1
|
Singh D, Grüber G. Crystallographic and enzymatic insights into the mechanisms of Mg-ADP inhibition in the A 1 complex of the A 1A O ATP synthase. J Struct Biol 2017; 201:26-35. [PMID: 29074108 DOI: 10.1016/j.jsb.2017.10.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 10/19/2017] [Accepted: 10/21/2017] [Indexed: 01/02/2023]
Abstract
F-ATP synthases are described to have mechanisms which regulate the unnecessary depletion of ATP pool during an energy limited state of the cell. Mg-ADP inhibition is one of the regulatory features where Mg-ADP gets entrapped in the catalytic site, preventing the binding of ATP and further inhibiting ATP hydrolysis. Knowledge about the existence and regulation of the related archaeal-type A1AO ATP synthases (A3B3CDE2FG2ac) is limited. We demonstrate MgADP inhibition of the enzymatically active A3B3D- and A3B3DF complexes of Methanosarcina mazei Gö1 A-ATP synthase and reveal the importance of the amino acids P235 and S238 inside the P-loop (GPFGSGKTV) of the catalytic A subunit. Substituting these two residues by the respective P-loop residues alanine and cysteine (GAFGCGKTV) of the related eukaryotic V-ATPase increases significantly the ATPase activity of the enzyme variant and abolishes MgADP inhibition. The atomic structure of the P235A, S238C double mutant of subunit A of the Pyrococcus horikoshii OT3 A-ATP synthase provides details of how these critical residues affect nucleotide-binding and ATP hydrolysis in this molecular engine. The qualitative data are confirmed by quantitative results derived from fluorescence correlation spectroscopy experiments.
Collapse
Affiliation(s)
- Dhirendra Singh
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Gerhard Grüber
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
2
|
Singh D, Sielaff H, Börsch M, Grüber G. Conformational dynamics of the rotary subunit F in the A 3 B 3 DF complex of Methanosarcina mazei Gö1 A-ATP synthase monitored by single-molecule FRET. FEBS Lett 2017; 591:854-862. [PMID: 28231387 DOI: 10.1002/1873-3468.12605] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 02/13/2017] [Accepted: 02/16/2017] [Indexed: 12/28/2022]
Abstract
In archaea the A1 AO ATP synthase uses a transmembrane electrochemical potential to generate ATP, while the soluble A1 domain (subunits A3 B3 DF) alone can hydrolyse ATP. The three nucleotide-binding AB pairs form a barrel-like structure with a central orifice that hosts the rotating central stalk subunits DF. ATP binding, hydrolysis and product release cause a conformational change inside the A:B-interface, which enforces the rotation of subunits DF. Recently, we reported that subunit F is a stimulator of ATPase activity. Here, we investigated the nucleotide-dependent conformational changes of subunit F relative to subunit D during ATP hydrolysis in the A3 B3 DF complex of the Methanosarcina mazei Gö1 A-ATP synthase using single-molecule Förster resonance energy transfer. We found two conformations for subunit F during ATP hydrolysis.
Collapse
Affiliation(s)
- Dhirendra Singh
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Hendrik Sielaff
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Single-Molecule Microscopy Group, Jena University Hospital, Germany
| | - Michael Börsch
- Single-Molecule Microscopy Group, Jena University Hospital, Germany
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Singh D, Sielaff H, Sundararaman L, Bhushan S, Grüber G. The stimulating role of subunit F in ATPase activity inside the A1-complex of the Methanosarcina mazei Gö1 A1AO ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:177-187. [PMID: 26682760 DOI: 10.1016/j.bbabio.2015.12.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/19/2015] [Accepted: 12/03/2015] [Indexed: 10/22/2022]
Abstract
A1AO ATP synthases couple ion-transport of the AO sector and ATP synthesis/hydrolysis of the A3B3-headpiece via their stalk subunits D and F. Here, we produced and purified stable A3B3D- and A3B3DF-complexes of the Methanosarcina mazei Gö1 A-ATP synthase as confirmed by electron microscopy. Enzymatic studies with these complexes showed that the M. mazei Gö1 A-ATP synthase subunit F is an ATPase activating subunit. The maximum ATP hydrolysis rates (Vmax) of A3B3D and A3B3DF were determined by substrate-dependent ATP hydrolysis experiments resulting in a Vmax of 7.9 s(-1) and 30.4 s(-1), respectively, while the KM is the same for both. Deletions of the N- or C-termini of subunit F abolished the effect of ATP hydrolysis activation. We generated subunit F mutant proteins with single amino acid substitutions and demonstrated that the subunit F residues S84 and R88 are important in stimulating ATP hydrolysis. Hybrid formation of the A3B3D-complex with subunit F of the related eukaryotic V-ATPase of Saccharomyces cerevisiae or subunit ε of the F-ATP synthase from Mycobacterium tuberculosis showed that subunit F of the archaea and eukaryotic enzymes are important in ATP hydrolysis.
Collapse
Affiliation(s)
- Dhirendra Singh
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Hendrik Sielaff
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Lavanya Sundararaman
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Shashi Bhushan
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| |
Collapse
|
4
|
Grüber G, Manimekalai MSS, Mayer F, Müller V. ATP synthases from archaea: the beauty of a molecular motor. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:940-52. [PMID: 24650628 DOI: 10.1016/j.bbabio.2014.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 03/07/2014] [Accepted: 03/11/2014] [Indexed: 11/18/2022]
Abstract
Archaea live under different environmental conditions, such as high salinity, extreme pHs and cold or hot temperatures. How energy is conserved under such harsh environmental conditions is a major question in cellular bioenergetics of archaea. The key enzymes in energy conservation are the archaeal A1AO ATP synthases, a class of ATP synthases distinct from the F1FO ATP synthase ATP synthase found in bacteria, mitochondria and chloroplasts and the V1VO ATPases of eukaryotes. A1AO ATP synthases have distinct structural features such as a collar-like structure, an extended central stalk, and two peripheral stalks possibly stabilizing the A1AO ATP synthase during rotation in ATP synthesis/hydrolysis at high temperatures as well as to provide the storage of transient elastic energy during ion-pumping and ATP synthesis/-hydrolysis. High resolution structures of individual subunits and subcomplexes have been obtained in recent years that shed new light on the function and mechanism of this unique class of ATP synthases. An outstanding feature of archaeal A1AO ATP synthases is their diversity in size of rotor subunits and the coupling ion used for ATP synthesis with H(+), Na(+) or even H(+) and Na(+) using enzymes. The evolution of the H(+) binding site to a Na(+) binding site and its implications for the energy metabolism and physiology of the cell are discussed.
Collapse
Affiliation(s)
- Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore.
| | | | - Florian Mayer
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany
| | - Volker Müller
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Johann Wolfgang Goethe University Frankfurt/Main, Max-von-Laue-Str. 9, 60438 Frankfurt, Germany.
| |
Collapse
|
5
|
Basak S, Lim J, Manimekalai MSS, Balakrishna AM, Grüber G. Crystal and NMR structures give insights into the role and dynamics of subunit F of the eukaryotic V-ATPase from Saccharomyces cerevisiae. J Biol Chem 2013; 288:11930-9. [PMID: 23476018 DOI: 10.1074/jbc.m113.461533] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Subunit F of V-ATPases is proposed to undergo structural alterations during catalysis and reversible dissociation from the V1VO complex. Recently, we determined the low resolution structure of F from Saccharomyces cerevisiae V-ATPase, showing an N-terminal egg shape, connected to a C-terminal hook-like segment via a linker region. To understand the mechanistic role of subunit F of S. cerevisiae V-ATPase, composed of 118 amino acids, the crystal structure of the major part of F, F(1-94), was solved at 2.3 Å resolution. The structural features were confirmed by solution NMR spectroscopy using the entire F subunit. The eukaryotic F subunit consists of the N-terminal F(1-94) domain with four-parallel β-strands, which are intermittently surrounded by four α-helices, and the C terminus, including the α5-helix encompassing residues 103 to 113. Two loops (26)GQITPETQEK(35) and (60)ERDDI(64) are described to be essential in mechanistic processes of the V-ATPase enzyme. The (26)GQITPETQEK(35) loop becomes exposed when fitted into the recently determined EM structure of the yeast V1VO-ATPase. A mechanism is proposed in which the (26)GQITPETQEK(35) loop of subunit F and the flexible C-terminal domain of subunit H move in proximity, leading to an inhibitory effect of ATPase activity in V1. Subunits D and F are demonstrated to interact with subunit d. Together with NMR dynamics, the role of subunit F has been discussed in the light of its interactions in the processes of reversible disassembly and ATP hydrolysis of V-ATPases by transmitting movements of subunit d and H of the VO and V1 sector, respectively.
Collapse
Affiliation(s)
- Sandip Basak
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
6
|
Balakrishna AM, Hunke C, Grüber G. The Structure of Subunit E of the Pyrococcus horikoshii OT3 A-ATP Synthase Gives Insight into the Elasticity of the Peripheral Stalk. J Mol Biol 2012; 420:155-63. [DOI: 10.1016/j.jmb.2012.04.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
|
7
|
Raghunathan D, Gayen S, Kumar A, Hunke C, Grüber G, Verma CS. Subunit F modulates ATP binding and migration in the nucleotide-binding subunit B of the A(1)A(O) ATP synthase of Methanosarcina mazei Gö1. J Bioenerg Biomembr 2012; 44:213-24. [PMID: 22350011 DOI: 10.1007/s10863-012-9410-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2011] [Accepted: 01/08/2012] [Indexed: 10/28/2022]
Abstract
The interaction of the nucleotide-binding subunit B with subunit F is essential in coupling of ion pumping and ATP synthesis in A(1)A(O) ATP synthases. Here we provide structural and thermodynamic insights on the nucleotide binding to the surface of subunits B and F of Methanosarcina mazei Gö1 A(1)A(O) ATP synthase, which initiated migration to its final binding pocket via two transitional intermediates on the surface of subunit B. NMR- and fluorescence spectroscopy as well as ITC data combined with molecular dynamics simulations of the nucleotide bound subunit B and nucleotide bound B-F complex in explicit solvent, suggests that subunit F is critical for the migration to and eventual occupancy of the final binding site by the nucleotide of subunit B. Rotation of the C-terminus and conformational changes in subunit B are initiated upon binding with subunit F causing a perturbation that leads to the migration of ATP from the transition site 1 through an intermediate transition site 2 to the final binding site 3. This mechanism is elucidated on the basis of change in binding affinity for the nucleotide at the specific sites on subunit B upon complexation with subunit F. The change in enthalpy is further explained based on the fluctuating local environment around the binding sites.
Collapse
|
8
|
Mädler S, Boeri Erba E, Zenobi R. MALDI-ToF mass spectrometry for studying noncovalent complexes of biomolecules. Top Curr Chem (Cham) 2012; 331:1-36. [PMID: 22371170 DOI: 10.1007/128_2011_311] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) has been demonstrated to be a valuable tool to investigate noncovalent interactions of biomolecules. The direct detection of noncovalent assemblies is often more troublesome than with electrospray ionization. Using dedicated sample preparation techniques and carefully optimized instrumental parameters, a number of biomolecule assemblies were successfully analyzed. For complexes dissociating under MALDI conditions, covalent stabilization with chemical cross-linking is a suitable alternative. Indirect methods allow the detection of noncovalent assemblies by monitoring the fading of binding partners or altered H/D exchange patterns.
Collapse
Affiliation(s)
- Stefanie Mädler
- Department of Chemistry and Applied Biosciences, ETH Zurich, 8093, Zurich, Switzerland
| | | | | |
Collapse
|
9
|
Grüber A, Gunalan K, Ramalingam JK, Manimekalai MSS, Grüber G, Preiser PR. Structural characterization of the erythrocyte binding domain of the reticulocyte binding protein homologue family of Plasmodium yoelii. Infect Immun 2011; 79:2880-8. [PMID: 21482683 PMCID: PMC3191949 DOI: 10.1128/iai.01326-10] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 03/28/2011] [Indexed: 11/20/2022] Open
Abstract
Invasion of the host cell by the malaria parasite is a key step for parasite survival and the only stage of its life cycle where the parasite is extracellular, and it is therefore a target for an antimalaria intervention strategy. Multiple members of the reticulocyte binding protein homologues (RH) family are found in all plasmodia and have been shown to bind to host red blood cells directly. In the study described here, we delineated the erythrocyte binding domain (EBD) of one member of the RH family, termed Py235, from Plasmodium yoelii. Moreover, we have obtained the low-resolution structure of the EBD using small-angle X-ray scattering. Comparison of the EDB structure to other characterized Plasmodium receptor binding domains suggests that there may be an overall structural conservation. These findings may help in developing new approaches to target receptor ligand interactions mediated by parasite proteins.
Collapse
Affiliation(s)
- Ardina Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Karthigayan Gunalan
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Jeya Kumar Ramalingam
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Peter R. Preiser
- School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| |
Collapse
|
10
|
Hunke C, Antosch M, Müller V, Grüber G. Binding of subunit E into the A-B interface of the A(1)A(O) ATP synthase. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2011; 1808:2111-8. [PMID: 21669184 DOI: 10.1016/j.bbamem.2011.05.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Revised: 05/27/2011] [Accepted: 05/31/2011] [Indexed: 11/17/2022]
Abstract
Two of the distinct diversities of the engines A(1)A(O) ATP synthase and F(1)F(O) ATP synthase are the existence of two peripheral stalks and the 24kDa stalk subunit E inside the A(1)A(O) ATP synthase. Crystallographic structures of subunit E have been determined recently, but the epitope(s) and the strength to which this subunit does bind in the enzyme complex are still a puzzle. Using the recombinant A(3)B(3)D complex and the major subunits A and B of the methanogenic A(1)A(O) ATP synthase in combination with fluorescence correlation spectroscopy (FCS) we demonstrate, that the stalk subunit E does bind to the catalytic headpiece formed by the A(3)B(3) hexamer with an affinity (K(d)) of 6.1±0.2μM. FCS experiments with single A and B, respectively, demonstrated unequivocally that subunit E binds stronger to subunit B (K(d)=18.9±3.7μM) than to the catalytic A subunit (K(d)=53.1±4.4). Based on the crystallographic structures of the three subunits A, B and E available, the arrangement of the peripheral stalk subunit E in the A-B interface has been modeled, shining light into the A-B-E assembly of this enzyme.
Collapse
Affiliation(s)
- Cornelia Hunke
- Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | | | | | | |
Collapse
|
11
|
Basak S, Gayen S, Thaker YR, Manimekalai MSS, Roessle M, Hunke C, Grüber G. Solution structure of subunit F (Vma7p) of the eukaryotic V(1)V(O) ATPase from Saccharomyces cerevisiae derived from SAXS and NMR spectroscopy. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:360-8. [PMID: 20840841 DOI: 10.1016/j.bbamem.2010.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2010] [Revised: 09/03/2010] [Accepted: 09/07/2010] [Indexed: 11/26/2022]
Abstract
Vacuolar ATPases use the energy derived from ATP hydrolysis, catalyzed in the A(3)B(3) sector of the V(1) ATPase to pump protons via the membrane-embedded V(O) sector. The energy coupling between the two sectors occurs via the so-called central stalk, to which subunit F does belong. Here we present the first low resolution structure of recombinant subunit F (Vma7p) of a eukaryotic V-ATPase from Saccharomyces cerevisiae, analyzed by small angle X-ray scattering (SAXS). The protein is divided into a 5.5nm long egg-like shaped region, connected via a 1.5nm linker to a hook-like segment at one end. Circular dichroism spectroscopy revealed that subunit F comprises of 43% α-helix, 32% β-sheet and a 25% random coil arrangement. To determine the localization of the N- and C-termini in the protein, the C-terminal truncated form of F, F(1-94) was produced and analyzed by SAXS. Comparison of the F(1-94) shape with the one of subunit F showed the missing hook-like region in F(1-94), supported by the decreased D(max) value of F(1-94) (7.0nm), and indicating that the hook-like region consists of the C-terminal residues. The NMR solution structure of the C-terminal peptide, F(90-116), was solved, displaying an α-helical region between residues 103 and 113. The F(90-116) solution structure fitted well in the hook-like region of subunit F. Finally, the arrangement of subunit F within the V(1) ATPase is discussed.
Collapse
Affiliation(s)
- Sandip Basak
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
12
|
Crystal and solution structure of the C-terminal part of the Methanocaldococcus jannaschii A1AO ATP synthase subunit E revealed by X-ray diffraction and small-angle X-ray scattering. J Bioenerg Biomembr 2010; 42:311-20. [DOI: 10.1007/s10863-010-9298-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2010] [Accepted: 05/23/2010] [Indexed: 10/19/2022]
|
13
|
Raghunathan D, Gayen S, Grüber G, Verma CS. Crosstalk along the Stalk: Dynamics of the Interaction of Subunits B and F in the A1AO ATP Synthase of Methanosarcina mazei Gö1. Biochemistry 2010; 49:4181-90. [DOI: 10.1021/bi9021236] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | - Shovanlal Gayen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Gerhard Grüber
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | - Chandra S. Verma
- Bioinformatics Institute (A*STAR), 30 Biopolis Street, #07-01 Matrix, Singapore 138671
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
- Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, Singapore 117543
| |
Collapse
|
14
|
Gayen S, Grüber G. Disulfide linkage in the coiled-coil domain of subunit H of A1AO ATP synthase from Methanocaldococcus jannaschii and the NMR structure of the C-terminal segment H(85-104). FEBS Lett 2009; 584:713-8. [PMID: 20026332 DOI: 10.1016/j.febslet.2009.12.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 12/15/2009] [Accepted: 12/15/2009] [Indexed: 10/20/2022]
Abstract
The C-terminal residues 98-104 are important for structure stability of subunit H of A(1)A(O) ATP synthases as well as its interaction with subunit A. Here we determined the structure of the segment H(85-104) of H from Methanocaldococcus jannaschii, showing a helix between residues Lys90 to Glu100 and flexible tails at both ends. The helix-helix arrangement in the C-terminus was investigated by exchange of hydrophobic residues to single cysteine in mutants of the entire subunit H (H(I93C), H(L96C) and H(L98C)). Together with the surface charge distribution of H(85-104), these results shine light into the A-H assembly of this enzyme.
Collapse
Affiliation(s)
- Shovanlal Gayen
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | | |
Collapse
|
15
|
Kumar A, Manimekalai MSS, Balakrishna AM, Jeyakanthan J, Grüber G. Nucleotide binding states of subunit A of the A-ATP synthase and the implication of P-loop switch in evolution. J Mol Biol 2009; 396:301-20. [PMID: 19944110 DOI: 10.1016/j.jmb.2009.11.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2009] [Revised: 11/12/2009] [Accepted: 11/17/2009] [Indexed: 11/17/2022]
Abstract
The crystal structures of the nucleotide-empty (A(E)), 5'-adenylyl-beta,gamma-imidodiphosphate (A(PNP))-bound, and ADP (A(DP))-bound forms of the catalytic A subunit of the energy producer A(1)A(O) ATP synthase from Pyrococcus horikoshii OT3 have been solved at 2.47 A and 2.4 A resolutions. The structures provide novel features of nucleotide binding and depict the residues involved in the catalysis of the A subunit. In the A(E) form, the phosphate analog SO(4)(2-) binds, via a water molecule, to the phosphate binding loop (P-loop) residue Ser238, which is also involved in the phosphate binding of ADP and 5'-adenylyl-beta,gamma-imidodiphosphate. Together with amino acids Gly234 and Phe236, the serine residue stabilizes the arched P-loop conformation of subunit A, as shown by the 2.4-A structure of the mutant protein S238A in which the P-loop flips into a relaxed state, comparable to the one in catalytic beta subunits of F(1)F(O) ATP synthases. Superposition of the existing P-loop structures of ATPases emphasizes the unique P-loop in subunit A, which is also discussed in the light of an evolutionary P-loop switch in related A(1)A(O) ATP synthases, F(1)F(O) ATP synthases, and vacuolar ATPases and implicates diverse catalytic mechanisms inside these biological motors.
Collapse
Affiliation(s)
- Anil Kumar
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore
| | | | | | | | | |
Collapse
|
16
|
Gayen S, Balakrishna AM, Grüber G. NMR solution structure of the N-terminal domain of subunit E (E1–52) of A1AO ATP synthase from Methanocaldococcus jannaschii. J Bioenerg Biomembr 2009; 41:343-8. [DOI: 10.1007/s10863-009-9237-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2009] [Accepted: 08/20/2009] [Indexed: 12/01/2022]
|
17
|
Kumar A, Manimekalai MSS, Balakrishna AM, Hunke C, Weigelt S, Sewald N, Grüber G. Spectroscopic and crystallographic studies of the mutant R416W give insight into the nucleotide binding traits of subunit B of the A1Ao ATP synthase. Proteins 2009; 75:807-19. [PMID: 19003877 DOI: 10.1002/prot.22289] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
A strategically placed tryptophan in position of Arg416 was used as an optical probe to monitor adenosine triphosphate and adenosine-diphosphate binding to subunit B of the A(1)A(O) adenosine triphosphate (ATP) synthase from Methanosarcina mazei Gö1. Tryptophan fluorescence and fluorescence correlation spectroscopy gave binding constants indicating a preferred binding of ATP over ADP to the protein. The X-ray crystal structure of the R416W mutant protein in the presence of ATP was solved to 2.1 A resolution, showing the substituted Trp-residue inside the predicted adenine-binding pocket. The cocrystallized ATP molecule could be trapped in a so-called transition nucleotide-binding state. The high resolution structure shows the phosphate residues of the ATP near the P-loop region (S150-E158) and its adenine ring forms pi-pi interaction with Phe149. This transition binding position of ATP could be confirmed by tryptophan emission spectra using the subunit B mutant F149W. The trapped ATP position, similar to the one of the binding region of the antibiotic efrapeptin in F(1)F(O) ATP synthases, is discussed in light of a transition nucleotide-binding state of ATP while on its way to the final binding pocket. Finally, the inhibitory effect of efrapeptin C in ATPase activity of a reconstituted A(3)B(3)- and A(3)B(R416W)(3)-subcomplex, composed of subunit A and the B subunit mutant R416W, of the A(1)A(O) ATP synthase is shown.
Collapse
Affiliation(s)
- Anil Kumar
- Division of Structural and Computational Biology, Nanyang Technological University, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | | | | | | | | | | | | |
Collapse
|
18
|
Interaction of the Thermoplasma acidophilum A1A0-ATP synthase peripheral stalk with the catalytic domain. FEBS Lett 2009; 583:3121-6. [PMID: 19720061 DOI: 10.1016/j.febslet.2009.08.035] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Accepted: 08/25/2009] [Indexed: 11/23/2022]
Abstract
The peripheral stalk of the archaeal ATP synthase (A1A0)-ATP synthase is formed by the heterodimeric EH complex and is part of the stator domain, which counteracts the torque of rotational catalysis. Here we used nuclear magnetic resonance spectroscopy to probe the interaction of the C-terminal domain of the EH heterodimer (E(CT1)H(CT)) with the N-terminal 23 residues of the B subunit (B(NT)). The data show a specific interaction of B(NT) peptide with 26 residues of the E(CT1)H(CT) domain, thereby providing a molecular picture of how the peripheral stalk is anchored to the A3B3 catalytic domain in A1A0.
Collapse
|
19
|
Biuković G, Gayen S, Pervushin K, Grüber G. Domain features of the peripheral stalk subunit H of the methanogenic A1AO ATP synthase and the NMR solution structure of H(1-47). Biophys J 2009; 97:286-94. [PMID: 19580766 PMCID: PMC2711374 DOI: 10.1016/j.bpj.2009.04.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2008] [Revised: 04/09/2009] [Accepted: 04/16/2009] [Indexed: 11/25/2022] Open
Abstract
A series of truncated forms of subunit H were generated to establish the domain features of that protein. Circular dichroism analysis demonstrated that H is divided at least into a C-terminal coiled-coil domain within residues 54-104, and an N-terminal domain formed by adjacent alpha-helices. With a cysteine at the C-terminus of each of the truncated proteins (H(1-47), H(1-54), H(1-59), H(1-61), H(1-67), H(1-69), H(1-71), H(1-78), H(1-80), H(1-91), and H(47-105)), the residues involved in formation of the coiled-coil interface were determined. Proteins H(1-54), H(1-61), H(1-69), and H(1-80) showed strong cross-link formation, which was weaker in H(1-47), H(1-59), H(1-71), and H(1-91). A shift in disulfide formation between cysteines at positions 71 and 80 reflected an interruption in the periodicity of hydrophobic residues in the region 71AEKILEETEKE81. To understand how the N-terminal domain of H is formed, we determined for the first time, to our knowledge, the solution NMR structure of H(1-47), which revealed an alpha-helix between residues 15-42 and a flexible N-terminal stretch. The alpha-helix includes a kink that would bring the two helices of the C-terminus into the coiled-coil arrangement. H(1-47) revealed a strip of alanines involved in dimerization, which were tested by exchange to single cysteines in subunit H mutants.
Collapse
Key Words
- cd, circular dichroism
- dss, 2, 2-dimethyl-2-silapentane-5-sulphonate
- dtt, dithiothreitol
- edta, ethylenediaminetetraacetic acid
- hsqc, heteronuclear single quantum coherence
- iptg, isopropyl-β-d-thio-galactoside
- nmr, nuclear magnetic resonance
- noe, nuclear overhauser effect
- noesy, noe spectroscopy
- nta, nitrilotriacetic acid
- page, polyacrylamide gel electrophoresis
- pcr, polymerase chain reaction
- pfg, pulsed field gradient
- saxs, small-angle x-ray scattering
- r1, longitudinal relaxation time
- r2, transverse relaxation time
- rmsd, root mean-square deviation
- sds, sodium dodecyl sulfate
- tocsy, total correlation spectroscopy
- tris, tris-(hydroxymethyl)aminomethane
Collapse
Affiliation(s)
| | | | | | - Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
20
|
Kish-Trier E, Wilkens S. Domain architecture of the stator complex of the A1A0-ATP synthase from Thermoplasma acidophilum. J Biol Chem 2009; 284:12031-40. [PMID: 19234304 PMCID: PMC2673272 DOI: 10.1074/jbc.m808962200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 02/18/2009] [Indexed: 12/22/2022] Open
Abstract
A key structural element in the ion translocating F-, A-, and V-ATPases is the peripheral stalk, an assembly of two polypeptides that provides a structural link between the ATPase and ion channel domains. Previously, we have characterized the peripheral stalk forming subunits E and H of the A-ATPase from Thermoplasma acidophilum and demonstrated that the two polypeptides interact to form a stable heterodimer with 1:1 stoichiometry (Kish-Trier, E., Briere, L. K., Dunn, S. D., and Wilkens, S. (2008) J. Mol. Biol. 375, 673-685). To define the domain architecture of the A-ATPase peripheral stalk, we have now generated truncated versions of the E and H subunits and analyzed their ability to bind each other. The data show that the N termini of the subunits form an alpha-helical coiled-coil, approximately 80 residues in length, whereas the C-terminal residues interact to form a globular domain containingalpha- and beta-structure. We find that the isolated C-terminal domain of the E subunit exists as a dimer in solution, consistent with a recent crystal structure of the related Pyrococcus horikoshii A-ATPase E subunit (Lokanath, N. K., Matsuura, Y., Kuroishi, C., Takahashi, N., and Kunishima, N. (2007) J. Mol. Biol. 366, 933-944). However, upon the addition of a peptide comprising the C-terminal 21 residues of the H subunit (or full-length H subunit), dimeric E subunit C-terminal domain dissociates to form a 1:1 heterodimer. NMR spectroscopy was used to show that H subunit C-terminal peptide binds to E subunit C-terminal domain via the terminal alpha-helices, with little involvement of the beta-sheet region. Based on these data, we propose a structural model of the A-ATPase peripheral stalk.
Collapse
Affiliation(s)
- Erik Kish-Trier
- Department of Biochemistry & Molecular Biology, SUNY Upstate Medical University, Syracuse, New York 13210, USA
| | | |
Collapse
|
21
|
Vonck J, Pisa KY, Morgner N, Brutschy B, Müller V. Three-dimensional structure of A1A0 ATP synthase from the hyperthermophilic archaeon Pyrococcus furiosus by electron microscopy. J Biol Chem 2009; 284:10110-9. [PMID: 19203996 PMCID: PMC2665065 DOI: 10.1074/jbc.m808498200] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2008] [Revised: 01/09/2009] [Indexed: 11/06/2022] Open
Abstract
The archaeal ATP synthase is a multisubunit complex that consists of a catalytic A(1) part and a transmembrane, ion translocation domain A(0). The A(1)A(0) complex from the hyperthermophile Pyrococcus furiosus was isolated. Mass analysis of the complex by laser-induced liquid bead ion desorption (LILBID) indicated a size of 730 +/- 10 kDa. A three-dimensional map was generated by electron microscopy from negatively stained images. The map at a resolution of 2.3 nm shows the A(1) and A(0) domain, connected by a central stalk and two peripheral stalks, one of which is connected to A(0), and both connected to A(1) via prominent knobs. X-ray structures of subunits from related proteins were fitted to the map. On the basis of the fitting and the LILBID analysis, a structural model is presented with the stoichiometry A(3)B(3)CDE(2)FH(2)ac(10).
Collapse
Affiliation(s)
- Janet Vonck
- Max-Planck-Institute of Biophysics, Max-von-Laue-Strasse 3, D-60438 Frankfurt am Main, Germany.
| | | | | | | | | |
Collapse
|
22
|
Manimekalai MSS, Kumar A, Balakrishna AM, Grüber G. A second transient position of ATP on its trail to the nucleotide-binding site of subunit B of the motor protein A(1)A(0) ATP synthase. J Struct Biol 2008; 166:38-45. [PMID: 19138746 DOI: 10.1016/j.jsb.2008.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Revised: 12/01/2008] [Accepted: 12/10/2008] [Indexed: 11/30/2022]
Abstract
The adenosine triphosphate (ATP) entrance into the nucleotide-binding subunits of ATP synthases is a puzzle. In the previously determined structure of subunit B mutant R416W of the Methanosarcina mazei Gö1 A-ATP synthase one ATP could be trapped at a transition position, close to the phosphate-binding loop. Using defined parameters for co-crystallization of an ATP-bound B-subunit, a unique transition position of ATP could be found in the crystallographic structure of this complex, solved at 3.4 A resolution. The nucleotide is found near the helix-turn-helix motif in the C-terminal domain of the protein; the location occupied by the gamma-subunit to interact with the empty beta-subunit in the thermoalkaliphilic Bacillus sp. TA2.A1 of the related F-ATP synthase. When compared with the determined structure of the ATP-transition position, close to the P-loop, and the nucleotide-free form of subunit B, the C-terminal domain of the B mutant is rotated by around 6 degrees, implicating an ATP moving pathway. We propose that, in the nucleotide empty state the central stalk subunit D is in close contact with subunit B and when the ATP molecule enters, D moves slightly, paving way for it to interact with the subunit B, which makes the C-terminal domain rotate by 6 degrees.
Collapse
Affiliation(s)
- Malathy Sony Subramanian Manimekalai
- Nanyang Technological University, Division of Structural & Computational Biology, School of Biological Sciences, 60 Nanyang Drive, Singapore 637551, Republic of Singapore
| | | | | | | |
Collapse
|
23
|
Grüber G, Marshansky V. New insights into structure-function relationships between archeal ATP synthase (A1A0) and vacuolar type ATPase (V1V0). Bioessays 2008; 30:1096-109. [PMID: 18937357 DOI: 10.1002/bies.20827] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Adenosine triphosphate, ATP, is the energy currency of living cells. While ATP synthases of archae and ATP synthases of pro- and eukaryotic organisms operate as energy producers by synthesizing ATP, the eukaryotic V-ATPase hydrolyzes ATP and thus functions as energy transducer. These enzymes share features like the hydrophilic catalytic- and the membrane-embedded ion-translocating sector, allowing them to operate as nano-motors and to transform the transmembrane electrochemical ion gradient into ATP or vice versa. Since archaea are rooted close to the origin of life, the A-ATP synthase is probably more similar in its composition and function to the "original" enzyme, invented by Nature billion years ago. On the contrary, the V-ATPases have acquired specific structural, functional and regulatory features during evolution. This review will summarize the current knowledge on the structure, mechanism and regulation of A-ATP synthases and V-ATPases. The importance of V-ATPase in pathophysiology of diseases will be discussed.
Collapse
Affiliation(s)
- Gerhard Grüber
- School of Biological Sciences, Nanyang Technological University, Singapore, Republic of Singapore.
| | | |
Collapse
|
24
|
Ramalingam JK, Hunke C, Gao X, Grüber G, Preiser PR. ATP/ADP binding to a novel nucleotide binding domain of the reticulocyte-binding protein Py235 of Plasmodium yoelii. J Biol Chem 2008; 283:36386-96. [PMID: 18957411 DOI: 10.1074/jbc.m803102200] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The mechanism by which a malaria merozoite recognizes a suitable host cell is mediated by a cascade of receptor-ligand interactions. In addition to the availability of the appropriate receptors, intracellular ATP plays an important role in determining whether erythrocytes are suitable for merozoite invasion. Recent work has shown that ATP secreted from erythrocytes signals a number of cellular processes. To determine whether ATP signaling might be involved in merozoite invasion, we investigated whether known plasmodium invasion proteins contain nucleotide binding motifs. Domain mapping identified a putative nucleotide binding region within all members of the reticulocyte-binding protein homologue (RBL) family analyzed. A representative domain, termed here nucleotide binding domain 94 (NBD94), was expressed and demonstrated to specifically bind to ATP. Nucleotide affinities of NBD94 were determined by fluorescence correlation spectroscopy, where an increase in the binding of ATP is observed compared with ADP analogues. ATP binding was reduced by the known F1F0-ATP synthase inhibitor 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole. Fluorescence quenching and circular dichroism spectroscopy of NBD94 after binding of different nucleotides provide evidence for structural changes in this protein. Our data suggest that different structural changes induced by ATP/ADP binding to RBL could play an important role during the invasion process.
Collapse
Affiliation(s)
- Jeya Kumar Ramalingam
- Division of Genomics and Genetics, School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
25
|
Gayen S, Balakrishna AM, Biuković G, Yulei W, Hunke C, Grüber G. Identification of critical residues of subunit H in its interaction with subunit E of the A-ATP synthase from Methanocaldococcus jannaschii. FEBS J 2008; 275:1803-12. [DOI: 10.1111/j.1742-4658.2008.06338.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
26
|
Kish-Trier E, Briere LAK, Dunn SD, Wilkens S. The stator complex of the A1A0-ATP synthase--structural characterization of the E and H subunits. J Mol Biol 2007; 375:673-85. [PMID: 18036615 DOI: 10.1016/j.jmb.2007.10.063] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2007] [Revised: 10/10/2007] [Accepted: 10/25/2007] [Indexed: 10/22/2022]
Abstract
Archaeal ATP synthase (A-ATPase) is the functional homolog to the ATP synthase found in bacteria, mitochondria and chloroplasts, but the enzyme is structurally more related to the proton-pumping vacuolar ATPase found in the endomembrane system of eukaryotes. We have cloned, overexpressed and characterized the stator-forming subunits E and H of the A-ATPase from the thermoacidophilic Archaeon, Thermoplasma acidophilum. Size exclusion chromatography, CD, matrix-assisted laser desorption ionization time-of-flight mass spectrometry and NMR spectroscopic experiments indicate that both polypeptides have a tendency to form dimers and higher oligomers in solution. However, when expressed together or reconstituted, the two individual polypeptides interact with high affinity to form a stable heterodimer. Analyses by gel filtration chromatography and analytical ultracentrifugation show the heterodimer to have an elongated shape, and the preparation to be monodisperse. Thermal denaturation analyses by CD and differential scanning calorimetry revealed the more cooperative unfolding transitions of the heterodimer in comparison to those of the individual polypeptides. The data are consistent with the EH heterodimer forming the peripheral stalk(s) in the A-ATPase in a fashion analogous to that of the related vacuolar ATPase.
Collapse
Affiliation(s)
- Erik Kish-Trier
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | | | | | | |
Collapse
|
27
|
Gayen S, Vivekanandan S, Biuković G, Grüber G, Yoon HS. NMR solution structure of subunit F of the methanogenic A1AO adenosine triphosphate synthase and its interaction with the nucleotide-binding subunit B. Biochemistry 2007; 46:11684-94. [PMID: 17910473 DOI: 10.1021/bi701102n] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The A1AO adenosine triphosphate (ATP) synthase from archaea uses the ion gradients generated across the membrane sector (AO) to synthesize ATP in the A3B3 domain of the A1 sector. The energy coupling between the two active domains occurs via the so-called stalk part(s), to which the 12 kDa subunit F does belong. Here, we present the solution structure of the F subunit of the A1AO ATP synthase from Methanosarcina mazei Gö1. Subunit F exhibits a distinct two-domain structure, with the N-terminal having 78 residues and residues 79-101 forming the flexible C-terminal part. The well-ordered N-terminal domain is composed of a four-stranded parallel beta-sheet structure and three alpha-helices placed alternately. The two domains are loosely associated with more flexibility relative to each other. The flexibility of the C-terminal domain is further confirmed by dynamics studies. In addition, the affinity of binding of mutant subunit F, with a substitution of Trp100 against Tyr and Ile at the very C-terminal end, to the nucleotide-binding subunit B was determined quantitatively using the fluorescence signals of natural subunit B (Trp430). Finally, the arrangement of subunit F within the complex is presented.
Collapse
MESH Headings
- ATP Synthetase Complexes/chemistry
- ATP Synthetase Complexes/genetics
- ATP Synthetase Complexes/isolation & purification
- ATP Synthetase Complexes/metabolism
- Amino Acid Sequence
- Amino Acid Substitution
- Cloning, Molecular
- Crystallography, X-Ray
- Electrophoresis, Polyacrylamide Gel
- Escherichia coli/genetics
- Methanosarcina/enzymology
- Models, Molecular
- Molecular Sequence Data
- Nuclear Magnetic Resonance, Biomolecular/methods
- Nucleotides/chemistry
- Nucleotides/metabolism
- Pliability
- Protein Conformation
- Protein Structure, Quaternary
- Protein Structure, Secondary
- Protein Structure, Tertiary
- Protein Subunits/chemistry
- Protein Subunits/genetics
- Protein Subunits/isolation & purification
- Protein Subunits/metabolism
- Sequence Homology, Amino Acid
- Spectrometry, Fluorescence
- Spectrum Analysis, Raman
- Tryptophan/metabolism
Collapse
Affiliation(s)
- Shovanlal Gayen
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | | | | | | | |
Collapse
|
28
|
Gayen S, Vivekanandan S, Biuković G, Grüber G, Yoon HS. 1H, 13C, and 15N resonance assignments of subunit F of the A(1)A (O) ATP synthase from Methanosarcina mazei Gö1. BIOMOLECULAR NMR ASSIGNMENTS 2007; 1:23-25. [PMID: 19636817 DOI: 10.1007/s12104-007-9004-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Accepted: 01/24/2007] [Indexed: 05/28/2023]
Abstract
Energy coupling between the A(1 )ATPase of archaea type A(1)A(O) ATP synthase and its integral membrane sub-complex A(O) occurs via the stalk part, formed by the subunits C, D and F. To provide a molecular basis of the energy coupling, we performed NMR studies. Here, we report the assignment of the subunit F.
Collapse
Affiliation(s)
- Shovanlal Gayen
- Division of Structural and Computational Biology, School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
29
|
Biuković G, Rössle M, Gayen S, Mu Y, Grüber G. Small-Angle X-ray Scattering Reveals the Solution Structure of the Peripheral Stalk Subunit H of the A1AO ATP Synthase from Methanocaldococcus jannaschii and Its Binding to the Catalytic A Subunit. Biochemistry 2007; 46:2070-8. [PMID: 17263559 DOI: 10.1021/bi062123n] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The H subunit of the A1AO ATP synthase is a component of one of the peripheral stalks connecting the A1 and AO domain. Subunit H of the Methanocaldococcus jannaschii A1AO ATP synthase was analyzed by small-angle X-ray scattering (SAXS) in order to determine the first low-resolution structure of this molecule in solution. Independent to the concentration used, the protein is dimeric and has a boomerang-like shape, divided into two arms of 12.0 and 6.8 nm in length. Circular dichroism (CD) spectroscopy revealed that subunit H is comprised of 78% alpha-helix and a coiled-coil arrangement. To understand the orientation of the helices and the localization of the N- and C-termini inside the dimer, three truncated forms of subunit H (H8-104, H1-98, and H8-98) were expressed, purified, and analyzed by CD. SAXS experiments of H1-98 show that the maximum dimension of the truncated protein dropped to 15.1 nm. Comparison of the low-resolution shapes of H and H1-98 indicates that this goes along with structural changes in the C-terminal arm of the boomerang-like structure. Together with the result of a disulfide formation of a fourth truncated form, H1-47, with a cysteine at position 47, the data suggest a parallel alpha-helical interaction. In addition, all four truncated proteins are dimeric in solution. Tryptophan emission spectra showed specific binding of H and H8-104 to the neighboring, catalytic A subunit, which could not be detected in the presence of H1-98. Finally, the arrangement of H within the A1AO ATP synthase is presented.
Collapse
Affiliation(s)
- Goran Biuković
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551
| | | | | | | | | |
Collapse
|
30
|
Deppenmeier U, Müller V. Life close to the thermodynamic limit: how methanogenic archaea conserve energy. Results Probl Cell Differ 2007; 45:123-52. [PMID: 17713742 DOI: 10.1007/400_2006_026] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methane-forming archaea are strictly anaerobic, ancient microbes that are widespread in nature. These organisms are commonly found in anaerobic environments such as rumen, anaerobic sediments of rivers and lakes, hyperthermal deep sea vents and even hypersaline environments. From an evolutionary standpoint they are close to the origin of life. Common to all methanogens is the biological production of methane by a unique pathway currently only found in archaea. Methanogens can grow on only a limited number of substrates such as H(2) + CO(2), formate, methanol and other methyl group-containing substrates and some on acetate. The free energy change associated with methanogenesis from these compounds allows for the synthesis of 1 (acetate) to a maximum of only 2 mol of ATP under standard conditions while under environmental conditions less than one ATP can be synthesized. Therefore, methanogens live close to the thermodynamic limit. To cope with this problem, they have evolved elaborate mechanisms of energy conservation using both protons and sodium ions as the coupling ion in one pathway. These energy conserving mechanisms are comprised of unique enzymes, cofactors and electron carriers present only in methanogens. This review will summarize the current knowledge of energy conservation of methanogens and focus on recent insights into structure and function of ion translocating enzymes found in these organisms.
Collapse
Affiliation(s)
- Uwe Deppenmeier
- Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI 53211, USA
| | | |
Collapse
|