1
|
Porat G, Lusky OS, Dayan N, Goldbourt A. Nonuniformly sampled exclusively- 13 C/ 15 N 4D solid-state NMR experiments: Assignment and characterization of IKe phage capsid. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2021; 59:237-246. [PMID: 32603513 DOI: 10.1002/mrc.5072] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/11/2020] [Accepted: 06/27/2020] [Indexed: 06/11/2023]
Abstract
An important step in the process of protein research by NMR is the assignment of chemical shifts. In the coat protein of IKe bacteriophage, there are 53 residues making up a long helix resulting in relatively high spectral ambiguity. Assignment thus requires the collection of a set of three-dimensional (3D) experiments and the preparation of sparsely labeled samples. Increasing the dimensionality can facilitate fast and reliable assignment of IKe and of larger proteins. Recent progress in nonuniform sampling techniques made the application of multidimensional NMR solid-state experiments beyond 3D more practical. 4D 1 H-detected experiments have been demonstrated in high-fields and at spinning speeds of 60 kHz and higher but are not practical at spinning speeds of 10-20 kHz for fully protonated proteins. Here, we demonstrate the applicability of a nonuniformly sampled 4D 13 C/15 N-only correlation experiment performed at a moderate field of 14.1 T, which can incorporate sufficiently long acquisition periods in all dimensions. We show how a single CANCOCX experiment, supported by several 2D carbon-based correlation experiments, is utilized for the assignment of heteronuclei in the coat protein of the IKe bacteriophage. One sparsely labeled sample was used to validate sidechain assignment of several hydrophobic-residue sidechains. A comparison to solution NMR studies of isolated IKe coat proteins embedded in micelles points to key residues involved in structural rearrangement of the capsid upon assembly of the virus. The benefits of 4D to a quicker assignment are discussed, and the method may prove useful for studying proteins at relatively low fields.
Collapse
Affiliation(s)
- Gal Porat
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware, 19716, USA
| | - Orr Simon Lusky
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| | - Nir Dayan
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
- Schulich Faculty of Chemistry, Technion-Institute of Technology, Haifa, Israel
| | - Amir Goldbourt
- School of Chemistry, Tel Aviv University, Ramat Aviv, Tel Aviv, 6997801, Israel
| |
Collapse
|
2
|
Wang T, Hong M. Structure and Dynamics of Polysaccharides in Plant Cell Walls from Solid-State NMR. NMR IN GLYCOSCIENCE AND GLYCOTECHNOLOGY 2017. [DOI: 10.1039/9781782623946-00290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Multidimensional high-resolution magic-angle-spinning solid-state NMR (SSNMR) spectroscopy has recently been shown to have the unique capability of revealing the molecular structure and dynamics of insoluble macromolecules in intact plant cell walls. This chapter summarizes the 2D and 3D SSNMR techniques used so far to study cell walls and key findings about cellulose interactions with matrix polysaccharides, cellulose microfibril structure, polysaccharide–protein interactions that are responsible for wall loosening, and polysaccharide–water interactions in the hydrated primary walls. These results provide detailed molecular insights into the structure of near-native plant cell walls, and revise the conventional tethered-network model by suggesting a single-network model for the primary cell wall, which has found increasing support from recent biochemical and biomechanical data.
Collapse
Affiliation(s)
- Tuo Wang
- Department of Chemistry, Massachusetts Institute of Technology 170 Albany Street Cambridge MA 02139 USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology 170 Albany Street Cambridge MA 02139 USA
| |
Collapse
|
3
|
Khazanov N, Iline-Vul T, Noy E, Goobes G, Senderowitz H. Design of Compact Biomimetic Cellulose Binding Peptides as Carriers for Cellulose Catalytic Degradation. J Phys Chem B 2016; 120:309-19. [DOI: 10.1021/acs.jpcb.5b11050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Netaly Khazanov
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Taly Iline-Vul
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Efrat Noy
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Gil Goobes
- Department of Chemistry, Bar Ilan University, Ramat Gan 5290002, Israel
| | | |
Collapse
|
4
|
Ivanir-Dabora H, Nimerovsky E, Madhu PK, Goldbourt A. Site-Resolved Backbone and Side-Chain Intermediate Dynamics in a Carbohydrate-Binding Module Protein Studied by Magic-Angle Spinning NMR Spectroscopy. Chemistry 2015; 21:10778-85. [DOI: 10.1002/chem.201500856] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Indexed: 12/12/2022]
|
5
|
Quinn CM, Lu M, Suiter CL, Hou G, Zhang H, Polenova T. Magic angle spinning NMR of viruses. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2015; 86-87:21-40. [PMID: 25919197 PMCID: PMC4413014 DOI: 10.1016/j.pnmrs.2015.02.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/27/2015] [Accepted: 02/08/2015] [Indexed: 05/02/2023]
Abstract
Viruses, relatively simple pathogens, are able to replicate in many living organisms and to adapt to various environments. Conventional atomic-resolution structural biology techniques, X-ray crystallography and solution NMR spectroscopy provided abundant information on the structures of individual proteins and nucleic acids comprising viruses; however, viral assemblies are not amenable to analysis by these techniques because of their large size, insolubility, and inherent lack of long-range order. In this article, we review the recent advances in magic angle spinning NMR spectroscopy that enabled atomic-resolution analysis of structure and dynamics of large viral systems and give examples of several exciting case studies.
Collapse
Affiliation(s)
- Caitlin M Quinn
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Manman Lu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Christopher L Suiter
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Guangjin Hou
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| | - Huilan Zhang
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States.
| | - Tatyana Polenova
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, United States; Pittsburgh Center for HIV Protein Interactions, University of Pittsburgh School of Medicine, 1051 Biomedical Science Tower 3, 3501 Fifth Ave., Pittsburgh, PA 15261, United States.
| |
Collapse
|