1
|
The evolution of the human mitochondrial bc1 complex- adaptation for reduced rate of superoxide production? J Bioenerg Biomembr 2023; 55:15-31. [PMID: 36737563 DOI: 10.1007/s10863-023-09957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 01/18/2023] [Indexed: 02/05/2023]
Abstract
The mitochondrial bc1 complex is a major source of mitochondrial superoxide. While bc1-generated superoxide plays a beneficial signaling role, excess production of superoxide lead to aging and degenerative diseases. The catalytic core of bc1 comprises three peptides -cytochrome b, Fe-S protein, and cytochrome c1. All three core peptides exhibit accelerated evolution in anthropoid primates. It has been suggested that the evolution of cytochrome b in anthropoids was driven by a pressure to reduce the production of superoxide. In humans, the bc1 core peptides exhibit anthropoid-specific substitutions that are clustered near functionally critical sites that may affect the production of superoxide. Here we compare the high-resolution structures of bovine, mouse, sheep and human bc1 to identify structural changes that are associated with human-specific substitutions. Several cytochrome b substitutions in humans alter its interactions with other subunits. Most significantly, there is a cluster of seven substitutions, in cytochrome b, the Fe-S protein, and cytochrome c1 that affect the interactions between these proteins at the tether arm of the Fe-S protein and may alter the rate of ubiquinone oxidation and the rate of superoxide production. Another cluster of substitutions near heme bH and the ubiquinone reduction site, Qi, may affect the rate of ubiquinone reduction and thus alter the rate of superoxide production. These results are compatible with the hypothesis that cytochrome b in humans (and other anthropoid primates) evolve to reduce the rate of production of superoxide thus enabling the exceptional longevity and exceptional cognitive ability of humans.
Collapse
|
2
|
Rottenberg H. Exceptional longevity and exceptionally high metabolic rates in anthropoid primates are linked to a major modification of the ubiquinone reduction site of cytochrome b. J Bioenerg Biomembr 2014; 46:435-45. [PMID: 24827527 DOI: 10.1007/s10863-014-9552-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 05/07/2014] [Indexed: 11/26/2022]
Abstract
The maximal lifespan of Anthropoid primates (monkeys, apes and humans) exceed the lifespan of most other mammals of equal body mass. Unexpectedly, their exceptional longevity is associated with exceptionally high metabolic rates, in apparent contradiction to the Free Radical Theory of Aging. It was therefore suggested that in anthropoid primates (and several other taxa of mammals and birds) the mitochondrial electron transport complexes evolved to modify the relationship between basal electron transport and superoxide generation to allow for the evolution of exceptional longevity. Cytochrome b, the core protein of the bc1 complex is a major source of superoxide. The amino-acid sequence of cytochrome b evolved much faster in anthropoid than in prosimian primates, and most other mammals, resulting in a large change in the amino-acids composition of the protein. As a result of these changes cytochrome b in anthropoid primates is significantly less hydrophobic and contains more polar residues than other primates and most other mammals. Most of these changes are clustered around the reduction site of uboiquinone. In particular a key positively charged residue, arginine 313, that interacts with propionate D of heme bH, and thus raises its redox potential, is substituted in anthropoid primates with the neutral residue glutamine, most likely resulting in a lower redox potential of heme bH and faster reduction of ubiquinone at high proton motive force. It is suggested that these changes contribute to the observed increased rates of basal metabolism and reduce the rates of superoxide production, thus allowing for increased lifespan.
Collapse
Affiliation(s)
- Hagai Rottenberg
- New Hope Biomedical R&D, 23 W. Bridge Street, New Hope, PA, 18938, USA,
| |
Collapse
|
3
|
Pierron D, Wildman DE, Hüttemann M, Letellier T, Grossman LI. Evolution of the couple cytochrome c and cytochrome c oxidase in primates. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 748:185-213. [PMID: 22729859 DOI: 10.1007/978-1-4614-3573-0_8] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Mitochondrial energy metabolism has been affected by a broad set of ancient and recent evolutionary events. The oldest example is the endosymbiosis theory that led to mitochondria and a recently proposed example is adaptation to cold climate by anatomically modern human lineages. Mitochondrial energy metabolism has also been associated with an important area in anthropology and evolutionary biology, brain enlargement in human evolution. Indeed, several studies have pointed to the need for a major metabolic rearrangement to supply a sufficient amount of energy for brain development in primates.The genes encoding for the coupled cytochrome c (Cyt c) and cytochrome c oxidase (COX, complex IV, EC 1.9.3.1) seem to have an exceptional pattern of evolution in the anthropoid lineage. It has been proposed that this evolution was linked to the rearrangement of energy metabolism needed for brain enlargement. This hypothesis is reinforced by the fact that the COX enzyme was proposed to have a large role in control of the respiratory chain and thereby global energy production.After summarizing major events that occurred during the evolution of COX and cytochrome c on the primate lineage, we review the different evolutionary forces that could have influenced primate COX evolution and discuss the probable causes and consequences of this evolution. Finally, we discuss and review the co-occurring primate phenotypic evolution.
Collapse
Affiliation(s)
- Denis Pierron
- Wayne State University School of Medicine, Detroit, MI 48201, USA
| | | | | | | | | |
Collapse
|
4
|
Pierron D, Opazo JC, Heiske M, Papper Z, Uddin M, Chand G, Wildman DE, Romero R, Goodman M, Grossman LI. Silencing, positive selection and parallel evolution: busy history of primate cytochromes C. PLoS One 2011; 6:e26269. [PMID: 22028846 PMCID: PMC3196546 DOI: 10.1371/journal.pone.0026269] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/23/2011] [Indexed: 12/20/2022] Open
Abstract
Cytochrome c (cyt c) participates in two crucial cellular processes, energy production and apoptosis, and unsurprisingly is a highly conserved protein. However, previous studies have reported for the primate lineage (i) loss of the paralogous testis isoform, (ii) an acceleration and then a deceleration of the amino acid replacement rate of the cyt c somatic isoform, and (iii) atypical biochemical behavior of human cyt c. To gain insight into the cause of these major evolutionary events, we have retraced the history of cyt c loci among primates. For testis cyt c, all primate sequences examined carry the same nonsense mutation, which suggests that silencing occurred before the primates diversified. For somatic cyt c, maximum parsimony, maximum likelihood, and Bayesian phylogenetic analyses yielded the same tree topology. The evolutionary analyses show that a fast accumulation of non-synonymous mutations (suggesting positive selection) occurred specifically on the anthropoid lineage root and then continued in parallel on the early catarrhini and platyrrhini stems. Analysis of evolutionary changes using the 3D structure suggests they are focused on the respiratory chain rather than on apoptosis or other cyt c functions. In agreement with previous biochemical studies, our results suggest that silencing of the cyt c testis isoform could be linked with the decrease of primate reproduction rate. Finally, the evolution of cyt c in the two sister anthropoid groups leads us to propose that somatic cyt c evolution may be related both to COX evolution and to the convergent brain and body mass enlargement in these two anthropoid clades.
Collapse
Affiliation(s)
- Denis Pierron
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Perinatology Research Branch, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland and Detroit, Michigan, United States of America
| | - Juan C. Opazo
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Instituto de Ecologia y Evolucion, Facultad de Ciencias, Universidad Austral de Chile, Valdivia, Chile
| | - Margit Heiske
- Laboratoire de Physiopathologie Mitochondriale, INSERM, Université Victor Segalen Bordeaux 2, Bordeaux, France
| | - Zack Papper
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Monica Uddin
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- School of Public Health, The University of Michigan, Ann Arbor, Michigan, United States of America
| | - Gopi Chand
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Perinatology Research Branch, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland and Detroit, Michigan, United States of America
| | - Derek E. Wildman
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Perinatology Research Branch, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland and Detroit, Michigan, United States of America
- Department Of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Roberto Romero
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Perinatology Research Branch, National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland and Detroit, Michigan, United States of America
| | - Morris Goodman
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- Department of Anatomy and Cell Biology, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
| | - Lawrence I. Grossman
- Center for Molecular Medicine and Genetics, Wayne State University, School of Medicine, Detroit, Michigan, United States of America
- * E-mail:
| |
Collapse
|
5
|
Oldham MC, Horvath S, Geschwind DH. Conservation and evolution of gene coexpression networks in human and chimpanzee brains. Proc Natl Acad Sci U S A 2006; 103:17973-8. [PMID: 17101986 PMCID: PMC1693857 DOI: 10.1073/pnas.0605938103] [Citation(s) in RCA: 424] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2006] [Indexed: 12/28/2022] Open
Abstract
Comparisons of gene expression between human and non-human primate brains have identified hundreds of differentially expressed genes, yet translating these lists into key functional distinctions between species has proved difficult. Here we provide a more integrated view of human brain evolution by examining the large-scale organization of gene coexpression networks in human and chimpanzee brains. We identify modules of coexpressed genes that correspond to discrete brain regions and quantify their conservation between the species. Module conservation in cerebral cortex is significantly weaker than module conservation in subcortical brain regions, revealing a striking gradient that parallels known evolutionary hierarchies. We introduce a method for identifying species-specific network connections and demonstrate how differential network connectivity can be used to identify key drivers of evolutionary change. By integrating our results with comparative genomic sequence data and estimates of protein sequence divergence rates, we confirm a number of network predictions and validate these findings. Our results provide insights into the molecular bases of primate brain organization and demonstrate the general utility of weighted gene coexpression network analysis.
Collapse
Affiliation(s)
- Michael C. Oldham
- *Interdepartmental Program for Neuroscience
- Neurology, Program in Neurogenetics, and
- Semel Institute, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA 90095-6814
| | | | - Daniel H. Geschwind
- Human Genetics, and
- Neurology, Program in Neurogenetics, and
- Semel Institute, David Geffen School of Medicine, 710 Westwood Plaza, Los Angeles, CA 90095-6814
| |
Collapse
|
6
|
Goodman M, Grossman LI, Wildman DE. Moving primate genomics beyond the chimpanzee genome. Trends Genet 2005; 21:511-7. [PMID: 16009448 DOI: 10.1016/j.tig.2005.06.012] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Revised: 06/06/2005] [Accepted: 06/30/2005] [Indexed: 11/16/2022]
Abstract
The comparative DNA sequence data that already exist on individual genomic loci depict the phylogenetic relationships of nearly all extant primate genera. Such a phylogenetic representation of the primates, validated by many sequenced primate genomes, and encompassing the full adaptive diversity of the order, is a prerequisite for identifying the genetic basis of humankind, and for testing the proposed human uniqueness of these traits. Some of these traits have been discovered recently, particularly in genes encoding proteins that are important for brain function.
Collapse
Affiliation(s)
- Morris Goodman
- Department of Anatomy and Cell Biology, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | |
Collapse
|