1
|
Goričan T, Golič Grdadolnik S. Insights into the Allosteric Regulation of Human Hsp90 Revealed by NMR Spectroscopy. Biomolecules 2024; 15:37. [PMID: 39858432 PMCID: PMC11761240 DOI: 10.3390/biom15010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 01/27/2025] Open
Abstract
Human heat shock protein 90 (Hsp90) is one of the most important chaperones that play a role in the late stages of protein folding. Errors in the process of the chaperone cycle can lead to diseases such as cancer and neurodegenerative diseases. Therefore, the activity of Hsp90 must be carefully regulated. One of the possibilities is allosteric regulation by its natural allosteric modulators-nucleotides, co-chaperones and client proteins-and synthetic small-molecule allosteric modulators, such as those targeting the middle domain or the C-terminal domain (CTD) of Hsp90. Since no experimentally determined structure of a small-molecule allosteric modulator bound to the CTD of human Hsp90 has yet been obtained, the challenge for a structure-based design of allosteric modulators remains. Solution nuclear magnetic resonance (NMR) spectroscopy could be utilized to overcome these problems. The main aim of this review article is to discuss how solution NMR techniques, especially protein-based, and the advanced isotope labeling of proteins have been used to investigate the allosteric regulation of the cytosolic isoforms of human Hsp90 with allosteric modulators. This article provides the basis for planning future NMR experiments, with the aim of gaining insights into allosteric sites and the mechanisms of allosteric regulation.
Collapse
Affiliation(s)
| | - Simona Golič Grdadolnik
- Laboratory for Molecular Structural Dynamics, Theory Department, National Institute of Chemistry, Hajdrihova 19, p.p. 660, SI-1001 Ljubljana, Slovenia;
| |
Collapse
|
2
|
Mallis RJ, Lee JJ, den Berg AV, Brazin KN, Viennet T, Zmuda J, Cross M, Radeva D, Rodriguez‐Mias R, Villén J, Gelev V, Reinherz EL, Arthanari H. Efficient and economic protein labeling for NMR in mammalian expression systems: Application to a preT-cell and T-cell receptor protein. Protein Sci 2024; 33:e4950. [PMID: 38511503 PMCID: PMC10955624 DOI: 10.1002/pro.4950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/05/2024] [Accepted: 02/16/2024] [Indexed: 03/22/2024]
Abstract
Protein nuclear magnetic resonance (NMR) spectroscopy relies on the ability to isotopically label polypeptides, which is achieved through heterologous expression in various host organisms. Most commonly, Escherichia coli is employed by leveraging isotopically substituted ammonium and glucose to uniformly label proteins with 15N and 13C, respectively. Moreover, E. coli can grow and express proteins in uniformly deuterium-substituted water (D2O), a strategy useful for experiments targeting high molecular weight proteins. Unfortunately, many proteins, particularly those requiring specific posttranslational modifications like disulfide bonding or glycosylation for proper folding and/or function, cannot be readily expressed in their functional forms using E. coli-based expression systems. One such class of proteins includes T-cell receptors and their related preT-cell receptors. In this study, we present an expression system for isotopic labeling of proteins using a nonadherent human embryonic kidney cell line, Expi293F, and a specially designed media. We demonstrate the application of this platform to the β subunit common to both receptors. In addition, we show that this expression system and media can be used to specifically label amino acids Phe, Ile, Val, and Leu in this system, utilizing an amino acid-specific labeling protocol that allows targeted incorporation at high efficiency without significant isotopic scrambling. We demonstrate that this system can also be used to express proteins with fluorinated amino acids. We were routinely able to obtain an NMR sample with a concentration of 200 μM from 30 mL of culture media, utilizing less than 20 mg of the labeled amino acids.
Collapse
Affiliation(s)
- Robert J. Mallis
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of DermatologyHarvard Medical SchoolBostonMassachusettsUSA
| | - Jonathan J. Lee
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
| | | | - Kristine N. Brazin
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Thibault Viennet
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| | | | | | - Denitsa Radeva
- Faculty of Chemistry and PharmacySofia UniversitySofiaBulgaria
| | | | - Judit Villén
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Vladimir Gelev
- Faculty of Chemistry and PharmacySofia UniversitySofiaBulgaria
| | - Ellis L. Reinherz
- Laboratory of ImmunobiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Medical OncologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Haribabu Arthanari
- Department of Cancer BiologyDana‐Farber Cancer InstituteBostonMassachusettsUSA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMassachusettsUSA
| |
Collapse
|
3
|
Henot F, Rioual E, Favier A, Macek P, Crublet E, Josso P, Brutscher B, Frech M, Gans P, Loison C, Boisbouvier J. Visualizing the transiently populated closed-state of human HSP90 ATP binding domain. Nat Commun 2022; 13:7601. [PMID: 36494347 PMCID: PMC9734131 DOI: 10.1038/s41467-022-35399-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022] Open
Abstract
HSP90 are abundant molecular chaperones, assisting the folding of several hundred client proteins, including substrates involved in tumor growth or neurodegenerative diseases. A complex set of large ATP-driven structural changes occurs during HSP90 functional cycle. However, the existence of such structural rearrangements in apo HSP90 has remained unclear. Here, we identify a metastable excited state in the isolated human HSP90α ATP binding domain. We use solution NMR and mutagenesis to characterize structures of both ground and excited states. We demonstrate that in solution the HSP90α ATP binding domain transiently samples a functionally relevant ATP-lid closed state, distant by more than 30 Å from the ground state. NMR relaxation enables to derive information on the kinetics and thermodynamics of this interconversion, while molecular dynamics simulations establish that the ATP-lid in closed conformation is a metastable exited state. The precise description of the dynamics and structures sampled by human HSP90α ATP binding domain provides information for the future design of new therapeutic ligands.
Collapse
Affiliation(s)
- Faustine Henot
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| | - Elisa Rioual
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France ,grid.7849.20000 0001 2150 7757Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Adrien Favier
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| | - Pavel Macek
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France ,NMR-Bio, 5 place Robert Schuman, F-38025 Grenoble, France
| | - Elodie Crublet
- NMR-Bio, 5 place Robert Schuman, F-38025 Grenoble, France
| | - Pierre Josso
- grid.7849.20000 0001 2150 7757Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Bernhard Brutscher
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| | - Matthias Frech
- grid.39009.330000 0001 0672 7022Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293 Darmstadt, Germany
| | - Pierre Gans
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| | - Claire Loison
- grid.7849.20000 0001 2150 7757Institut Lumière Matière, University of Lyon, Université Claude Bernard Lyon 1, CNRS, F-69622 Villeurbanne, France
| | - Jerome Boisbouvier
- grid.4444.00000 0001 2112 9282Univ. Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, avenue des martyrs, F-38044 Grenoble, France
| |
Collapse
|
4
|
Henot F, Crublet E, Frech M, Boisbouvier J. NMR assignment of human HSP90 N-terminal domain bound to a long residence time resorcinol ligand. BIOMOLECULAR NMR ASSIGNMENTS 2022; 16:257-266. [PMID: 35701717 DOI: 10.1007/s12104-022-10089-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
HSP90 is a major molecular chaperone that helps both folding and stabilization of various client proteins often implicated in growth control and cell survival such as kinases and transcription factors. However, among HSP90 clients are also found numerous oncoproteins and, through its assistance to them, HSP90 has consequently been reported as a promising anticancer target. Several ligand chemotypes, including resorcinol type ligands, were found to inhibit HSP90, most of them in an ATP competitive manner. Binding of some of these ligands modify significantly the NMR spectrum of the HSP90 ATP binding domain compared to the apo protein spectrum, hampering assignment transfer from the previously assigned human HSP90 apo state. Here we report the assignment of the 1HN, 15N, 13C', 13Cα, 13Cβ, 1Hmethyl, and 13Cmethyl chemical shifts of the 29 kDa HSP90 N-terminal domain bound to a long residence time resorcinol type inhibitor: 5-[4-(2-Fluoro-phenyl)-5-oxo-4,5-dihydro-1H-[1,2,4]triazol-3-yl]-N-furan-2-ylmethyl-2,4-dihydroxy-N-methyl-benzamide. 92% of the backbone resonances and 100% of the [1H, 13C]-resonances of Aβ, Mε, Tγ, Lδ2, Vγ2 and Iδ1 methyl groups were successfully assigned, including for the first time the assignment of the segment covering the nucleotide/drug binding site. Secondary structure predictions based on the NMR assignment reveal a structural rearrangement of HSP90 N-terminal domain upon ligand binding. The long residence time ligand induces the formation of a continuous helix covering the ligand binding site of HSP90 N-terminal domain accounting for the large differences observed in the NMR spectra between the apo and bound proteins.
Collapse
Affiliation(s)
- Faustine Henot
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CNRS, CEA, 71, avenue des martyrs, 38044, Grenoble, France.
| | - Elodie Crublet
- NMR-Bio, 5 place Robert Schuman, 38025, Grenoble, France
| | - Matthias Frech
- Discovery Technologies, Merck KGaA, Frankfurter Straße 250, 64293, Darmstadt, Germany
| | - Jerome Boisbouvier
- Institut de Biologie Structurale (IBS), University Grenoble Alpes, CNRS, CEA, 71, avenue des martyrs, 38044, Grenoble, France.
| |
Collapse
|
5
|
Törner R, Kupreichyk T, Gremer L, Debled EC, Fenel D, Schemmert S, Gans P, Willbold D, Schoehn G, Hoyer W, Boisbouvier J. Structural basis for the inhibition of IAPP fibril formation by the co-chaperonin prefoldin. Nat Commun 2022; 13:2363. [PMID: 35501361 PMCID: PMC9061850 DOI: 10.1038/s41467-022-30042-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/13/2022] [Indexed: 01/16/2023] Open
Abstract
Chaperones, as modulators of protein conformational states, are key cellular actors to prevent the accumulation of fibrillar aggregates. Here, we integrated kinetic investigations with structural studies to elucidate how the ubiquitous co-chaperonin prefoldin inhibits diabetes associated islet amyloid polypeptide (IAPP) fibril formation. We demonstrated that both human and archaeal prefoldin interfere similarly with the IAPP fibril elongation and secondary nucleation pathways. Using archaeal prefoldin model, we combined nuclear magnetic resonance spectroscopy with electron microscopy to establish that the inhibition of fibril formation is mediated by the binding of prefoldin's coiled-coil helices to the flexible IAPP N-terminal segment accessible on the fibril surface and fibril ends. Atomic force microscopy demonstrates that binding of prefoldin to IAPP leads to the formation of lower amounts of aggregates, composed of shorter fibrils, clustered together. Linking structural models with observed fibrillation inhibition processes opens perspectives for understanding the interference between natural chaperones and formation of disease-associated amyloids.
Collapse
Affiliation(s)
- Ricarda Törner
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Tatsiana Kupreichyk
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
| | - Lothar Gremer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Elisa Colas Debled
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Daphna Fenel
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Sarah Schemmert
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Pierre Gans
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Dieter Willbold
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology (State University), Dolgoprudny, Russia
| | - Guy Schoehn
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France
| | - Wolfgang Hoyer
- Institute of Biological Information Processing (IBI-7: Structural Biochemistry) and JuStruct: Jülich Center for Structural Biology, Forschungszentrum Jülich, 52425, Jülich, Germany.
- Institut für Physikalische Biologie, Heinrich-Heine-Universität Düsseldorf, 40225, Düsseldorf, Germany.
| | - Jerome Boisbouvier
- University Grenoble Alpes, CNRS, CEA, Institut de Biologie Structurale (IBS), 71, Avenue des Martyrs, F-38044, Grenoble, France.
| |
Collapse
|