1
|
Sun H, Luo W, Huang X. Recent Advances in the Preparation of Protein/peptide Microspheres by Solvent Evaporation Method. Curr Pharm Biotechnol 2024; 25:1807-1817. [PMID: 38178679 DOI: 10.2174/0113892010261032231214115415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 08/25/2023] [Accepted: 09/19/2023] [Indexed: 01/06/2024]
Abstract
Protein/peptide drugs are extensively used to treat various chronic and serious diseases. The short half-life in vivo of protein and peptide as therapeutics drug limit the realization of complete effects. Encapsulating drugs in microspheres can slow the speed of drug release and prolong the efficacy of drugs. The solvent evaporation method is widely used to prepare protein/ peptide microspheres because of its facile operation and minimal equipment requirements. This method has several challenges in the lower encapsulation efficiency, fluctuant release profiles and the stabilization of protein/peptides, which researchers believe may be solved by adjusting the preparation parameter or formulation of microspheres. The article discusses the formulation parameters that govern the preparation of protein/peptide-loaded microspheres by the solvent evaporation method, which provides an overview of the current promising strategies for solvent evaporation for protein/peptide microspheres. The article takes parameter evaluation as the framework, facilitating subsequent researchers to quickly find possible solutions when encountering problems.
Collapse
Affiliation(s)
- Huayan Sun
- Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, 100853, China
| | - Weiwei Luo
- Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, 100853, China
| | - Xiaowu Huang
- Department of Pharmacy, Medical Supplies Center, PLA General Hospital, Beijing, 100853, China
| |
Collapse
|
2
|
Aycan D, Gül İ, Yorulmaz V, Alemdar N. Gelatin microsphere-alginate hydrogel combined system for sustained and gastric targeted delivery of 5-fluorouracil. Int J Biol Macromol 2024; 255:128022. [PMID: 37972837 DOI: 10.1016/j.ijbiomac.2023.128022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/03/2023] [Accepted: 11/09/2023] [Indexed: 11/19/2023]
Abstract
In the current study, novel gelatin microspheres/methacrylated alginate hydrogel combined system (5-FU-GELms/Alg-MA) was developed for gastric targeted delivery of 5-fluorouracil as an anticancer agent. While water-in-oil emulsification method was used for the production of 5-FU-GELms, Alg-MA was synthesized through methacrylation reaction occurred by epoxide ring-opening mechanism. Then, 5-FU-GELms/Alg-MA hydrogel system was fabricated by the encapsulation of 5-FU-GELms into Alg-MA hydrogel network via UV-crosslinking. To evaluate applicability of fabricated 5-FU-GELms/Alg-MA as gastric targeted drug delivery vehicle, both swelling and in vitro drug release experiments were carried out at pH 1.2 medium resembling gastric fluid. Compared to drug release directly from 5-FU-GELms, 5-FU-GELms/Alg-MA hydrogel system showed more controlled and sustained drug release profile with lower amount of cumulative release starting from early stages, since hydrogel matrix created a barrier to the diffusion of 5-FU included in microspheres. Drug release kinetic results obtained by applying various kinetic models to release data showed that the mechanism of 5-FU release from 5-FU-GELms/Alg-MA hydrogel system is controlled by Fickian diffusion. All results revealed that 5-FU-GELms/Alg-MA hydrogel integrated system could be potentially utilized as gastric targeted drug carrier to enhance therapeutic efficacy and reduce systemic side effects in gastric cancer treatments for future studies.
Collapse
Affiliation(s)
- Didem Aycan
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey
| | - İnanç Gül
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey
| | - Valeria Yorulmaz
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey
| | - Neslihan Alemdar
- Marmara University, Department of Chemical Engineering, Istanbul, Turkey.
| |
Collapse
|
3
|
Shu M, Zhou Y, Liu Y, Fan L, Li J. Sucrose Esters and Beeswax Synergize to Improve the Stability and Viscoelasticity of Water-in-Oil Emulsions. Foods 2023; 12:3387. [PMID: 37761096 PMCID: PMC10529963 DOI: 10.3390/foods12183387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/07/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
W/O emulsions are commonly used to prepare stable low-fat products, but their poor stability limits widespread applications. In this study, sucrose ester (SE) and beeswax were utilized to prepare an oil dispersion system in rapeseed oil, which was used as the external oil phase to further synergistically construct the W/O emulsion systems. The results show that spherical and fine crystals are formed under the synergistic effect of SE and BW (1.5 SE:0.5 BW). In this state, a dense interfacial crystal layer was easily formed, preventing droplet aggregation, leading to droplet size reduction (1-2 μm) and tight packing, improving viscoelasticity and resistance to deformation, and increasing the recovery rate (52.26%). The long-term stability of W/O emulsions containing up to 60 wt% water was found to be more than 30 days. The increase in the aqueous phase led to droplet aggregation, which increased the viscosity (from 400 Pa·s to 2500 Pa·s), improved the structural strength of the emulsion, and increased the width of the linear viscoelastic region (from 1% strain to 5% strain). These findings provide some technical support for the further development of stable low-fat products.
Collapse
Affiliation(s)
| | | | | | - Liuping Fan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.S.); (Y.Z.); (Y.L.)
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (M.S.); (Y.Z.); (Y.L.)
| |
Collapse
|
4
|
Milano F, Masi A, Madaghiele M, Sannino A, Salvatore L, Gallo N. Current Trends in Gelatin-Based Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15051499. [PMID: 37242741 DOI: 10.3390/pharmaceutics15051499] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Gelatin is a highly versatile natural polymer, which is widely used in healthcare-related sectors due to its advantageous properties, such as biocompatibility, biodegradability, low-cost, and the availability of exposed chemical groups. In the biomedical field, gelatin is used also as a biomaterial for the development of drug delivery systems (DDSs) due to its applicability to several synthesis techniques. In this review, after a brief overview of its chemical and physical properties, the focus is placed on the commonly used techniques for the development of gelatin-based micro- or nano-sized DDSs. We highlight the potential of gelatin as a carrier of many types of bioactive compounds and its ability to tune and control select drugs' release kinetics. The desolvation, nanoprecipitation, coacervation, emulsion, electrospray, and spray drying techniques are described from a methodological and mechanistic point of view, with a careful analysis of the effects of the main variable parameters on the DDSs' properties. Lastly, the outcomes of preclinical and clinical studies involving gelatin-based DDSs are thoroughly discussed.
Collapse
Affiliation(s)
- Francesca Milano
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Annalia Masi
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Marta Madaghiele
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Alessandro Sannino
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| | - Luca Salvatore
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
- Typeone Biomaterials Srl, Via Europa 113, 73021 Calimera, Italy
| | - Nunzia Gallo
- Department of Engineering for Innovation, University of Salento, Via Monteroni, 73100 Lecce, Italy
| |
Collapse
|
5
|
Bhattacharyya SK, Nandi S, Dey T, Ray SK, Mandal M, Das NC, Banerjee S. Fabrication of a Vitamin B12-Loaded Carbon Dot/Mixed-Ligand Metal Organic Framework Encapsulated within the Gelatin Microsphere for pH Sensing and In Vitro Wound Healing Assessment. ACS APPLIED BIO MATERIALS 2022; 5:5693-5705. [PMID: 36475584 DOI: 10.1021/acsabm.2c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacterial invasion is a serious concern during the wound healing process. The colonization of bacteria is mainly responsible for the pH fluctuation at the wound site. Therefore, the fabrication of a proper wound dressing material with antibacterial activity and pH monitoring ability is necessary to acquire a fast healing process. Therefore, this work is dedicated to designing a vitamin B12-loaded gelatin microsphere (MS) decorated with a carbon dot (CD) metal-organic framework (MOF) for simultaneous pH sensing and advanced wound closure application. The resultant MS portrayed a high specific surface area and a hierarchically porous structure. Furthermore, the surface of the resultant MS contained numerous carboxyl groups and amine groups whose deprotonation and protonation with the pH alternation are accountable for the pH-sensitive properties. The vitamin B12 release study was speedy from the MOF structure in an acidic medium, which was checked by gelatin coating, and a controlled drug release behavior was observed. The system showed excellent cytocompatibility toward the L929 cell line and remarkable antibacterial performance against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. Furthermore, the combined effect of Zn2+, the imidazole unit, and CDs produces an outstanding bactericidal effect on the injury sites. Finally, the in vitro wound model suggests that the presence of the vitamin B12-loaded gelatin MS accelerates the proliferation of resident fibroblast L929 cells and causes tissue regeneration in a time-dependent manner. The relative wound area, % of wound closure, and wound healing speed values are remarkable and suggest the requirement for assessing the response of the system before exploiting its prospective in vivo application.
Collapse
Affiliation(s)
| | - Suvendu Nandi
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Tamal Dey
- Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Samit Kumar Ray
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur721302, India.,Department of Physics, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Narayan Chandra Das
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur721302, India.,Rubber Technology Centre, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| | - Susanta Banerjee
- School of Nano Science and Technology, Indian Institute of Technology Kharagpur, Kharagpur721302, India.,Materials Science Centre, Indian Institute of Technology Kharagpur, Kharagpur721302, India
| |
Collapse
|
6
|
Intelligent nanotherapeutic strategies for the delivery of CRISPR system. Acta Pharm Sin B 2022. [DOI: 10.1016/j.apsb.2022.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
7
|
Sulaiman SB, Abdul Rani RB, Mohamad Yahaya NHB, Tabata Y, Hiraoka Y, Seet WT, Ng MH. Physical and natural cross-linking approaches on 3D gelatin microspheres for cartilage regeneration. Tissue Eng Part C Methods 2022; 28:557-569. [PMID: 35615885 DOI: 10.1089/ten.tec.2022.0073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The use of gelatin microspheres (GM) as a cell carrier has been extensively researched. One of its limitation is that it dissolves rapidly in aqueous settings, precluding its use for long-term cell propagation. This circumstance necessitates the use of cross-linking agents to circumvent the constraint. Thus, the current study examines two different methods of cross-linking and their effect on the microsphere's '"physicochemical and cartilage tissue regeneration capacity. Crosslinking was accomplished by physical [Dehydrothermal (DHT)] and natural (Genipin) cross-linking of the 3D gelatin microspheres (GM). We begin by comparing the microstructures of the scaffolds and their long-term resistance to degradation under physiological conditions (in isotonic solution, at 37 °C, pH = 7.4). Infrared spectroscopy indicated that the gelatin structure was preserved after the cross-linking treatments. The cross-linked GM" 'demonstrated good cell adhesion, viability, proliferation, and widespread 3D scaffold colonization when seeded with human bone marrow mesenchymal stem cells (BMSCs). Additionally, the cross-linked microspheres enhanced chondrogenesis, as demonstrated by the data. It was discovered that cross-linked GM increased the expression of cartilage-related genes and the biosynthesis of a glycosaminoglycan-positive matrix as compared to non-crosslinked GM. In comparison, DHT-crosslinked results were significantly enhanced. To summarize, DHT treatment was found to be a superior approach for cross-linking the GM in order to promote better cartilage tissue regeneration.
Collapse
Affiliation(s)
- Shamsul Bin Sulaiman
- Universiti Kebangsaan Malaysia, 61775, Centre for Tissue Engineering and Regenerative Medicine (CTERM), Bangi, Selangor, Malaysia;
| | - Rizal Bin Abdul Rani
- Universiti Kebangsaan Malaysia, 61775, Orthopedic & Traumatology, Bangi, Selangor, Malaysia;
| | | | - Yasuhiko Tabata
- Institute for Frontier Medical Sciences, Dept of Biomaterials, 53 Shogoinkawara-cho, Sakyo-ku, Kyoto, Kyoto, Japan, 6068507;
| | | | - Wan Tai Seet
- UKM, 61775, Centre for Tissue Engineering and Regenerative Medicine, 12th Floor, Clinical Block, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Malaysia, 56000;
| | - Min Hwei Ng
- Universiti Kebangsaan Malaysia, 61775, Tissue Engineering Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, Cheras, Kuala Lumpur, Federal Territory, Malaysia, 56000.,Universiti Kebangsaan Malaysia Medical Centre, 12th Floor, Clinical Block, Jalan Yaacob Latif, 12th Floor, Clinical Block, Jalan Yaacob Latif, Malaysia;
| |
Collapse
|
8
|
Zhuge W, Liu H, Wang W, Wang J. Microfluidic Bioscaffolds for Regenerative Engineering. ENGINEERED REGENERATION 2022. [DOI: 10.1016/j.engreg.2021.12.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
|
9
|
Hong X, Zhao Q, Liu Y, Li J. Recent advances on food-grade water-in-oil emulsions: Instability mechanism, fabrication, characterization, application, and research trends. Crit Rev Food Sci Nutr 2021; 63:1406-1436. [PMID: 34387517 DOI: 10.1080/10408398.2021.1964063] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Owing to their promising application prospects, water-in-oil (W/O) emulsions have aroused continuous attention in recent years. However, long-term stability of W/O emulsions remains a particularly challenging problem in colloid science. With the increasing demand of consumers for natural, green, and healthy foods, the heavy reliance on chemically synthesized surfactants to achieve long-term stability has become the key technical defect restricting the application of W/O emulsions in food. To design and manufacture W/O emulsions with long-term stability and clean label, a comprehensive understanding of the fundamentals of the W/O emulsion system is required. This review aims to demystify the field of W/O emulsions and update its current research progress. We first provide a summary on the essential basic knowledge regarding the instability mechanisms, including physical and chemical instability in W/O emulsions. Then, the formulation of the W/O emulsion system is introduced, particularly focusing on the use of natural stabilizers. Besides, the characterization and application of W/O emulsions are also discussed. Finally, we propose promising research trends, including (1) developing W/O high internal phase emulsions (HIPEs) as fat mimetic and substitute, (2) promising formulation routine for long-term stable double emulsions, and (3) searching for novel plant-derived stabilizers of W/O emulsions.
Collapse
Affiliation(s)
- Xin Hong
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Qiaoli Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Yuanfa Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| | - Jinwei Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, People's Republic of China
| |
Collapse
|
10
|
Type II Collagen-Conjugated Mesenchymal Stem Cells Micromass for Articular Tissue Targeting. Biomedicines 2021; 9:biomedicines9080880. [PMID: 34440084 PMCID: PMC8389618 DOI: 10.3390/biomedicines9080880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 07/07/2021] [Accepted: 07/09/2021] [Indexed: 11/16/2022] Open
Abstract
The tissue engineering approach in osteoarthritic cell therapy often requires the delivery of a substantially high cell number due to the low engraftment efficiency as a result of low affinity binding of implanted cells to the targeted tissue. A modification towards the cell membrane that provides specific epitope for antibody binding to a target tissue may be a plausible solution to increase engraftment. In this study, we intercalated palmitated protein G (PPG) with mesenchymal stem cells (MSCs) and antibody, and evaluated their effects on the properties of MSCs either in monolayer state or in a 3D culture state (gelatin microsphere, GM). Bone marrow MSCs were intercalated with PPG (PPG-MSCs), followed by coating with type II collagen antibody (PPG-MSC-Ab). The effect of PPG and antibody conjugation on the MSC proliferation and multilineage differentiation capabilities both in monolayer and GM cultures was evaluated. PPG did not affect MSC proliferation and differentiation either in monolayer or 3D culture. The PPG-MSCs were successfully conjugated with the type II collagen antibody. Both PPG-MSCs with and without antibody conjugation did not alter MSC proliferation, stemness, and the collagen, aggrecan, and sGAG expression profiles. Assessment of the osteochondral defect explant revealed that the PPG-MSC-Ab micromass was able to attach within 48 h onto the osteochondral surface. Antibody-conjugated MSCs in GM culture is a potential method for targeted delivery of MSCs in future therapy of cartilage defects and osteoarthritis.
Collapse
|
11
|
Contessi Negrini N, Angelova Volponi A, Higgins C, Sharpe P, Celiz A. Scaffold-based developmental tissue engineering strategies for ectodermal organ regeneration. Mater Today Bio 2021; 10:100107. [PMID: 33889838 PMCID: PMC8050778 DOI: 10.1016/j.mtbio.2021.100107] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 02/15/2021] [Accepted: 02/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering (TE) is a multidisciplinary research field aiming at the regeneration, restoration, or replacement of damaged tissues and organs. Classical TE approaches combine scaffolds, cells and soluble factors to fabricate constructs mimicking the native tissue to be regenerated. However, to date, limited success in clinical translations has been achieved by classical TE approaches, because of the lack of satisfactory biomorphological and biofunctional features of the obtained constructs. Developmental TE has emerged as a novel TE paradigm to obtain tissues and organs with correct biomorphology and biofunctionality by mimicking the morphogenetic processes leading to the tissue/organ generation in the embryo. Ectodermal appendages, for instance, develop in vivo by sequential interactions between epithelium and mesenchyme, in a process known as secondary induction. A fine artificial replication of these complex interactions can potentially lead to the fabrication of the tissues/organs to be regenerated. Successful developmental TE applications have been reported, in vitro and in vivo, for ectodermal appendages such as teeth, hair follicles and glands. Developmental TE strategies require an accurate selection of cell sources, scaffolds and cell culture configurations to allow for the correct replication of the in vivo morphogenetic cues. Herein, we describe and discuss the emergence of this TE paradigm by reviewing the achievements obtained so far in developmental TE 3D scaffolds for teeth, hair follicles, and salivary and lacrimal glands, with particular focus on the selection of biomaterials and cell culture configurations.
Collapse
Affiliation(s)
| | - A. Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - C.A. Higgins
- Department of Bioengineering, Imperial College London, London, UK
| | - P.T. Sharpe
- Centre for Craniofacial and Regenerative Biology, King's College London, London, UK
| | - A.D. Celiz
- Department of Bioengineering, Imperial College London, London, UK
| |
Collapse
|
12
|
Dong Z, Meng X, Yang W, Zhang J, Sun P, Zhang H, Fang X, Wang DA, Fan C. Progress of gelatin-based microspheres (GMSs) as delivery vehicles of drug and cell. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 122:111949. [PMID: 33641932 DOI: 10.1016/j.msec.2021.111949] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/13/2022]
Abstract
Gelatin has various attractive features as biomedical materials, for instance, biocompatibility, low immunogenicity, biodegradability, and ease of manipulation. In recent years, various gelatin-based microspheres (GMSs) have been fabricated with innovative technologies to serve as sustained delivery vehicles of drugs and genetic materials as well as beneficial bacteria. Moreover, GMSs have exhibited promising potentials to act as both cell carriers and 3D scaffold components in tissue engineering and regenerative medicine, which not only exhibit excellent injectability but also could be integrated into a macroscale construct with the laden cells. Herein, we aim to thoroughly summarize the recent progress in the preparations and biomedical applications of GMSs and then to point out the research direction in future. First, various methods for the fabrication of GMSs will be described. Second, the recent use of GMSs in tumor embolization and in the delivery of cells, drugs, and genetic material as well as bacteria will be presented. Finally, several key factors that may enhance the improvement of GMSs were suggested as delivery vehicles.
Collapse
Affiliation(s)
- Zuoxiang Dong
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China; Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xinyue Meng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Wei Yang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China
| | - Jinfeng Zhang
- Department of Surgery, Songshan Hospital of Qingdao University, Qingdao 266021, Shandong, China
| | - Peng Sun
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Huawei Zhang
- Department of Neurosurgery, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, China
| | - Xing Fang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Dong-An Wang
- Department of Biomedical Engineering, City University of Hong Kong, Kowloon, Hong Kong Special Administrative Region; Shenzhen Research Institute, City University of Hong Kong, Shenzhen Hi-tech Industrial Park, Shenzhen, Guangdong 518057, China; Karolinska Institute Ming Wai Lau Centre for Reparative Medicine, HKSTP, Sha Tin, Hong Kong Special Administrative Region.
| | - Changjiang Fan
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, Qingdao Medical College, Qingdao University, Qingdao 266000, Shandong, China.
| |
Collapse
|
13
|
Cross-Linking Optimization for Electrospun Gelatin: Challenge of Preserving Fiber Topography. Polymers (Basel) 2020; 12:polym12112472. [PMID: 33113784 PMCID: PMC7692762 DOI: 10.3390/polym12112472] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
Opportunely arranged micro/nano-scaled fibers represent an extremely attractive architecture for tissue engineering, as they offer an intrinsically porous structure, a high available surface, and an ideal microtopography for guiding cell migration. When fibers are made with naturally occurring polymers, matrices that closely mimic the architecture of the native extra-cellular matrix and offer specific chemical cues can be obtained. Along this track, electrospinning of collagen or gelatin is a typical and effective combination to easily prepare fibrous scaffolds with excellent properties in terms of biocompatibility and biomimicry, but an appropriate cross-linking strategy is required. Many common protocols involve the use of swelling solvents and can result in significant impairment of fibrous morphology and porosity. As a consequence, the efforts for processing gelatin into a fiber network can be vain, as a film-like morphology will be eventually presented to cells. However, this appears to be a frequently overlooked aspect. Here, the effect on fiber morphology of common cross-linking protocols was analyzed, and different strategies to improve the final morphology were evaluated (including alternative solvents, cross-linker concentration, mechanical constraint, and evaporation conditions). Finally, an optimized, fiber-preserving protocol based on carbodiimide (EDC) chemistry was defined.
Collapse
|