1
|
Tagliaferri N, Pisciotta A, Orlandi G, Bertani G, Di Tinco R, Bertoni L, Sena P, Lunghi A, Bianchi M, Veneri F, Bellini P, Bertacchini J, Conserva E, Consolo U, Carnevale G. Zirconia Hybrid Dental Implants Influence the Biological Properties of Neural Crest-Derived Mesenchymal Stromal Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:392. [PMID: 38470723 PMCID: PMC10934982 DOI: 10.3390/nano14050392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024]
Abstract
Dental implants are regularly employed in tooth replacement, the good clinical outcome of which is strictly correlated to the choice of an appropriate implant biomaterial. Titanium-based implants are considered the gold standard for rehabilitation of edentulous spaces. However, the insurgence of allergic reactions, cellular sensitization and low integration with dental and gingival tissues lead to poor osseointegration, affecting the implant stability in the bone and favoring infections and inflammatory processes in the peri-implant space. These failures pave the way to develop and improve new biocompatible implant materials. CERID dental implants are made of a titanium core embedded in a zirconium dioxide ceramic layer, ensuring absence of corrosion, a higher biological compatibility and a better bone deposition compared to titanium ones. We investigated hDPSCs' biological behavior, i.e., cell adhesion, proliferation, morphology and osteogenic potential, when seeded on both CERID and titanium implants, before and after cleansing with two different procedures. SEM and AFM analysis of the surfaces showed that while CERID disks were not significantly affected by the cleansing system, titanium ones exhibited well-visible modifications after brush treatment, altering cell morphology. The proliferation rate of DPSCs was increased for titanium, while it remained unaltered for CERID. Both materials hold an intrinsic potential to promote osteogenic commitment of neuro-ectomesenchymal stromal cells. Interestingly, the CERID surface mitigated the immune response by inducing an upregulation of anti-inflammatory cytokine IL-10 on activated PBMCs when a pro-inflammatory microenvironment was established. Our in vitro results pave the way to further investigations aiming to corroborate the potential of CERID implants as suitable biomaterials for dental implant applications.
Collapse
Affiliation(s)
- Nadia Tagliaferri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
- PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Alessandra Pisciotta
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Giulia Orlandi
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Giulia Bertani
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
- PhD Program in Clinical and Experimental Medicine, Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, 41124 Modena, Italy
| | - Rosanna Di Tinco
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Laura Bertoni
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Paola Sena
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Alice Lunghi
- Center for Translational Neurophysiology of Speech and Communication, Fondazione Istituto Italiano di Tecnologia, 44121 Ferrara, Italy;
- Section of Physiology, University of Ferrara, 44121 Ferrara, Italy
| | - Michele Bianchi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Federica Veneri
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Pierantonio Bellini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Jessika Bertacchini
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Enrico Conserva
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Ugo Consolo
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| | - Gianluca Carnevale
- Department of Surgery, Medicine, Dentistry and Morphological Sciences with Interest in Transplant, Oncology and Regenerative Medicine, University of Modena and Reggio Emilia, 41124 Modena, Italy; (N.T.); (G.O.); (G.B.); (R.D.T.); (L.B.); (P.S.); (F.V.); (P.B.); (J.B.); (E.C.); (U.C.); (G.C.)
| |
Collapse
|
2
|
Marny M, Sowa M, Kazek-Kęsik A, Rokosz K, Raaen S, Chapon P, Viter R, Pshenychnyi R, Simka W, Michalska J. Shaping the Structure and Properties of TiO 2-ZnO Oxide Coatings Produced by Plasma Electrolytic Oxidation on Titanium Substrate. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7400. [PMID: 38068147 PMCID: PMC10871085 DOI: 10.3390/ma16237400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/17/2023] [Accepted: 11/23/2023] [Indexed: 02/18/2024]
Abstract
The paper presents the results of preliminary research on the possibility of synthesizing ZnO-TiO2 mixed coatings by plasma electrochemical oxidation (PEO). The aim of the work was to synthesize TiO2-ZnO mixed coatings on a titanium substrate from an electrolyte containing ZnO nanoparticles (NPs) and to assess the parameters of PEO on the structure, chemical composition, and properties of the obtained oxide coatings. The PEO process was carried out under various current-voltage conditions using different signals: DC, DC pulse, and AC. In this work, optimal conditions for the PEO process were determined to obtain well-adhering oxide coatings with the highest possible content of ZnO. The structure and morphology of the resulting oxide coatings were investigated, and their chemical and phase composition was comprehensively examined (EDX, XRD, XPS, and GD-OES). In addition, their basic optical properties were assessed. It has been shown that in the PEO DC pulse process, it is possible to obtain oxide coatings characterized by a high degree of structure order, high ZnO content in the oxide coating (3.6 at.%, XPS), and prospective applications for photocatalytic purposes (3.12 eV).
Collapse
Affiliation(s)
- Magdalena Marny
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (M.M.); (M.S.); (A.K.-K.)
| | - Maciej Sowa
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (M.M.); (M.S.); (A.K.-K.)
| | - Alicja Kazek-Kęsik
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (M.M.); (M.S.); (A.K.-K.)
| | - Krzysztof Rokosz
- Faculty of Electronics and Computer Science, Koszalin University of Technology, 75-620 Koszalin, Poland;
| | - Steinar Raaen
- Department of Physics, Norwegian University of Science and Technology (NTNU), NO 7491 Trondheim, Norway;
| | - Patrick Chapon
- HORIBA Scientific, 14 Boulevard Thomas Gobert, Pass. Jobin-Yvon, 91120 Palaiseau, France;
| | - Roman Viter
- Institute of Chemical Physics, Institute of Atomic Physics and Spectroscopy, University of Latvia, 1586 Riga, Latvia;
| | | | - Wojciech Simka
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (M.M.); (M.S.); (A.K.-K.)
| | - Joanna Michalska
- Faculty of Chemistry, Silesian University of Technology, 44-100 Gliwice, Poland; (M.M.); (M.S.); (A.K.-K.)
| |
Collapse
|
3
|
Wu H, Chen X, Kong L, Liu P. Mechanical and Biological Properties of Titanium and Its Alloys for Oral Implant with Preparation Techniques: A Review. MATERIALS (BASEL, SWITZERLAND) 2023; 16:6860. [PMID: 37959457 PMCID: PMC10649385 DOI: 10.3390/ma16216860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/23/2023] [Accepted: 10/24/2023] [Indexed: 11/15/2023]
Abstract
Dental implants have revolutionised restorative dentistry, offering patients a natural-looking and durable solution to replace missing or severely damaged teeth. Titanium and its alloys have emerged as the gold standard among the various materials available due to their exceptional properties. One of the critical advantages of titanium and its alloys is their remarkable biocompatibility which ensures minimal adverse reactions within the human body. Furthermore, they exhibit outstanding corrosion resistance ensuring the longevity of the implant. Their mechanical properties, including hardness, tensile strength, yield strength, and fatigue strength, align perfectly with the demanding requirements of dental implants, guaranteeing the restoration's functionality and durability. This narrative review aims to provide a comprehensive understanding of the manufacturing techniques employed for titanium and its alloy dental implants while shedding light on their intrinsic properties. It also presents crucial proof-of-concept examples, offering tangible evidence of these materials' effectiveness in clinical applications. However, despite their numerous advantages, certain limitations still exist necessitating ongoing research and development efforts. This review will briefly touch upon these restrictions and explore the evolving trends likely to shape the future of titanium and its alloy dental implants.
Collapse
Affiliation(s)
| | | | | | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, China; (H.W.); (X.C.); (L.K.)
| |
Collapse
|
4
|
He Z, Yang H, Gu Y, Xie Y, Wu J, Wu C, Song J, Zhao M, Zong D, Du W, Qiao J, Pang Y, Liu Y. Green Synthesis of MOF-Mediated pH-Sensitive Nanomaterial AgNPs@ZIF-8 and Its Application in Improving the Antibacterial Performance of AgNPs. Int J Nanomedicine 2023; 18:4857-4870. [PMID: 37662688 PMCID: PMC10473413 DOI: 10.2147/ijn.s418308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 08/04/2023] [Indexed: 09/05/2023] Open
Abstract
Purpose Herein, an emerging drug delivery system was constructed based on zeolite imidazole backbone (ZIF-8) to improve antibacterial defects of nanosilver (AgNPs), such as easily precipitated and highly cytotoxic. Methods The homogeneous dispersion of AgNPs on ZIF-8 was confirmed by UV-Vis spectroscopy, FTIR spectroscopy, particle size analysis, zeta potential analysis, and SEM. The appropriate AgNPs loading ratio on ZIF-8 was screened through the cell and antibacterial experiments based on biosafety and antibacterial performance. The optimal environment for AgNPs@ZIF-8 to exert antibacterial performance was probed in the context of bacterial communities under different acid-base conditions. The potential mechanism of AgNPs@ZIF-8 to inhibit the common clinical strains was investigated by observing the biofilm metabolic activity and the level of reactive oxygen species (ROS) in bacteria. Results The successful piggybacking of AgNPs by ZIF-8 was confirmed using UV-Vis spectroscopy, FTIR spectroscopy, particle size analysis, zeta potential analysis, and SEM characterization methods. Based on the bacterial growth curve (0-24 hours), the antibacterial ability of AgNPs@ZIF-8 was found to be superior to AgNPs. When the mass ratio of ZIF-8 and AgNPs was 1:0.25, the selection of AgNPs@ZIF-8 was based on its superior antimicrobial efficacy and enhanced biocompatibility. Notably, under weakly acidic bacterial microenvironments (pH=6.4), AgNPs@ZIF-8 demonstrated a more satisfactory antibacterial effect. In addition, experiments on biofilms showed that concentrations of AgNPs@ZIF-8 exceeding 1×MIC resulted in more than 50% biofilm removal. The nanomedicine was found to increase ROS levels upon detecting the ROS concentration in bacteria. Conclusion Novel nanocomposites consisting of low cytotoxicity drug carrier ZIF-8 loaded with AgNPs exhibited enhanced antimicrobial effects compared to AgNPs alone. The pH-responsive nano drug delivery system, AgNPs@ZIF-8, exhibited superior antimicrobial activity in a mildly acidic environment. Moreover, AgNPs@ZIF-8 effectively eradicated pathogenic bacterial biofilms and elevated the intracellular level of ROS.
Collapse
Affiliation(s)
- Zhiqiang He
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Huan Yang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Yufan Gu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Yuhan Xie
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Jianan Wu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Chen Wu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Jiawei Song
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Maofang Zhao
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Da Zong
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Wenlong Du
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Jiaju Qiao
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Yipeng Pang
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| | - Yi Liu
- Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
- School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, 221004, People’s Republic of China
| |
Collapse
|
5
|
Du W, Xu R, He Z, Yang H, Gu Y, Liu Y. Transcriptomics-based investigation of molecular mechanisms underlying synergistic antimicrobial effects of AgNPs and Domiphen on the human fungal pathogen Aspergillus fumigatus. Front Microbiol 2023; 14:1089267. [PMID: 36819018 PMCID: PMC9928863 DOI: 10.3389/fmicb.2023.1089267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 01/12/2023] [Indexed: 02/04/2023] Open
Abstract
Critically ill patients have higher risk of serious fungal infections, such as invasive aspergillosis (IA) which is mainly caused by the human fungal pathogen Aspergillus fumigatus. Triazole drugs are the primary therapeutic agents for the first-line treatment of IA, which could easily cause drug resistance problems. Here, we assess the potential of AgNPs synthesized with Artemisia argyi leaf extract and domiphen as new antifungal agents to produce synergistic antimicrobial effects on Aspergillus fumigatus, and dissect possible molecular mechanisms of action. Plate inoculation assays combined with drug susceptibility test and cytotoxicity test showed that the combination of AgNPs and domiphen has synergistic antimicrobial effects on A. fumigatus with low cytotoxicity. Gene Ontology (GO) enrichment analysis showed that AgNPs and domiphen inhibit the growth of A. fumigatus by suppressing nitrate assimilation, and purine nucleobase metabolic process and amino acid transmembrane transport, respectively. When the two drugs are combined, AgNPs has epistatic effects on domiphen. Moreover, the combination of AgNPs and domiphen primarily influence secondary metabolites biosynthesis, steroid biosynthesis and nucleotide sugar metabolism of A. fumigatus via Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. Furthermore, protein-protein interactions (PPI) analysis combined with validation experiments showed that the combination of AgNPs and domiphen could enhance the expression of copper transporter and inhibit nitrogen source metabolism. In addition, the synergistic antimicrobial effects could be enhanced or eliminated depending on exogenous addition of copper and nitrogen source, respectively. Taken together, the results of this study provide a theoretical basis and a new strategy for the treatment of IA.
Collapse
Affiliation(s)
- Wenlong Du
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,*Correspondence: Wenlong Du, ✉
| | - Ruolin Xu
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Zhiqiang He
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Huan Yang
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yufan Gu
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yi Liu
- Department of Bioinformatics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Department of Biophysics, School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China,Yi Liu, ✉
| |
Collapse
|
6
|
Hasan J, Bright R, Hayles A, Palms D, Zilm P, Barker D, Vasilev K. Preventing Peri-implantitis: The Quest for a Next Generation of Titanium Dental Implants. ACS Biomater Sci Eng 2022; 8:4697-4737. [PMID: 36240391 DOI: 10.1021/acsbiomaterials.2c00540] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Titanium and its alloys are frequently the biomaterial of choice for dental implant applications. Although titanium dental implants have been utilized for decades, there are yet unresolved issues pertaining to implant failure. Dental implant failure can arise either through wear and fatigue of the implant itself or peri-implant disease and subsequent host inflammation. In the present report, we provide a comprehensive review of titanium and its alloys in the context of dental implant material, and how surface properties influence the rate of bacterial colonization and peri-implant disease. Details are provided on the various periodontal pathogens implicated in peri-implantitis, their adhesive behavior, and how this relationship is governed by the implant surface properties. Issues of osteointegration and immunomodulation are also discussed in relation to titanium dental implants. Some impediments in the commercial translation for a novel titanium-based dental implant from "bench to bedside" are discussed. Numerous in vitro studies on novel materials, processing techniques, and methodologies performed on dental implants have been highlighted. The present report review that comprehensively compares the in vitro, in vivo, and clinical studies of titanium and its alloys for dental implants.
Collapse
Affiliation(s)
- Jafar Hasan
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia
| | - Richard Bright
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Andrew Hayles
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Dennis Palms
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| | - Peter Zilm
- Adelaide Dental School, University of Adelaide, Adelaide, 5005, South Australia, Australia
| | - Dan Barker
- ANISOP Holdings, Pty. Ltd., 101 Collins St, Melbourne VIC, 3000 Australia
| | - Krasimir Vasilev
- Academic Unit of STEM, University of South Australia, Mawson Lakes, SA 5095, Australia.,College of Medicine and Public Health, Flinders University, Bedford Park 5042, South Australia, Australia
| |
Collapse
|
7
|
Michalska J, Sowa M, Stolarczyk A, Warchoł F, Nikiforow K, Pisarek M, Dercz G, Pogorielov M, Mishchenko O, Simka W. Plasma electrolytic oxidation of Zr-Ti-Nb alloy in phosphate-formate-EDTA electrolyte. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
8
|
Ou P, Zhang T, Wang J, Li C, Shao C, Ruan J. Bone response in vivo of Ti-45Zr alloy as dental implant material. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2022; 33:47. [PMID: 35596895 PMCID: PMC9124165 DOI: 10.1007/s10856-022-06664-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 04/23/2022] [Indexed: 06/15/2023]
Abstract
Ti-Zr alloys have gained increasing attention as a new metallic biomaterial, being used as implants for both orthopedics and dentistry. More recently, our group found promising results for the Ti-45Zr alloy, which presented a low elastic modulus, a pronounced and excellent mechanic character, and excellent cell compatibility in vitro. However, its biocompatibility and potential to promote osteogenesis in vivo remained unclear. In the present study, the biocompatibility, osteointegration ability, and immune response effects of the Ti-45Zr alloy were evaluated in animal experiments. The results showed that the alloy had good blood compatibility and no body side effects. After implantation in vivo, the inflammation turned out well and was beneficial to the polarization of macrophages. Additionally, the Ti-45Zr alloy presented a good osteointegration ability. Overall, these results confirmed that the Ti-45Zr alloy can be used as a dental implant material.
Collapse
Affiliation(s)
- Pinghua Ou
- Department of Stomatology, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, PR China
- State Key Laboratory of Powder Metallurgy, Central South University, 410083, Changsha, Hunan, PR China
| | - Taomei Zhang
- State Key Laboratory of Powder Metallurgy, Central South University, 410083, Changsha, Hunan, PR China
| | - Jianying Wang
- State Key Laboratory of Powder Metallurgy, Central South University, 410083, Changsha, Hunan, PR China
| | - Cui Li
- Department of Stomatology, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, PR China
| | - Chunsheng Shao
- Department of Stomatology, The Third Xiangya Hospital, Central South University, 410013, Changsha, Hunan, PR China
| | - Jianming Ruan
- State Key Laboratory of Powder Metallurgy, Central South University, 410083, Changsha, Hunan, PR China.
| |
Collapse
|
9
|
Gautam S, Bhatnagar D, Bansal D, Batra H, Goyal N. Recent advancements in nanomaterials for biomedical implants. BIOMEDICAL ENGINEERING ADVANCES 2022. [DOI: 10.1016/j.bea.2022.100029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
10
|
Mulazzi M, Campodoni E, Bassi G, Montesi M, Panseri S, Bonvicini F, Gentilomi GA, Tampieri A, Sandri M. Medicated Hydroxyapatite/Collagen Hybrid Scaffolds for Bone Regeneration and Local Antimicrobial Therapy to Prevent Bone Infections. Pharmaceutics 2021; 13:pharmaceutics13071090. [PMID: 34371782 PMCID: PMC8309148 DOI: 10.3390/pharmaceutics13071090] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/29/2021] [Accepted: 07/12/2021] [Indexed: 12/15/2022] Open
Abstract
Microbial infections occurring during bone surgical treatment, the cause of osteomyelitis and implant failures, are still an open challenge in orthopedics. Conventional therapies are often ineffective and associated with serious side effects due to the amount of drugs administered by systemic routes. In this study, a medicated osteoinductive and bioresorbable bone graft was designed and investigated for its ability to control antibiotic drug release in situ. This represents an ideal solution for the eradication or prevention of infection, while simultaneously repairing bone defects. Vancomycin hydrochloride and gentamicin sulfate, here considered for testing, were loaded into a previously developed and largely investigated hybrid bone-mimetic scaffold made of collagen fibers biomineralized with magnesium doped-hydroxyapatite (MgHA/Coll), which in the last ten years has widely demonstrated its effective potential in bone tissue regeneration. Here, we have explored whether it can be used as a controlled local delivery system for antibiotic drugs. An easy loading method was selected in order to be reproducible, quickly, in the operating room. The maintenance of the antibacterial efficiency of the released drugs and the biosafety of medicated scaffolds were assessed with microbiological and in vitro tests, which demonstrated that the MgHA/Coll scaffolds were safe and effective as a local delivery system for an extended duration therapy—promising results for the prevention of bone defect-related infections in orthopedic surgeries.
Collapse
Affiliation(s)
- Manuela Mulazzi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Elisabetta Campodoni
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
- Correspondence: (E.C.); (M.S.); Tel.: +39-0546-699761 (E.C. & M.S.)
| | - Giada Bassi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Monica Montesi
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Silvia Panseri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Francesca Bonvicini
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
| | - Giovanna Angela Gentilomi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy; (F.B.); (G.A.G.)
- Operative Unit of Microbiology, IRCCS St. Orsola Hospital, University of Bologna, Via Massarenti 9, 40138 Bologna, Italy
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
| | - Monica Sandri
- Institute of Science and Technology for Ceramics, National Research Council of Italy, ISTEC-CNR, 48018 Faenza, Italy; (M.M.); (G.B.); (M.M.); (S.P.); (A.T.)
- Correspondence: (E.C.); (M.S.); Tel.: +39-0546-699761 (E.C. & M.S.)
| |
Collapse
|