1
|
Rapid Transient Transcriptional Adaptation to Hypergravity in Jurkat T Cells Revealed by Comparative Analysis of Microarray and RNA-Seq Data. Int J Mol Sci 2021; 22:ijms22168451. [PMID: 34445156 PMCID: PMC8395121 DOI: 10.3390/ijms22168451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/30/2021] [Accepted: 08/02/2021] [Indexed: 12/12/2022] Open
Abstract
Cellular responses to micro- and hypergravity are rapid and complex and appear within the first few seconds of exposure. Transcriptomic analyses are a valuable tool to analyze these genome-wide cellular alterations. For a better understanding of the cellular dynamics upon altered gravity exposure, it is important to compare different time points. However, since most of the experiments are designed as endpoint measurements, the combination of cross-experiment meta-studies is inevitable. Microarray and RNA-Seq analyses are two of the main methods to study transcriptomics. In the field of altered gravity research, both methods are frequently used. However, the generation of these data sets is difficult and time-consuming and therefore the number of available data sets in this research field is limited. In this study, we investigated the comparability of microarray and RNA-Seq data and applied the results to a comparison of the transcriptomics dynamics between the hypergravity conditions during two real flight platforms and a centrifuge experiment to identify temporal adaptation processes. We performed a comparative study on an Affymetrix HTA2.0 microarray and a paired-end RNA-Seq data set originating from the same Jurkat T cell RNA samples from a short-term hypergravity experiment. The overall agreeability was high, with better sensitivity of the RNA-Seq analysis. The microarray data set showed weaknesses on the level of single upregulated genes, likely due to its normalization approach. On an aggregated level of biotypes, chromosomal distribution, and gene sets, both technologies performed equally well. The microarray showed better performance on the detection of altered gravity-related splicing events. We found that all initially altered transcripts fully adapted after 15 min to hypergravity and concluded that the altered gene expression response to hypergravity is transient and fully reversible. Based on the combined multiple-platform meta-analysis, we could demonstrate rapid transcriptional adaptation to hypergravity, the differential expression of the ATPase subunits ATP6V1A and ATP6V1D, and the cluster of differentiation (CD) molecules CD1E, CD2AP, CD46, CD47, CD53, CD69, CD96, CD164, and CD226 in hypergravity. We could experimentally demonstrate that it is possible to develop methodological evidence for the meta-analysis of individual data.
Collapse
|
2
|
Freire MS, Oliveira NG, Lima SMF, Porto WF, Martins DCM, Silva ON, Chaves SB, Sousa MV, Ricart CAO, Castro MS, Fontes W, Franco OL, Rezende TMB. IL-4 absence triggers distinct pathways in apical periodontitis development. J Proteomics 2020; 233:104080. [PMID: 33338687 DOI: 10.1016/j.jprot.2020.104080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/17/2020] [Accepted: 12/12/2020] [Indexed: 12/18/2022]
Abstract
Dental pulp is a specialized tissue able to respond to infectious processes. Nevertheless, infection progress and root canal colonization trigger an immune-inflammatory response in tooth-surrounding tissues, leading to apical periodontitis and bone tissue destruction, further contributing to tooth loss. In order to shed some light on the effects of IL-4 on periradicular pathology development modulation, microtomographic, histological and proteomic analyses were performed using 60 mice, 30 wild type and 30 IL-4-/-. For that, 5 animals were used for microtomographic and histological analysis, and another 5 for proteomic analysis for 0, 7 and 21 days with/without pulp exposure. The periapical lesions were established in WT and IL-4-/- mice without statistical differences in their volume, and the value of p < 0.05 was adopted as significant in microtomographic and histological analyses. Regarding histological analysis, IL-4-/- mice show aggravation of pulp inflammation compared to WT. By using proteomic analysis, we have identified 32 proteins with increased abundance and 218 proteins with decreased abundance in WT animals after 21 days of pulp exposure, compared to IL-4-/- animals. However, IL-4-/- mice demonstrated faster development of apical periodontitis. These animals developed a compensatory mechanism to overcome IL-4 absence, putatively based on the identification of upregulated proteins related to immune system signaling pathways. Significance: IL-4 might play a protective role in diseases involving bone destruction and its activity may contribute to host protection, mainly due to its antiosteoclastogenic action.
Collapse
Affiliation(s)
- Mirna S Freire
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Curso de Odontologia, Centro Universitário do Planalto Central Apparecido dos Santos, UNICEPLAC, Brasília, DF, Brazil
| | - Nelson G Oliveira
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Stella M F Lima
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Curso de Odontologia, Universidade Católica de Brasília, UCB, Brasília, DF, Brazil
| | - William F Porto
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Porto Reports, Brasília, DF, Brazil
| | - Danilo C M Martins
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade de Brasília, UnB, Brasília, DF, Brazil
| | - Osmar N Silva
- Programa de Pós-graduacao em Ciências Farmacêuticas. Centro Universitário de Anápolis - UniEVANGELICA, Anápolis, GO, Brazil
| | - Sacha B Chaves
- Departamento de nanotecnologia, Universidade de Brasília, Brazil
| | - Marcelo V Sousa
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | - Carlos A O Ricart
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | - Mariana S Castro
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | - Wagner Fontes
- Laboratório de Bioquímica e Química de Proteínas, Departamento de Biologia Celular, Universidade de Brasília, Brazil
| | - Octavio L Franco
- Programa de Pós-Graduação em Biotecnologia e Biodiversidade, Universidade de Brasília, Brasília, DF, Brazil; Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade de Brasília, UnB, Brasília, DF, Brazil; Programa de Pós-Graduação em Patologia Molecular, Universidade de Brasília, Brasília, DF, Brazil.
| | - Taia M B Rezende
- Centro de Análises Proteômicas e Bioquímicas, Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Curso de Odontologia, Universidade Católica de Brasília, UCB, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Ciências da Saúde, Universidade de Brasília, UnB, Brasília, DF, Brazil.
| |
Collapse
|
3
|
Serra-Peinado C, Sicart A, Llopis J, Egea G. Actin Filaments Are Involved in the Coupling of V0-V1 Domains of Vacuolar H+-ATPase at the Golgi Complex. J Biol Chem 2016; 291:7286-99. [PMID: 26872971 DOI: 10.1074/jbc.m115.675272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Indexed: 11/06/2022] Open
Abstract
We previously reported that actin-depolymerizing agents promote the alkalization of the Golgi stack and thetrans-Golgi network. The main determinant of acidic pH at the Golgi is the vacuolar-type H(+)-translocating ATPase (V-ATPase), whose V1domain subunitsBandCbind actin. We have generated a GFP-tagged subunitB2construct (GFP-B2) that is incorporated into the V1domain, which in turn is coupled to the V0sector. GFP-B2 subunit is enriched at distal Golgi compartments in HeLa cells. Subcellular fractionation, immunoprecipitation, and inversal FRAP experiments show that the actin depolymerization promotes the dissociation of V1-V0domains, which entails subunitB2translocation from Golgi membranes to the cytosol. Moreover, molecular interaction between subunitsB2andC1and actin were detected. In addition, Golgi membrane lipid order disruption byd-ceramide-C6 causes Golgi pH alkalization. We conclude that actin regulates the Golgi pH homeostasis maintaining the coupling of V1-V0domains of V-ATPase through the binding of microfilaments to subunitsBandCand preserving the integrity of detergent-resistant membrane organization. These results establish the Golgi-associated V-ATPase activity as the molecular link between actin and the Golgi pH.
Collapse
Affiliation(s)
- Carla Serra-Peinado
- From the Department de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, E-08036 Barcelona
| | - Adrià Sicart
- From the Department de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, E-08036 Barcelona
| | - Juan Llopis
- the Facultad de Medicina de Albacete and Centro Regional de Investigaciones Biomédicas, Universidad de Castilla-La Mancha, E-0200 Albacete, Spain
| | - Gustavo Egea
- From the Department de Biologia Cellular, Immunologia i Neurociències, Facultat de Medicina, Universitat de Barcelona, E-08036 Barcelona, the Institut d'Investigació Biomèdica August Pi i Sunyer, E-08036 Barcelona, the Institut de Nanociència i Nanotecnologia (INUB), E-08036 Barcelona, and
| |
Collapse
|
4
|
Seidel T, Siek M, Marg B, Dietz KJ. Energization of vacuolar transport in plant cells and its significance under stress. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2013; 304:57-131. [PMID: 23809435 DOI: 10.1016/b978-0-12-407696-9.00002-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The plant vacuole is of prime importance in buffering environmental perturbations and in coping with abiotic stress caused by, for example, drought, salinity, cold, or UV. The large volume, the efficient integration in anterograde and retrograde vesicular trafficking, and the dynamic equipment with tonoplast transporters enable the vacuole to fulfill indispensible functions in cell biology, for example, transient and permanent storage, detoxification, recycling, pH and redox homeostasis, cell expansion, biotic defence, and cell death. This review first focuses on endomembrane dynamics and then summarizes the functions, assembly, and regulation of secretory and vacuolar proton pumps: (i) the vacuolar H(+)-ATPase (V-ATPase) which represents a multimeric complex of approximately 800 kDa, (ii) the vacuolar H(+)-pyrophosphatase, and (iii) the plasma membrane H(+)-ATPase. These primary proton pumps regulate the cytosolic pH and provide the driving force for secondary active transport. Carriers and ion channels modulate the proton motif force and catalyze uptake and vacuolar compartmentation of solutes and deposition of xenobiotics or secondary compounds such as flavonoids. ABC-type transporters directly energized by MgATP complement the transport portfolio that realizes the multiple functions in stress tolerance of plants.
Collapse
Affiliation(s)
- Thorsten Seidel
- Biochemistry and Physiology of Plants, Faculty of Biology, Bielefeld University, Bielefeld, Germany.
| | | | | | | |
Collapse
|
5
|
Ma B, Qian D, Nan Q, Tan C, An L, Xiang Y. Arabidopsis vacuolar H+-ATPase (V-ATPase) B subunits are involved in actin cytoskeleton remodeling via binding to, bundling, and stabilizing F-actin. J Biol Chem 2012; 287:19008-17. [PMID: 22371505 DOI: 10.1074/jbc.m111.281873] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Vacuolar H(+)-ATPase (V-ATPase) is a membrane-bound multisubunit enzyme complex composed of at least 14 different subunits. The complex regulates the physiological processes of a cell by controlling the acidic environment, which is necessary for certain activities and the interaction with the actin cytoskeleton through its B and C subunits in both humans and yeast. Arabidopsis V-ATPase has three B subunits (AtVAB1, AtVAB2, and AtVAB3), which share 97.27% sequence identity and have two potential actin-binding sites, indicating that these AtVABs may have crucial functions in actin cytoskeleton remodeling and plant cell development. However, their biochemical functions are poorly understood. In this study, we demonstrated that AtVABs bind to and co-localize with F-actin, bundle F-actin to form higher order structures, and stabilize actin filaments in vitro. In addition, the AtVABs also show different degrees of activities in capping the barbed ends but no nucleating activities, and these activities were not regulated by calcium. The functional similarity and differences of the AtVABs implied that they may play cooperative and distinct roles in Arabidopsis cells.
Collapse
Affiliation(s)
- Binyun Ma
- School of life Sciences, Lanzhou University, Lanzhou 730070, China
| | | | | | | | | | | |
Collapse
|
6
|
Crotti TN, O'Sullivan RP, Shen Z, Flannery MR, Fajardo RJ, Ross FP, Goldring SR, McHugh KP. Bone matrix regulates osteoclast differentiation and annexin A8 gene expression. J Cell Physiol 2011; 226:3413-21. [PMID: 21344395 DOI: 10.1002/jcp.22699] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
While attachment to bone is required for optimal osteoclast function, the molecular events that underlie this fact are unclear, other than that the cell requires adhesion to mineralized matrix to assume a fully differentiated phenotype. To address this issue, we cultured murine bone marrow-derived osteoclasts on either cell culture plastic or devitalized mouse calvariae to identify the distinct genetic profile induced by interaction with bone. Among a number of genes previously unknown to be expressed in osteoclasts we found that Annexin A8 (AnxA8) mRNA was markedly up-regulated by bone. AnxA8 protein was present at high levels in osteoclasts present in human tissues recovered from sites of pathological bone loss. The presence of bone mineral was required for up-regulation of AnxA8 mRNA since osteoclasts plated on decalcified bone express AnxA8 at low levels as did osteoclasts plated on native or denatured type I collagen. Finally, AnxA8-regulated cytoskeletal reorganization in osteoclasts generated on a mineralized matrix. Thus, we used a novel approach to define a distinct bone-dependent genetic program associated with terminal osteoclast differentiation and identified Anxa8 as a gene strongly induced late in osteoclast differentiation and a protein that regulates formation of the cell's characteristic actin ring.
Collapse
Affiliation(s)
- Tania N Crotti
- Discipline of Anatomy and Pathology, School of Medical Sciences, University of Adelaide, South Australia, Australia
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ma B, Xiang Y, An L. Structural bases of physiological functions and roles of the vacuolar H(+)-ATPase. Cell Signal 2011; 23:1244-56. [PMID: 21397012 DOI: 10.1016/j.cellsig.2011.03.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/03/2011] [Indexed: 12/09/2022]
Abstract
Vacuolar-type H(+)-ATPases (V-ATPases) is a large multi-protein complex containing at least 14 different subunits, in which subunits A, B, C, D, E, F, G, and H compose the peripheral 500-kDa V(1) responsible for ATP hydrolysis, and subunits a, c, c', c″, and d assembly the 250-kDa membrane-integral V(0) harboring the rotary mechanism to transport protons across the membrane. The assembly of V-ATPases requires the presence of all V(1) and V(0) subunits, in which the V(1) must be completely assembled prior to association with the V(0), accordingly the V(0) failing to assemble cannot provide a membrane anchor for the V(1), thereby prohibiting membrane association of the V-ATPase subunits. The V-ATPase mediates acidification of intracellular compartments and regulates diverse critical physiological processes of cell for functions of its numerous functional subunits. The core catalytic mechanism of the V-ATPase is a rotational catalytic mechanism. The V-ATPase holoenzyme activity is regulated by the reversible assembly/disassembly of the V(1) and V(0), the targeting and recycling of V-ATPase-containing vesicles to and from the plasma membrane, the coupling ratio between ATP hydrolysis and proton pumping, ATP, Ca(2+), and its inhibitors and activators.
Collapse
Affiliation(s)
- Binyun Ma
- Key Laboratory of Arid and Grassland Agroecology of Ministry of Education, School of Life Sciences, Lanzhou University, 730000, Lanzhou, China
| | | | | |
Collapse
|
8
|
Sakai H, Moriura Y, Notomi T, Kawawaki J, Ohnishi K, Kuno M. Phospholipase C-dependent Ca2+-sensing pathways leading to endocytosis and inhibition of the plasma membrane vacuolar H+-ATPase in osteoclasts. Am J Physiol Cell Physiol 2010; 299:C570-8. [DOI: 10.1152/ajpcell.00486.2009] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In osteoclasts, elevation of extracellular Ca2+ is an endogenous signal that inhibits bone resorption. We recently found that an elevation of extracellular Ca2+ decreased proton extrusion through the plasma membrane vacuolar H+-ATPase (V-ATPase) rapidly. In this study we investigated mechanisms underlying this early Ca2+-sensing response, particularly in reference to the activity of the plasma membrane V-ATPase and to membrane retrieval. Whole cell clamp recordings allowed us to measure the V-ATPase currents and the cell capacitance ( Cm) simultaneously. Cm is a measure of cell surface. Extracellular Ca2+ (2.5–40 mM) decreased Cm and the V-ATPase current simultaneously. The decreased Cm, together with the enhanced uptake of a lipophilic dye (FM1–43), indicated that Ca2+ facilitated endocytosis. The endocytosis was blocked by dynamin inhibitors (dynasore and dynamin-inhibitory peptide), by small interfering RNA (siRNA) targeting for dynanmin-2 and also by bafilomycin A1, a blocker of V-ATPases. The extracellular Ca2+-induced endocytosis and inhibition of the V-ATPase current were diminished by a phospholipase C inhibitor (U73122) and siRNA targeting for phospholipase C γ2 subunit. Holding the cytosolic Ca2+ at either high (0.5–5 μM) or low levels or inhibiting calmodulin by an inhibitor (W7) or an antibody (anti-CaM) decreased the stimulated endocytosis and the inhibition of the V-ATPase current. These data suggest that extracellular Ca2+ facilitated dynamin- and V-ATPase-dependent endocytosis in association with an inhibition of the plasma membrane V-ATPase. Phospholipase C, cytosolic Ca2+, and calmodulin were involved in the signaling pathways. Membrane retrieval and the plasma membrane V-ATPase activity may cooperate during the early phase of Ca2+-sensing response in osteoclasts.
Collapse
Affiliation(s)
| | | | | | - Junko Kawawaki
- Central Laboratory, Graduate School of Medicine, Osaka City University, Japan
| | | | | |
Collapse
|
9
|
Sharma P, Patntirapong S, Hann S, Hauschka PV. RANKL-RANK signaling regulates expression of xenotropic and polytropic virus receptor (XPR1) in osteoclasts. Biochem Biophys Res Commun 2010; 399:129-32. [PMID: 20633538 PMCID: PMC4667747 DOI: 10.1016/j.bbrc.2010.07.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 07/08/2010] [Indexed: 11/29/2022]
Abstract
Formation of multinucleated bone-resorbing osteoclasts results from activation of the receptor activated NF-kappaB ligand (RANKL)-receptor activated NF-kappaB (RANK) signaling pathway in primary bone marrow macrophages and a macrophage cell line (RAW 264.7). Osteoclasts, through bone remodeling, are key participants in the homeostatic regulation of calcium and phosphate levels within the body. Microarray analysis using Gene Expression Dynamic Inspector (GEDI) clustering software indicated that osteoclast differentiation is correlated with an increase in xenotropic and polytropic virus receptor 1 (XPR1) mRNA transcripts. XPR1 is a receptor of the xenotropic and polytropic murine leukemia virus and homolog of yeast Syg1 and plant Pi transporter PHO1. Quantitative PCR was used to validate the up-regulation of XPR1 message following RANKL stimulation in both primary bone marrow cells and a macrophage cell line. Immunostaining for the XPR1 protein showed that there is translocation of XPR1 to the membranes of the sealing zone in mature osteoclasts. This study is the first to demonstrate that the expression of retro-viral receptor, XPR1, is regulated by RANKL-RANK signaling.
Collapse
Affiliation(s)
- Parul Sharma
- Department of Orthopedic Surgery, Children's Hospital, Boston. MA-02115
| | - Somying Patntirapong
- Department of Orthopedic Surgery, Children's Hospital, Boston. MA-02115
- Faculty of Dentistry, Thammasat University, Patumthani, 12121. Thailand
| | - Steven Hann
- Department of Orthopedic Surgery, Children's Hospital, Boston. MA-02115
| | - Peter V. Hauschka
- Department of Orthopedic Surgery, Children's Hospital, Boston. MA-02115
| |
Collapse
|
10
|
Serrano EM, Ricofort RD, Zuo J, Ochotny N, Manolson MF, Holliday LS. Regulation of vacuolar H(+)-ATPase in microglia by RANKL. Biochem Biophys Res Commun 2009; 389:193-7. [PMID: 19715671 PMCID: PMC2758416 DOI: 10.1016/j.bbrc.2009.08.122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2009] [Accepted: 08/24/2009] [Indexed: 01/18/2023]
Abstract
Vacuolar H(+)-ATPases (V-ATPases) are large electrogenic proton pumps composed of numerous subunits that play vital housekeeping roles in the acidification of compartments of the endocytic pathway. Additionally, V-ATPases play specialized roles in certain cell types, a capacity that is linked to cell type selective expression of isoforms of some of the subunits. We detected low levels of the a3 isoform of the a-subunit in mouse brain extracts. Examination of various brain-derived cell types by immunoblotting showed a3 was expressed in the N9 microglia cell line and in primary microglia, but not in other cell types. The expression of a3 in osteoclasts requires stimulation by Receptor Activator of Nuclear Factor kappaB-ligand (RANKL). We found that Receptor Activator of Nuclear Factor kappaB (RANK) was expressed by microglia. Stimulation of microglia with RANKL triggered increased expression of a3. V-ATPases in microglia were shown to bind microfilaments, and stimulation with RANKL increased the proportion of V-ATPase associated with the detergent-insoluble cytoskeletal fraction and with actin. In summary, microglia express the a3-subunit of V-ATPase. The expression of a3 and the interaction between V-ATPases and microfilaments was modulated by RANKL. These data suggest a novel molecular pathway for regulating microglia.
Collapse
Affiliation(s)
- Eric M. Serrano
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610
| | - Ryan D. Ricofort
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610
| | - Jian Zuo
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610
| | - Noelle Ochotny
- Department of Pharmacology, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - Morris F. Manolson
- Faculty of Dentistry, University of Toronto, Toronto, Ontario M5G 1G6, Canada
| | - L. Shannon Holliday
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610
- Department of Anatomy & Cell Biology, University of Florida College of Medicine, Gainesville, FL 32610
| |
Collapse
|
11
|
Holliday LS, Ostrov DA, Wronski TJ, Dolce C. Osteoclast polarization and orthodontic tooth movement. Orthod Craniofac Res 2009; 12:105-12. [DOI: 10.1111/j.1601-6343.2009.01443.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
12
|
Meléndez-Hernández MG, Barrios MLL, Orozco E, Luna-Arias JP. The vacuolar ATPase from Entamoeba histolytica: molecular cloning of the gene encoding for the B subunit and subcellular localization of the protein. BMC Microbiol 2008; 8:235. [PMID: 19108705 PMCID: PMC2629482 DOI: 10.1186/1471-2180-8-235] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2008] [Accepted: 12/23/2008] [Indexed: 11/10/2022] Open
Abstract
Background Entamoeba histolytica is a professional phagocytic cell where the vacuolar ATPase plays a key role. This enzyme is a multisubunit complex that regulates pH in many subcellular compartments, even in those that are not measurably acidic. It participates in a wide variety of cellular processes such as endocytosis, intracellular transport and membrane fusion. The presence of a vacuolar type H+-ATPase in E. histolytica trophozoites has been inferred previously from inhibition assays of its activity, the isolation of the Ehvma1 and Ehvma3 genes, and by proteomic analysis of purified phagosomes. Results We report the isolation and characterization of the Ehvma2 gene, which encodes for the subunit B of the vacuolar ATPase. This polypeptide is a 55.3 kDa highly conserved protein with 34 to 80% identity to orthologous proteins from other species. Particularly, in silico studies showed that EhV-ATPase subunit B displays 78% identity and 90% similarity to its Dictyostelium ortholog. A 462 bp DNA fragment of the Ehvma2 gene was expressed in bacteria and recombinant polypeptide was used to raise mouse polyclonal antibodies. EhV-ATPase subunit B antibodies detected a 55 kDa band in whole cell extracts and in an enriched fraction of DNA-containing organelles named EhkOs. The V-ATPase subunit B was located by immunofluorescence and confocal microscopy in many vesicles, in phagosomes, plasma membrane and in EhkOs. We also identified the genes encoding for the majority of the V-ATPase subunits in the E. histolytica genome, and proposed a putative model for this proton pump. Conclusion We have isolated the Ehvma2 gene which encodes for the V-ATPase subunit B from the E. histolytica clone A. This gene has a 154 bp intron and encodes for a highly conserved polypeptide. Specific antibodies localized EhV-ATPase subunit B in many vesicles, phagosomes, plasma membrane and in EhkOs. Most of the orthologous genes encoding for the EhV-ATPase subunits were found in the E. histolytica genome, indicating the conserved nature of V-ATPase in this parasite.
Collapse
|
13
|
Arana-Chavez VE, Bradaschia-Correa V. Clastic cells: mineralized tissue resorption in health and disease. Int J Biochem Cell Biol 2008; 41:446-50. [PMID: 18840541 DOI: 10.1016/j.biocel.2008.09.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2008] [Revised: 08/28/2008] [Accepted: 09/08/2008] [Indexed: 10/21/2022]
Abstract
Clastic cells are responsible for mineralized tissue resorption. Bone resorbing cells are called osteoclasts; however, they are able to resorb mineralized dental tissues or calcified cartilage and then they are called odontoclasts and chondroclasts, respectively. They derive from mononuclear precursors of the monocyte-macrophage lineage from hemopoietic tissue, reach target mineralized tissues and degrade them under many different physiologic or pathologic stimuli. Clastic cells play a key role in calcium homeostasis, and participate in skeletal growth, tooth movement, and other physiological and pathological events. They interact tightly with forming cells in bone and dental hard tissues; their unbalance may result in disturbed resorptive activity thus, causing local or systemic diseases.
Collapse
Affiliation(s)
- Victor E Arana-Chavez
- Laboratory of Mineralized Tissue Biology, Department of Cell and Developmental Biology, Institute of Biomedical Sciences, University of São Paulo, 05508-900 São Paulo, SP, Brazil.
| | | |
Collapse
|
14
|
Zuo J, Vergara S, Kohno S, Holliday LS. Biochemical and functional characterization of the actin-binding activity of the B subunit of yeast vacuolar H+-ATPase. ACTA ACUST UNITED AC 2008; 211:1102-8. [PMID: 18344484 DOI: 10.1242/jeb.013672] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Vacuolar H+-ATPase (V-ATPase) is a fundamentally important enzyme in eukaryotic cells that is responsible for acidification of endocytic compartments. The B subunits of V-ATPases from mammals and tobacco hornworm have been shown to bind actin filaments. Actin-binding activity by the B subunit is required for targeting V-ATPases to the plasma membrane of osteoclasts. Bacterially expressed B subunit from the yeast Saccharomyces cerevisiae bound actin filaments with a Kd of 195 nmol l(-1). The actin-binding domain of the B subunit was altered by mutations that reduced or eliminated the actin-binding activity. Mutants assembled properly with endogenous yeast subunits when expressed in B subunit-null yeast and bafilomycin-sensitive ATPase activity was not significantly different from yeast transformed with wild-type B subunit. Yeast containing the mutant subunits grew as well at pH 7.5 as wild-type. Screening null yeast or null yeast transformed with wild-type or mutant B subunits with sub-lethal doses of various drugs revealed that yeast containing the mutant B subunits were more sensitive to cycloheximide and wortmannin than those transformed with wild-type B subunits. These results suggest that actin-binding activity confers on the B subunit of yeast a function that is distinct from its role in the enzymatic activity of the proton pump.
Collapse
Affiliation(s)
- Jian Zuo
- Department of Orthodontics, University of Florida College of Dentistry, Gainesville, FL 32610, USA
| | | | | | | |
Collapse
|