprehensive US-FDA regulatory science perspective, biocompatibility concepts and assessments, and clinical considerations to translate a technology from a research laboratory to the market. The topics covered in this review could potentially fuel future research efforts in bone tissue engineering, and perhaps could also provide novel insights for other tissue engineering applications.
Collapse
Affiliation(s)
- Pejman Ghelich
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA
| | | | | | - Mohamadmahdi Samandari
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA
| | - Adnan Memic
- Center of Nanotechnology, King Abdulaziz University, Jeddah, 21589 Saudi Arabia
| | - Ali Tamayol
- Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut, 06030, USA
| |
Collapse
|
14
|
Burdușel AC, Gherasim O, Andronescu E, Grumezescu AM, Ficai A. Inorganic Nanoparticles in Bone Healing Applications. Pharmaceutics 2022; 14:770. [PMID: 35456604 PMCID: PMC9027776 DOI: 10.3390/pharmaceutics14040770] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Modern biomedicine aims to develop integrated solutions that use medical, biotechnological, materials science, and engineering concepts to create functional alternatives for the specific, selective, and accurate management of medical conditions. In the particular case of tissue engineering, designing a model that simulates all tissue qualities and fulfills all tissue requirements is a continuous challenge in the field of bone regeneration. The therapeutic protocols used for bone healing applications are limited by the hierarchical nature and extensive vascularization of osseous tissue, especially in large bone lesions. In this regard, nanotechnology paves the way for a new era in bone treatment, repair and regeneration, by enabling the fabrication of complex nanostructures that are similar to those found in the natural bone and which exhibit multifunctional bioactivity. This review aims to lay out the tremendous outcomes of using inorganic nanoparticles in bone healing applications, including bone repair and regeneration, and modern therapeutic strategies for bone-related pathologies.
Collapse
Affiliation(s)
- Alexandra-Cristina Burdușel
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
| | - Oana Gherasim
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Lasers Department, National Institute for Lasers, Plasma and Radiation Physics, 409 Atomiștilor Street, 077125 Magurele, Romania
| | - Ecaterina Andronescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| | - Alexandru Mihai Grumezescu
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
- Research Institute of the University of Bucharest—ICUB, University of Bucharest, 90–92 Panduri Road, 050657 Bucharest, Romania
| | - Anton Ficai
- Department of Science and Engineering of Oxide Materials and Nanomaterials, Faculty of Applied Chemistry and Materials Science, University Politehnica of Bucharest, 1–7 Gheorghe Polizu Street, 011061 Bucharest, Romania; (A.-C.B.); (O.G.); (A.M.G.); (A.F.)
- Academy of Romanian Scientists, 3 Ilfov Street, 050044 Bucharest, Romania
| |
Collapse
|
15
|
Salesa B, Sabater i Serra R, Serrano-Aroca Á. Zinc Chloride: Time-Dependent Cytotoxicity, Proliferation and Promotion of Glycoprotein Synthesis and Antioxidant Gene Expression in Human Keratinocytes. BIOLOGY 2021; 10:1072. [PMID: 34827065 PMCID: PMC8615178 DOI: 10.3390/biology10111072] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 11/20/2022]
Abstract
The use of ionic metals such as zinc (Zn2+) is providing promising results in regenerative medicine. In this study, human keratinocytes (HaCaT cells) were treated with different concentrations of zinc chloride (ZnCl2), ranging from 1 to 800 µg/mL, for 3, 12 and 24 h. The results showed a time-concentration dependence with three non-cytotoxic concentrations (10, 5 and 1 µg/mL) and a median effective concentration value of 13.5 µg/mL at a cell exposure to ZnCl2 of 24 h. However, the zinc treatment with 5 or 1 µg/mL had no effect on cell proliferation in HaCaT cells in relation to the control sample at 72 h. The effects of the Zn2+ treatment on the expression of several genes related to glycoprotein synthesis, oxidative stress, proliferation and differentiation were assessed at the two lowest non-cytotoxic concentrations after 24 h of treatment. Out of 13 analyzed genes (superoxide dismutase 1 (SOD1), catalase (CAT), matrix metallopeptidase 1 (MMP1), transforming growth factor beta 1 (TGFB1), glutathione peroxidase 1 (GPX1), fibronectin 1 (FN1), hyaluronan synthase 2 (HAS2), laminin subunit beta 1 (LAMB1), lumican (LUM), cadherin 1 (CDH1), collagen type IV alpha (COL4A1), fibrillin (FBN) and versican (VCAN)), Zn2+ was able to upregulate SOD1, CAT, TGFB1, GPX1, LUM, CDH1, FBN and VCAN, with relative expression levels of at least 1.9-fold with respect to controls. We found that ZnCl2 promoted glycoprotein synthesis and antioxidant gene expression, thus confirming its great potential in biomedicine.
Collapse
Affiliation(s)
- Beatriz Salesa
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46022 València, Spain;
| | - Roser Sabater i Serra
- Centre for Biomaterials and Tissue Engineering, Universitat Politècnica de València, 46022 València, Spain
- Biomedical Research Networking Center, Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 46022 Valencia, Spain
| | - Ángel Serrano-Aroca
- Biomaterials and Bioengineering Lab, Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia San Vicente Mártir, 46022 València, Spain;
| |
Collapse
|