1
|
Behera R, Sharma V, Grewal AK, Kumar A, Arora B, Najda A, Albadrani GM, Altyar AE, Abdel-Daim MM, Singh TG. Mechanistic correlation between mitochondrial permeability transition pores and mitochondrial ATP dependent potassium channels in ischemia reperfusion. Biomed Pharmacother 2023; 162:114599. [PMID: 37004326 DOI: 10.1016/j.biopha.2023.114599] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/21/2023] [Accepted: 03/23/2023] [Indexed: 04/03/2023] Open
Abstract
Mitochondrial dysfunction is one of the fundamental causes of ischemia reperfusion (I/R) damage. I/R refers to the paradoxical progression of cellular dysfunction and death that occurs when blood flow is restored to previously ischemic tissues. I/R causes a significant rise in mitochondrial permeability resulting in the opening of mitochondrial permeability transition pores (MPTP). The MPTP are broad, nonspecific channels present in the inner mitochondrial membrane (IMM), and are known to mediate the deadly permeability alterations that trigger mitochondrial driven cell death. Protection from reperfusion injury occurs when long-term ischemia is accompanied by short-term ischemic episodes or inhibition of MPTP from opening via mitochondrial ATP dependent potassium (mitoKATP) channels. These channels located in the IMM, play an essential role in ischemia preconditioning (PC) and protect against cell death by blocking MPTP opening. This review primarily focuses on the interaction between the MPTP and mitoKATP along with their role in the I/R injury. This article also describes the molecular composition of the MPTP and mitoKATP in order to promote future knowledge and treatment of diverse I/R injuries in various organs.
Collapse
|
2
|
ShamsEldeen AM, El-Aal SAA, Aboulhoda BE, AbdAllah H, Gamal SM, Hassan FE, Mehesen MN, Rashed LA, Mostafa A, Sadek NB. Combined Systemic Intake of K-ATP Opener (Nicorandil) and Mesenchymal Stem Cells Preconditioned With Nicorandil Alleviates Pancreatic Insufficiency in a Model of Bilateral Renal Ischemia/Reperfusion Injury. Front Physiol 2022; 13:934597. [PMID: 35812319 PMCID: PMC9260271 DOI: 10.3389/fphys.2022.934597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
We used nicorandil, a K-ATP channel opener, to study the role of these channels in the amelioration of renal ischemia/reperfusion (I/R)-induced pancreatic injury, and the possible involvement of PI3K/Akt/mTOR signaling pathway. Forty-two male Wistar rats were included in this study, six were sacrificed for extraction of bone marrow mesenchymal stem cells (BM-MSCs) and conducting the in-vitro work, the others were included in vivo study and equally divided into six groups. Group 1 (sham control), but groups 2-6 were subjected to bilateral renal I/R: Group 2 (I/R); Group 3 (I/R-NC), treated with nicorandil; Group 4 (I/R-MSCs), treated with BM-MSCs; Group 5 (I/R-MSCC), treated with nicorandil-preconditioned BM-MSCs; Group 6 (I/R-NC-MSCC), treated with both systemic nicorandil and preconditioned BM-MSCC. Renal injury and subsequent pancreatic damage were detected in the I/R group by a significant increase in serum urea, creatinine, fasting glucose, and pancreatic enzymes. The pancreatic tissues showed a reduction in cellularity and a significant decrease in the expression of the cell survival pathway, PI3K/Akt/mTOR, in the I/R group compared to the control. Preconditioning MSCs with nicorandil significantly enhanced the proliferation assay and decreased their apoptotic markers. Indeed, combined systemic nicorandil and nicorandil-preconditioning maintained survival of MSC in the pancreatic tissue and amelioration of apoptotic markers and pancreatic TNF-α production. Histologically, all treated groups revealed better pancreatic architecture, and increased area % of anti-insulin antibody and CD31, which were all best observed in the NC-MSCC group. Thus, using K-ATP channel opener was efficient to enhance PI3K/Akt/mTOR expression levels (in vivo and in vitro).
Collapse
Affiliation(s)
| | | | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hend AbdAllah
- Department of Anatomy and Embryology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sara Mahmoud Gamal
- Department of Physiology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Fatma E. Hassan
- Department of Physiology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Marwa Nagi Mehesen
- Department of Medical Pharmacology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry and Molecular Biology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Abeer Mostafa
- Department of Medical Biochemistry and Molecular Biology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nermeen Bakr Sadek
- Department of Physiology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
3
|
Zheng Y, Li X, Zhang F, Zhao B, Du W, Sun D, Li G. Protective effect of nicorandil against myocardial ischemia/reperfusion injury mediated via IL33/ST2 signaling pathway. Mol Cell Biochem 2022; 477:1921-1929. [PMID: 35347547 DOI: 10.1007/s11010-022-04418-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 03/16/2022] [Indexed: 02/06/2023]
Abstract
Myocardial ischemia-reperfusion injury (MI/RI), a complication of myocardial injury, is associated with high rates of mortality and disability. We aimed to explore the effect of nicorandil™ against MI/RI and investigated the underlying molecular mechanisms. In this in vitro study, hypoxia/reoxygenation (H/R) processing of H9c2 cells significantly suppressed the expressions of IL33 and ST2, reduced cell viability, increased production of reactive oxygen species, downregulated protein expression of Bcl-2, upregulated protein expressions of Bax, cleaved caspase3, and cleaved PARP, increased intracellular calcium overload, and induced cell apoptosis. Nicorandil processing reduced H/R-induced H9c2 cell damage. Nicorandil processing ameliorated the H/R-induced inhibition of the IL33 and ST2 expression in H9c2 cells. 5-Hydroxydecanoate blocked the effects of nicorandil on H9c2 cell viability, ROS production, and apoptosis and inhibited both IL33 and ST2. Similarly, the protective effect of nicorandil was restrained after inhibition of the IL33/ST2 pathway. Our findings suggest that the protective effect of nicorandil against H/R-induced H9c2 cell apoptosis was mediated through IL33/ST2 signaling pathway.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Xueyin Li
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Fan Zhang
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Bo Zhao
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Wanting Du
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Da Sun
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China
| | - Guangping Li
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, 100038, People's Republic of China. .,Department of Cardiology, Tianjin Institute of Cardiology, the Second Hospital of Tianjin Med University, Tianjin, 300211, People's Republic of China.
| |
Collapse
|
4
|
Xu X, Liu X, Yu L, Ma J, Yu S, Ni M. Impact of intracoronary nicorandil before stent deployment in patients with acute coronary syndrome undergoing percutaneous coronary intervention. Exp Ther Med 2019; 19:137-146. [PMID: 31853283 PMCID: PMC6909796 DOI: 10.3892/etm.2019.8219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Accepted: 11/07/2019] [Indexed: 12/29/2022] Open
Abstract
The present study aimed to clarify the effect of bolus intracoronary nicorandil on inflammatory, oxidative and adherent indicators in patients with acute coronary syndrome (ACS) undergoing percutaneous coronary intervention (PCI). This randomized controlled trial (RCT) was performed to detect the inflammation and oxidative stress in intracoronary blood both before and after PCI. In total, 65 consecutive patients undergoing PCI were classified into a nicorandil therapy group (n=32) or a placebo group (n=33). All procedures were performed at Shandong University Qilu Hospital, China, during the period from March, 2016 to May, 2017. Intracoronary blood from patients who received nicorandil therapy during PCI showed no change in soluble CD40 ligand (sCD40L) concentration (1.86±0.08 vs. 1.90±0.09 ng/ml, P=0.12) but a significant increase was noted in the control group (1.87±0.17 vs. 2.82±0.26 ng/ml, P<0.01). This indicated a relative reduction in sCD40L level after PCI in the nicorandil group. We further demonstrated an increase in superoxide dismutase (SOD) activity (29.37±0.81 vs. 31.03±0.60 U/ml, P<0.001) and a reduction in lipid peroxidation (3.84±0.99 vs. 4.23±0.13 U/ml, P=0.001) in the nicorandil group but observed no change in the placebo group. ICAM-1 levels showed no change in the nicorandil group (69.54±6.89 vs. 72.01±8.25 ng/ml, P=0.83) but a significant increase in the control group after PCI in intracoronary blood (56.57±4.96 vs. 76.81±6.88 ng/ml, P=0.002). No changes were found in hs-CRP, TNFα and sVCAM-1 levels in coronary blood for both groups before and after PCI in ACS patients. Our findings demonstrate that intracoronary bolus nicorandil therapy has a significant effect on the inhibition of inflammatory indicators and oxidative stress in patients with ACS during PCI. This suggests a possible medical application of nicorandil for reducing inflammation and oxidative stress.
Collapse
Affiliation(s)
- Xingli Xu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaoling Liu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Liwen Yu
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jing Ma
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| | - Sufang Yu
- Department of Neurology, The Fourth People's Hospital, Liaocheng, Shandong 252002, P.R. China
| | - Mei Ni
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
5
|
Liang LN, Zhong X, Zhou Y, Hou ZQ, Hu HR, Zhu FF, Chen JB, Ji XF, Shang DY. Cardioprotective effect of nicorandil against myocardial injury following cardiac arrest in swine. Am J Emerg Med 2017; 35:1082-1089. [PMID: 28285861 DOI: 10.1016/j.ajem.2017.02.051] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2016] [Revised: 02/27/2017] [Accepted: 02/28/2017] [Indexed: 12/11/2022] Open
Abstract
INTRODUCTION Nicorandil, a vasodilatory drug used to treat angina, was reported to protect against myocardial ischemia-reperfusion injury in various animal models. However, its cardioprotective action following cardiac arrest is unknown. We examined the cardioprotective effects of nicorandil in a porcine model of cardiac arrest and resuscitation. METHODS Ventricular fibrillation was induced electrically for 4min in anesthetized domestic swine, followed by cardiopulmonary resuscitation. Sixteen successfully resuscitated animals were randomized to saline control (n=8) or nicorandil (n=8) groups. Nicorandil (150μg/kg) was administered by central intravenous injection at onset of restoration of spontaneous circulation (ROSC), followed by 3μg/kg/min infusion until reperfusion end. Sham-operated animals received surgery only (n=4). Hemodynamic parameters were monitored continuously. Blood samples were taken at baseline, 5, 30, 180, and 360min after ROSC. Left ventricular ejection fraction was assessed by echocardiography at baseline and 6h after ROSC. The animals were euthanized 6h after ROSC, and the cardiac tissue was removed for analysis. RESULTS 6 h after ROSC, nicorandil had significantly improved all hemodynamic variables (all P<0.05) except the maximum rate of left ventricular pressure decline and heart rate (P>0.05) compared with the control group. Control animals showed elevated cardiac troponin I and lactate levels compared with sham animals, which were significantly decreased following nicorandil treatment (P<0.05). In the saline control group, the adenosine triphosphate (ATP) content was largely reduced but subsequently rescued by nicorandil (P<0.05). Histopathologic injury was reduced with nicorandil treatment. Nicorandil reduced cardiomyocyte apoptosis as evidenced by reduced terminal deoxynucleotidyl transferase dUTP nick-end labeling (TUNEL)-positive cells, decreased Bax and caspase-3 expression, and increased Bcl-2 expression in the myocardium (all P<0.05). CONCLUSION Nicorandil exhibited cardioprotective effects on myocardial injury following cardiac arrest via improvement in post-resuscitation myocardial dysfunction and energy metabolism, reduction in myocardial histopathologic injury, and antiapoptotic effects.
Collapse
Affiliation(s)
- Li-Ning Liang
- Department of Emergency, Shandong Provincial Hospital affiliated to Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
| | - Xia Zhong
- Department of Emergency, Shandong Provincial Hospital affiliated to Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
| | - Yi Zhou
- Department of Emergency, Shandong Provincial Hospital affiliated to Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
| | - Zhi-Qiang Hou
- Department of Emergency, Shandong Provincial Hospital affiliated to Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
| | - Hao-Ran Hu
- Department of Emergency, Shandong Provincial Hospital affiliated to Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
| | - Fang-Fang Zhu
- Department of Emergency, Shandong Provincial Hospital affiliated to Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
| | - Ji-Bin Chen
- Department of Emergency, Shandong Provincial Hospital affiliated to Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China
| | - Xian-Fei Ji
- Department of Emergency, Shandong Provincial Hospital affiliated to Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China.
| | - De-Ya Shang
- Department of Emergency, Shandong Provincial Hospital affiliated to Shandong University, No. 324, Jingwu Road, Jinan 250021, Shandong, China.
| |
Collapse
|
6
|
Ravindran S, Murali J, Amirthalingam SK, Gopalakrishnan S, Kurian GA. Vascular calcification abrogates the nicorandil mediated cardio-protection in ischemia reperfusion injury of rat heart. Vascul Pharmacol 2017; 89:31-38. [PMID: 28087358 DOI: 10.1016/j.vph.2016.12.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 12/04/2016] [Accepted: 12/31/2016] [Indexed: 11/29/2022]
Abstract
The present study was aimed to determine the efficacy of nicorandil in treating cardiac reperfusion injury with an underlying co-morbidity of vascular calcification (VC). Adenine diet was used to induce VC in Wistar rat and the heart was isolated to induce global ischemia reperfusion (IR) by Langendorff method, with and without the nicorandil (7.5mg/kg) pre-treatment and compared with those fed on normal diet. The adenine-treated rats displayed abnormal ECG changes and altered mitochondrial integrity compared to a normal rat heart. These hearts, when subjected to IR increased the infarct size, cardiac injury (measured by lactate dehydrogenase and creatine kinase activity in the coronary perfusate) and significantly altered the hemodynamics compared to the normal perfused heart. Nicorandil pretreatment in rat fed on normal diet enhanced the hemodynamics significantly (P<0.05) along with a substantial reduction in the mitochondrial dysfunction (measured by high ADP to oxygen consumption ratio, respiratory control ratio, enzyme activities and less swelling behavior) when subjected to IR. However, this cardio-protective effect of nicorandil was absent in rat heart with underlying calcification. Our results suggest that, the protective effect of nicorandil, a known mitochondrial ATP linked K+ channel opener, against myocardial reperfusion injury was confined to normal rat heart.
Collapse
Affiliation(s)
- Sriram Ravindran
- Vascular Biology Lab, SASTRA University, Thanjavur 613401, India
| | - Jeyashri Murali
- School of Chemical and Biotechnology, SASTRA University, Thanjavur 613401, India
| | | | | | - Gino A Kurian
- Vascular Biology Lab, SASTRA University, Thanjavur 613401, India.
| |
Collapse
|
7
|
Neuroprotective Effects of Nicorandil in Chronic Cerebral Hypoperfusion-Induced Vascular Dementia. J Stroke Cerebrovasc Dis 2016; 25:2717-2728. [PMID: 27622862 DOI: 10.1016/j.jstrokecerebrovasdis.2016.07.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/14/2016] [Accepted: 07/16/2016] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Ischemia-induced chronic cerebral hypoperfusion (CCH) is associated with reduced cerebral blood flow and vascular dementia (VaD). Brain mitochondrial potassium (adenosine triphosphate-sensitive potassium [KATP]) channels have a beneficial role in various brain conditions. The utility of KATP channels in CCH-induced VaD is still unknown. The aim of this study is to investigate the role of nicorandil, a selective KATP channel opener, in CCH-induced VaD. METHODS The method of 2-vessel occlusion (2VO) was used to induce CCH in mice. Cognitive impairment was assessed using Morris water maze. Serum nitrosative stress (nitrite/nitrate), brain cholinergic dysfunction (acetylcholinesterase [AChE] activity), brain oxidative stress (thiobarbituric acid reactive substances, glutathione [GSH], catalase [CAT], and superoxide dismutase [SOD]), inflammation (myeloperoxidase [MPO]), and infarct size (2,3,5-triphenyltetrazolium chloride staining) were assessed. RESULTS 2-vessels-occluded animals have shown significant cognitive impairment, serum nitrosative stress (reduced nitrite/nitrate), cholinergic dysfunction (increased brain AChE activity), and increased brain oxidative stress (reduction in GSH content and SOD and CAT activities with a significant increase in lipid peroxidation), along with a significant increase in MPO activity and infarct size. However, nicorandil treatment has significantly attenuated various CCH-induced behavioral and biochemical impairments. CONCLUSIONS It may be said that 2VO provoked CCH leading to VaD, which was attenuated by the treatment of nicorandil. So, modulation of KATP channels may provide benefits in CCH-induced VaD.
Collapse
|
8
|
Madathil RJ, Hira RS, Stoeckl M, Sterz F, Elrod JB, Nichol G. Ischemia reperfusion injury as a modifiable therapeutic target for cardioprotection or neuroprotection in patients undergoing cardiopulmonary resuscitation. Resuscitation 2016; 105:85-91. [PMID: 27131843 DOI: 10.1016/j.resuscitation.2016.04.009] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 04/07/2016] [Accepted: 04/13/2016] [Indexed: 12/13/2022]
Abstract
AIMS We sought to review cellular changes that occur with reperfusion to try to understand whether ischemia-reperfusion injury (RI) is a potentially modifiable therapeutic target for cardioprotection or neuroprotection in patients undergoing cardiopulmonary resuscitation. DATA SOURCES Articles written in English and published in PubMed. RESULTS Remote ischemic conditioning (RIC) involves brief episodes of non-lethal ischemia and reperfusion applied to an organ or limb distal to the heart and brain. Induction of hypothermia involves cooling an ischemic organ or body. Both have pluripotent effects that reduce the potential harm associated with RI in the heart and brain by reduced opening of the mitochondrial permeability transition pore. Recent trials of RIC and induced hypothermia did not demonstrate these treatments to be effective. Assessment of the effect of these interventions in humans to date may have been modified by use of concurrent medications including propofol. CONCLUSIONS Ongoing research is necessary to assess whether reduction of RI improves patient outcomes.
Collapse
Affiliation(s)
| | - Ravi S Hira
- University of Washington, Seattle, WA, United States
| | | | - Fritz Sterz
- Medical University of Vienna, Vienna, Austria
| | | | - Graham Nichol
- University of Washington, Seattle, WA, United States.
| |
Collapse
|
9
|
Gupta S, Sharma B. Protective effects of phosphodiesterase-1 (PDE1) and ATP sensitive potassium (KATP) channel modulators against 3-nitropropionic acid induced behavioral and biochemical toxicities in experimental Huntington׳s disease. Eur J Pharmacol 2014; 732:111-22. [DOI: 10.1016/j.ejphar.2014.03.032] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 03/15/2014] [Accepted: 03/24/2014] [Indexed: 12/16/2022]
|
10
|
Reduced Oxidative Stress in STEMI Patients Treated by Primary Percutaneous Coronary Intervention and with Antioxidant Therapy: A Systematic Review. Cardiovasc Drugs Ther 2014; 28:173-81. [DOI: 10.1007/s10557-014-6511-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
11
|
Xinxing W, Wei L, Lei W, Rui Z, Baoying J, Lingjia Q. A neuroendocrine mechanism of co-morbidity of depression-like behavior and myocardial injury in rats. PLoS One 2014; 9:e88427. [PMID: 24551098 PMCID: PMC3923793 DOI: 10.1371/journal.pone.0088427] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/08/2014] [Indexed: 11/19/2022] Open
Abstract
Depression is generally a recurrent psychiatric disorder. Evidence shows that depression and cardiovascular diseases are common comorbid conditions, but the specific pathological mechanisms remain unclear. The purpose of this study is to determine the effects of depression induced by chronic unpredictable mild stress (CUMS) on myocardial injury and to further elucidate the biological mechanism of depression. Rats were used as a model. The CUMS procedure lasted for a total of 8 weeks. After 4 weeks of CUMS, treated rats exhibited a reduced sucrose preference and changes in scores on an open field test, body weight and content of 5-HT in the brain as compared with the values of these variables in controls. These changes indicated depression-like changes in CUMS rats and demonstrated the feasibility of the depression model. In addition, pathological changes in the myocardium and increased cardiomyocyte apoptosis demonstrated that myocardial injury had occurred after 6 weeks of CUMS and had increased significantly by the end of 8 weeks of CUMS. Plasma serotonin (5-HT), norepinephrine (NE) and epinephrine (E), all depression-related neuroendocrine factors, were measured by HPLC-ECD techniques, and the content of plasma corticosterone (GC) was evaluated by an I(125)-cortisol radioactivity immunoassay in control and CUMS rats. The results indicated that 5-HT had decreased, whereas NE, E and GC had increased in CUMS rats, and these factors might be associated with depression-induced myocardial injury. The effects of 5-HT, NE and GC on the survival rate of cultured cardiomyocytes were determined using an orthogonal design. The results showed that 5-HT was a more important factor affecting cell survival than GC or NE. The results suggested that normal blood levels of 5-HT had a cytoprotective effect. The neuroendocrine disorders characterized by decreased 5-HT combined with increased GC and NE mediated the occurrence of depression-induced myocardial injury.
Collapse
Affiliation(s)
- Wang Xinxing
- Beijing Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (WX); (JB); (QL)
| | - Liu Wei
- Institute of Health & Environmental Medicine, Tianjin, China
| | - Wu Lei
- Institute of Health & Environmental Medicine, Tianjin, China
| | - Zhan Rui
- Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Jin Baoying
- Tianjin Occupational Disease Prevention Hospital (Hospital Workers), Tianjin, China
- * E-mail: (WX); (JB); (QL)
| | - Qian Lingjia
- Beijing Institute of Basic Medical Sciences, Beijing, China
- * E-mail: (WX); (JB); (QL)
| |
Collapse
|
12
|
Dymkowska D, Drabarek B, Jakubczyk J, Wojciechowska S, Zabłocki K. Potassium channel openers prevent palmitate-induced insulin resistance in C2C12 myotubes. Arch Biochem Biophys 2013; 541:47-52. [PMID: 24262853 DOI: 10.1016/j.abb.2013.11.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 10/28/2013] [Accepted: 11/08/2013] [Indexed: 10/26/2022]
Abstract
Insulin resistance (IR) of muscle cells is an early symptom of type 2 diabetes. It often results from excessive lipid accumulation in muscle fibers which under in vitro experimental conditions may be induced by incubation of muscle cells with palmitate. IR is manifested as a reduced response of cells to insulin expressed by lowered Akt kinase phosphorylation and decreased insulin-dependent glucose uptake. Stimulation of mitochondrial oxidative metabolism by mild dissipation of the mitochondrial potential is thought to increase fatty acid utilization and thereby prevent insulin resistance. Here it is shown that nicorandil and NS1619, which are openers of two different mitochondrial potassium channels, protect C2C12 myotubes from palmitate-induced insulin resistance. Preincubation of myotubes with 5-hydroxydecanoate abolishes the protective effect of nicorandil. The efficient concentrations of both openers are far below those commonly applied for cytoprotection. This is probably why their effects on the mitochondrial energy metabolism are small. These data suggest that opening of mitochondrial potassium channels could be a promising approach in prevention and therapy of insulin resistance related to dyslipidemia and obesity.
Collapse
Affiliation(s)
| | - Beata Drabarek
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | | | | |
Collapse
|
13
|
de Paula NA, Niwa AM, Vesenick DC, Panis C, Cecchini R, de Fátima A, Ribeiro LR, Mantovani MS. Evaluation of the effects of nicorandil and its molecular precursor (without radical NO) on proliferation and apoptosis of 786-cell. Cytotechnology 2013; 65:839-50. [PMID: 23325113 DOI: 10.1007/s10616-012-9524-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Accepted: 11/26/2012] [Indexed: 12/22/2022] Open
Abstract
Nicorandil is a nitric oxide (NO) donor used in the treatment of angina symptoms. It has also been reported to protect cells and affect the proliferation and death of cells in some tissues. The molecules that interfere with these processes can cause dysfunction in healthy tissues but can also assist in the therapy of some disorders. In this study we examined the effect of nicorandil and of the molecular precursor that does not have the NO radical (N-(beta-hydroxyethyl) nicotinamide) on the cell proliferation and death of human renal carcinoma cells (786-O) under normal oxygenation conditions. The molecular precursor was used in order to analyze the effects independents of NO. In the cytotoxicity test, nicorandil was shown to be cytotoxic at very high concentrations and it was more cytotoxic than its precursor (cytotoxic at concentrations of 2,000 and 3,000 μg/mL, respectively). We propose that the lower cytotoxicity of the precursor is due to the absence of the NO radical. In this study, the cells exposed to nicorandil showed neither statistically significant changes in cell proliferation nor increases in apoptosis or genotoxicity. The precursor generated similar results to those of nicorandil. We conclude that nicorandil causes no changes in the proliferation or apoptosis of the cell 786-O in normal oxygenation conditions. Moreover, the lack of NO radical in the precursor molecule did not show a different result, except in the cell cytotoxicity.
Collapse
Affiliation(s)
- Natália Aparecida de Paula
- Laboratório de Genética Toxicológica, Departamento de Biologia Geral, Centro de Ciências Biológicas, Universidade Estadual de Londrina, Rod. Celso Garcia Cid, Pr 445 Km 380, CEP 86055-990, Londrina, Paraná, Brazil,
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Sharma V, Bell RM, Yellon DM. Targeting reperfusion injury in acute myocardial infarction: a review of reperfusion injury pharmacotherapy. Expert Opin Pharmacother 2012; 13:1153-75. [PMID: 22594845 DOI: 10.1517/14656566.2012.685163] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Acute myocardial infarction (AMI) (secondary to lethal ischemia-reperfusion [IR]) contributes to much of the mortality and morbidity from ischemic heart disease. Currently, the treatment for AMI is early reperfusion; however, this itself contributes to the final myocardial infarct size, in the form of what has been termed 'lethal reperfusion injury'. Over the last few decades, the discovery of the phenomena of ischemic preconditioning and postconditioning, as well as remote preconditioning and remote postconditioning, along with significant advances in our understanding of the cardioprotective pathways underlying these phenomena, have provided the possibility of successful mechanical and pharmacological interventions against reperfusion injury. AREAS COVERED This review summarizes the evidence from clinical trials evaluating pharmacological agents as adjuncts to standard reperfusion therapy for ST-elevation AMI. EXPERT OPINION Reperfusion injury pharmacotherapy has moved from bench to bedside, with clinical evaluation and ongoing clinical trials providing us with valuable insights into the shortcomings of current research in establishing successful treatments for reducing reperfusion injury. There is a need to address some key issues that may be leading to lack of translation of cardioprotection seen in basic models to the clinical setting. These issues are discussed in the Expert opinion section.
Collapse
Affiliation(s)
- Vikram Sharma
- The Hatter Cardiovascular Institute, 67 Chenies Mews, London WC1E 6HX, UK
| | | | | |
Collapse
|
15
|
|
16
|
Giorgi C, Agnoletto C, Bononi A, Bonora M, De Marchi E, Marchi S, Missiroli S, Patergnani S, Poletti F, Rimessi A, Suski JM, Wieckowski MR, Pinton P. Mitochondrial calcium homeostasis as potential target for mitochondrial medicine. Mitochondrion 2011; 12:77-85. [PMID: 21798374 PMCID: PMC3281195 DOI: 10.1016/j.mito.2011.07.004] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Revised: 06/10/2011] [Accepted: 07/11/2011] [Indexed: 11/28/2022]
Abstract
Mitochondria are crucial in different intracellular pathways of signal transduction. Mitochondria are capable of decoding a variety of extracellular stimuli into markedly different intracellular actions, ranging from energy production to cell death. The fine modulation of mitochondrial calcium (Ca2+) homeostasis plays a fundamental role in many of the processes involving this organelle. When mitochondrial Ca2+ homeostasis is compromised, different pathological conditions can occur, depending on the cell type involved. Recent data have shed light on the molecular identity of the main proteins involved in the handling of mitochondrial Ca2+ traffic, opening fascinating and ambitious new avenues for mitochondria-based pharmacological strategies.
Collapse
Affiliation(s)
- Carlotta Giorgi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Chiara Agnoletto
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Angela Bononi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Massimo Bonora
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Elena De Marchi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Saverio Marchi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Sonia Missiroli
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Simone Patergnani
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Federica Poletti
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Alessandro Rimessi
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
| | - Jan M. Suski
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Nencki Institute of Experimental Biology, Warsaw, Poland
| | | | - Paolo Pinton
- Department of Experimental and Diagnostic Medicine, Section of General Pathology, Interdisciplinary Center for the Study of Inflammation (ICSI), Laboratory for Technologies of Advanced Therapies (LTTA), University of Ferrara, Ferrara, Italy
- Corresponding author at: Department of Experimental and Diagnostic Medicine, Section of General Pathology, Via Borsari, 46 44100 Ferrara, Italy.
| |
Collapse
|
17
|
Sánchez G, Fernández C, Montecinos L, Domenech RJ, Donoso P. Preconditioning tachycardia decreases the activity of the mitochondrial permeability transition pore in the dog heart. Biochem Biophys Res Commun 2011; 410:916-21. [PMID: 21708132 DOI: 10.1016/j.bbrc.2011.06.095] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2011] [Accepted: 06/11/2011] [Indexed: 10/18/2022]
Abstract
Cardioprotection by preconditioning is a central issue of current research on heart function. Several reports indicate that preventing the assembly and opening of the mitochondrial permeability transition pore (mPTP) protects the heart against ischemia-reperfusion injury. We have previously reported that brief episodes of tachycardia decrease the infarct size produced by subsequent prolonged occlusion of a coronary artery, indicating that controlled tachycardia is an effective preconditioning manoeuvre. The effects of preconditioning tachycardia on mPTP activity have not been reported. Therefore, in this work we investigated if preconditioning tachycardia protects against calcium-induced mitochondrial swelling, a measure of mPTP activity. We found that tachycardia decreased by 2.5-fold the rate of mitochondrial calcium-induced swelling, a factor that presumably contributes to the cardioprotective effects of tachycardia. The oxidative status of the cell increased after tachycardia, as evidenced by the decrease in the cellular and mitochondrial GSH/GSSG ratio. We also observed increased S-glutathionylation of cyclophilin-D, an essential mPTP component, after tachycardia. This reversible redox modification of cyclophilin-D may account, al least in part, for the decreased mPTP activity produced by preconditioning tachycardia.
Collapse
Affiliation(s)
- Gina Sánchez
- Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8389100, Chile.
| | | | | | | | | |
Collapse
|
18
|
Lee GJ, Chae SJ, Jeong JH, Lee SR, Ha SJ, Pak YK, Kim W, Park HK. Characterization of mitochondria isolated from normal and ischemic hearts in rats utilizing atomic force microscopy. Micron 2011; 42:299-304. [DOI: 10.1016/j.micron.2010.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2010] [Revised: 09/03/2010] [Accepted: 09/04/2010] [Indexed: 11/16/2022]
|
19
|
Li TT, Zhang YS, He L, Li NS, Peng J, Li YJ. Protective effect of phloroglucinol against myocardial ischaemia-reperfusion injury is related to inhibition of myeloperoxidase activity and inflammatory cell infiltration. Clin Exp Pharmacol Physiol 2010; 38:27-33. [DOI: 10.1111/j.1440-1681.2010.05457.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Abstract
The mitochondrial pathway to apoptosis is a major pathway of physiological cell death in vertebrates. The mitochondrial cell death pathway commences when apoptogenic molecules present between the outer and inner mitochondrial membranes are released into the cytosol by mitochondrial outer membrane permeabilization (MOMP). BCL-2 family members are the sentinels of MOMP in the mitochondrial apoptotic pathway; the pro-apoptotic B cell lymphoma (BCL)-2 proteins, BCL-2 associated x protein and BCL-2 antagonist killer 1 induce MOMP whereas the anti-apoptotic BCL-2 proteins, BCL-2, BCL-xl and myeloid cell leukaemia 1 prevent MOMP from occurring. The release of pro-apoptotic factors such as cytochrome c from mitochondria leads to formation of a multimeric complex known as the apoptosome and initiates caspase activation cascades. These pathways are important for normal cellular homeostasis and play key roles in the pathogenesis of many diseases. In this review, we will provide a brief overview of the mitochondrial death pathway and focus on a selection of diseases whose pathogenesis involves the mitochondrial death pathway and we will examine the various pharmacological approaches that target this pathway.
Collapse
|