1
|
Feng HH, Zhu ZX, Cao WJ, Yang F, Zhang XL, Du XL, Zhang KS, Liu XT, Zheng HX. Foot-and-mouth disease virus induces lysosomal degradation of NME1 to impair p53-regulated interferon-inducible antiviral genes expression. Cell Death Dis 2018; 9:885. [PMID: 30158514 PMCID: PMC6115381 DOI: 10.1038/s41419-018-0940-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/27/2018] [Accepted: 07/31/2018] [Indexed: 12/13/2022]
Abstract
Nucleoside diphosphate kinase 1 (NME1) is well-known as a tumor suppressor that regulates p53 function to prevent cancer metastasis and progression. However, the role of NME1 in virus-infected cells remains unknown. Here, we showed that NME1 suppresses viral replication in foot-and-mouth disease virus (FMDV)-infected cells. NME1-enhanced p53-mediated transcriptional activity and induction of interferon-inducible antiviral genes expression. FMDV infection decreased NME1 protein expression. The 2B and VP4 proteins were identified as the viral factors that induced reduction of NME1. FMDV 2B protein has a suppressive effect on host protein expression. We measured, for the first time, VP4-induced lysosomal degradation of host protein; VP4-induced degradation of NME1 through the macroautophagy pathway, and impaired p53-mediated signaling. p53 plays significant roles in antiviral innate immunity by inducing several interferon-inducible antiviral genes expression, such as, ISG20, IRF9, RIG-I, and ISG15. VP4 promoted interaction of p53 with murine double minute 2 (MDM2) through downregulation of NME1 resulting in destabilization of p53. Therefore, 5-flurouracil-induced upregulation of ISG20, IRF9, RIG-I, and ISG15 were suppressed by VP4. VP4-induced reduction of NME1 was not related to the well-characterized blocking effect of FMDV on cellular translation, and no direct interaction was detected between NME1 and VP4. The 15-30 and 75-85 regions of VP4 were determined to be crucial for VP4-induced reduction of NME1. Deletion of these VP4 regions also inhibited the suppressive effect of VP4 on NME1-enhanced p53 signaling. In conclusion, these data suggest an antiviral role of NME1 by regulation of p53-mediated antiviral innate immunity in virus-infected cells, and reveal an antagonistic mechanism of FMDV that is mediated by VP4 to block host innate immune antiviral response.
Collapse
Affiliation(s)
- Huan-Huan Feng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Zi-Xiang Zhu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Wei-Jun Cao
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Fan Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Xiang-Le Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Xiao-Li Du
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Ke-Shan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Xiang-Tao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China
| | - Hai-Xue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Key Laboratory of Animal Virology of Ministry of Agriculture, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, P. R. China.
| |
Collapse
|
2
|
Wang YF, Chang CJ, Chiu JH, Lin CP, Li WY, Chang SY, Chu PY, Tai SK, Chen YJ. NM23-H1 expression of head and neck squamous cell carcinoma in association with the response to cisplatin treatment. Oncotarget 2015; 5:7392-405. [PMID: 25277180 PMCID: PMC4202131 DOI: 10.18632/oncotarget.1912] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
We recently reported that low NM23-H1 expression of head and neck squamous cell carcinoma (HNSCC) correlated with poor patients' prognosis. Growing evidence has indicated that high tumor NM23-H1 expression contributes to a good response to chemotherapy. Therefore, we investigated the role of NM23-H1 in susceptibility of HNSCC cells to cisplatin and its clinical significance, as well as the in vitro study for validation was performed. Using immunohistochemistry, we analyzed NM23-H1 expression in surgical specimens from 46 HNSCC patients with cervical metastases receiving surgery and adjuvant chemoradiotherapy. Low tumor NM23-H1 expression correlated with locoregional recurrence of HNSCC following postoperative cisplatin-based therapy (p = 0.056) and poor patient prognosis (p = 0.001). To validate the clinical observation and the effect of NM23-H1 on cisplatin cytotoxicity, we established several stable clones derived from a human HNSCC cell line (SAS) by knockdown and overexpression. Knockdown of NM23-H1 attenuated the chemosensitivity of SAS cells to cisplatin, which was associated with reduced cisplatin-induced S-phase accumulation and downregulation of cyclin E1 and A. Overexpression of NM23-H1 reversed these results, indicating the essential role of NM23-H1 in treatment response to cisplatin. NM23-H1 may participate in HNSCC cell responses to cisplatin and be considered a potential therapeutic target.
Collapse
Affiliation(s)
- Yi-Fen Wang
- Department of Otorhinolaryngology and Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan. Department of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chun-Ju Chang
- Department of Food Science, National Taiwan Ocean University, Keelung, Taiwan
| | - Jen-Hwey Chiu
- Institute of Traditional Medicine, National Yang Ming University, Taipei, Taiwan
| | - Chin-Ping Lin
- Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan
| | - Wing-Yin Li
- Department of Medicine, National Yang Ming University, Taipei, Taiwan. Department of Pathology, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Shyue-Yih Chang
- Department of Otorhinolaryngology and Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan
| | - Pen-Yuan Chu
- Department of Otorhinolaryngology and Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan. Department of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Shyh-Kuan Tai
- Department of Otorhinolaryngology and Head and Neck Surgery, Taipei Veterans General Hospital, Taipei, Taiwan. Department of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Yu-Jen Chen
- Institute of Traditional Medicine, National Yang Ming University, Taipei, Taiwan. Department of Medical Research, Mackay Memorial Hospital, Taipei, Taiwan. Department of Radiation Oncology, Mackay Memorial Hospital, Taipei, Taiwan
| |
Collapse
|
3
|
Li MQ, Shao J, Meng YH, Mei J, Wang Y, Li H, Zhang L, Chang KK, Wang XQ, Zhu XY, Li DJ. NME1 suppression promotes growth, adhesion and implantation of endometrial stromal cells via Akt and MAPK/Erk1/2 signal pathways in the endometriotic milieu. Hum Reprod 2013; 28:2822-31. [DOI: 10.1093/humrep/det248] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
4
|
Guo H, Nan K, Hu T, Meng J, Hui W, Zhang X, Qin H, Sui C. Prognostic significance of co-expression of nm23 and p57 protein in hepatocellular carcinoma. Hepatol Res 2010; 40:1107-16. [PMID: 20880063 DOI: 10.1111/j.1872-034x.2010.00721.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
AIM To investigate the unbalance of proliferation and apoptosis and the functions of cell-cycle proteins and apoptotic factor in metastasis of hepatocellular carcinoma (HCC) and their effect in prognosis. METHODS Proliferation index and apoptosis index, as well as seven relatively molecular markers, namely p15, p34, p53, p57, p73, survivin and nm23, were evaluated by immunohistochemistry and TUNEL in HCC tissues and compared to adjacent non-cancerous tissues and normal liver tissues. Furthermore, the prognostic significance by follow-up and mutual relationships for each clinicopathologic factor and molecular marker were analysed. RESULTS The dysregulation between proliferation and apoptosis and the abnormal expression of seven molecular markers were observed in HCC tissues. The unbalance of proliferation and apoptosis and abnormal expressions of p15, p34, p57 and nm23 were correlated with TNM stage and extrahepatic metastasis. In particular, the abnormal co-expression of nm23/p57 correlated with advanced TNM stage and bigger tumor size and was an independent prognostic factor of HCC. CONCLUSION The unbalance of proliferation and apoptosis and abnormal expression of cell-cycle proteins promote metastasis of HCC. Moreover, the abnormal co-expression of nm23/p57 may be a useful molecular marker for metastasis and unfavourable prognosis for HCC.
Collapse
Affiliation(s)
- Hui Guo
- Department of Oncology, The First Affiliated HospitalThe Second Affiliated Hospital, College Of Medicine of Xi'an Jiaotong University, Xi'an, Shaanxi Department of Oncology, The First People Hospital, Changzhou, Jiangsu Department of Pulmonary Medicine, Kiang Wu Hospital, Macao, China
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Xie KM, Hou XF, Li MQ, Li DJ. NME1 at the human maternal-fetal interface downregulates titin expression and invasiveness of trophoblast cells via MAPK pathway in early pregnancy. Reproduction 2010; 139:799-808. [PMID: 20145075 DOI: 10.1530/rep-09-0490] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Nometastatic gene 23-H1 (NME1, also known as nm23-H1) is a wide-spectrum tumor metastasis suppressor gene that plays an important role in suppressing the invasion and metastasis of tumor cells. It has been demonstrated that NME1 is also expressed in human first-trimester placenta, but its function at maternal-fetal interface is not clear. The present study aimed to elucidate the biological function of NME1 at the maternal-fetal interface, especially on invasion of the human extravillous cytotrophoblasts (EVCTs). NME1 has been identified in both human trophoblast cells and decidual stromal cells (DSCs) in early pregnancy. We have proved that NME1 silencing in vitro increases the titin protein translation in the invasive EVCTs. Moreover, NME1 can inactivate the phospho-extracellular signal-regulated kinase 1/2 (P-ERK1/2) in trophoblasts in a time-dependent manner, and U0126, an inhibitor of MAPK/ERK, can inhibit partly the enhanced invasiveness and titin expression in trophoblasts induced by NME1 silencing. Interestingly, the expression of NME1 in either villi or decidua is higher significantly in miscarriage than that of the normal early pregnancy. These findings first reveal that the NME1 expressed in trophoblasts and DSCs controls the inappropriate invasion of human first-trimester trophoblast cells via MAPK/ERK1/2 signal pathway, and the overexpression of NME1 at maternal-fetal interface leads to pregnancy wastage.
Collapse
Affiliation(s)
- Ke-Ming Xie
- Department of Pathophysiology, Soochow University Medical College, Suzhou, People's Republic of China
| | | | | | | |
Collapse
|
6
|
Matsumura T, Suzuki T, Aizawa K, Sawaki D, Munemasa Y, Ishida J, Nagai R. Regulation of transforming growth factor-beta-dependent cyclooxygenase-2 expression in fibroblasts. J Biol Chem 2010; 284:35861-71. [PMID: 19837676 DOI: 10.1074/jbc.m109.014639] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Abnormal transforming growth factor-beta (TGF-beta) signaling is a critical contributor to the pathogenesis of various human diseases ranging from tissue fibrosis to tumor formation. Excessive TGF-beta signaling stimulates fibrotic responses. Recent research has focused in the main on the antiproliferative effects of TGF-beta in fibroblasts, and it is presently understood that TGF-beta-stimulated cyclooxygenase-2 (COX-2) induction in fibroblasts is essential for antifibroproliferative effects of TGF-beta. Both TGF-beta and COX-2 have been implicated in tumor growth, invasion, and metastasis, and therefore tumor-associated fibroblasts are a recent topic of interest. Here we report the identification of positive and negative regulatory factors of COX-2 expression induced by TGF-beta as determined using proteomic approaches. We show that TGF-beta coordinately up-regulates three factors, heterogeneous nuclear ribonucleoprotein A/B (HNRPAB), nucleotide diphosphate kinase A (NDPK A), and nucleotide diphosphate kinase A (NDPK B). Functional pathway analysis showed that HNRPAB augments mRNA and protein levels of COX-2 and subsequent prostaglandin E(2) (PGE(2)) production by suppressing degradation of COX-2 mRNA. In contrast, NDPK A and NDPK B attenuated mRNA and protein levels of COX-2 by affecting TGF-beta-Smad2/3/4 signaling at the receptor level. Collectively, we report on a new regulatory pathway of TGF-beta in controlling expression of COX-2 in fibroblasts, which advances our understanding of pathophysiological mechanisms of TGF-beta.
Collapse
Affiliation(s)
- Takayoshi Matsumura
- Departments of Cardiovascular Medicine, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan
| | | | | | | | | | | | | |
Collapse
|
7
|
Murakami M, Kaul R, Kumar P, Robertson ES. Nucleoside diphosphate kinase/Nm23 and Epstein-Barr virus. Mol Cell Biochem 2009; 329:131-9. [PMID: 19412732 PMCID: PMC5958352 DOI: 10.1007/s11010-009-0123-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2009] [Accepted: 04/16/2009] [Indexed: 12/19/2022]
Abstract
Nm23-H1 was discovered as the first metastasis suppressor gene about 20 years ago. Since then, extensive work has contributed to understanding its role in various cellular signaling pathways. Its association with a range of human cancers as well as its ability to regulate cell cycle and suppress metastasis has been explored. We have determined that the EBV-encoded nuclear antigens, EBNA3C and EBNA1, required for EBV-mediated lymphoproliferation and for maintenance EBV genome extrachromosomally in dividing mammalian cells, respectively, target and disrupt the physiological role of Nm23-H1 in the context of cell proliferation and cell migration. This review will focus on the interaction of Nm23-H1 with the Epstein-Barr virus nuclear antigens, EBNA3C and EBNA1 and the functional significance of this interaction as it relates to EBV pathogenesis.
Collapse
Affiliation(s)
- Masanao Murakami
- Department of Microbiology and Tumor Virology Program of Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|
8
|
|
9
|
Kaul R, Murakami M, Choudhuri T, Robertson ES. Epstein-Barr virus latent nuclear antigens can induce metastasis in a nude mouse model. J Virol 2007; 81:10352-61. [PMID: 17634231 PMCID: PMC2045452 DOI: 10.1128/jvi.00886-07] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus associated with the development of both lymphoid and epithelial tumors. The EBV critical latent antigens EBNA1 and EBNA3C interact with Nm23-H1, a known suppressor of cell migration and tumor metastasis. This interaction is critical for the regulation of downstream cellular genes involved in tumorigenesis and cell migration. The significance of these interactions was determined in nude mice using cancer cells expressing both EBV antigens and Nm23-H1. The EBV antigens promoted the growth of transformed cells in vivo, but their expression was less critical during the later stage of tumor development. The expression of Nm23-H1 affected the growth of cancer cells and suppressed their metastatic potential. This effect was effectively rescued by the expression of both EBV antigens. Interestingly, the prometastatic potential of EBNA3C was greater than that of EBNA1, which triggered a dramatic immune response, as indicated by increased spleen size and development of ascites in the mice. These studies now bridge the expression of the EBV antigens with tumorigenesis and metastasis and widen the range of potential targets for development of therapies for EBV-associated malignancies.
Collapse
Affiliation(s)
- Rajeev Kaul
- Department of Microbiology and Tumor Virology Program of the Abramson Comprehensive Cancer Center, University of Pennsylvania School of Medicine, 201E Johnson Pavilion, 3610 Hamilton Walk, Philadelphia, PA 19104, USA
| | | | | | | |
Collapse
|