1
|
Leite-Aguiar R, Bello-Santos VG, Castro NG, Coutinho-Silva R, Savio LEB. Techniques for evaluating the ATP-gated ion channel P2X7 receptor function in macrophages and microglial cells. J Immunol Methods 2024; 532:113727. [PMID: 38997100 DOI: 10.1016/j.jim.2024.113727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/31/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
Resident macrophages are tissue-specific innate immune cells acting as sentinels, constantly patrolling their assigned tissue to maintain homeostasis, and quickly responding to pathogenic invaders or molecular danger signals molecules when necessary. Adenosine triphosphate (ATP), when released to the extracellular medium, acts as a danger signal through specific purinergic receptors. Interaction of ATP with the purinergic receptor P2X7 activates macrophages and microglial cells in different pathological conditions, triggering inflammation. The highly expressed P2X7 receptor in these cells induces cell membrane permeabilization, inflammasome activation, cell death, and the production of inflammatory mediators, including cytokines and nitrogen and oxygen-reactive species. This review explores the techniques to evaluate the functional and molecular aspects of the P2X7 receptor, particularly in macrophages and microglial cells. Polymerase chain reaction (PCR), Western blotting, and immunocytochemistry or immunohistochemistry are essential for assessing gene and protein expression in these cell types. Evaluation of P2X7 receptor function involves the use of ATP and selective agonists and antagonists and diverse techniques, including electrophysiology, intracellular calcium measurements, ethidium bromide uptake, and propidium iodide cell viability assays. These techniques are crucial for studying the role of P2X7 receptors in immune responses, neuroinflammation, and various pathological conditions. Therefore, a comprehensive understanding of the functional and molecular aspects of the P2X7 receptor in macrophages and microglia is vital for unraveling its involvement in immune modulation and its potential as a therapeutic target. The methodologies presented and discussed herein offer valuable tools for researchers investigating the complexities of P2X7 receptor signaling in innate immune cells in health and disease.
Collapse
Affiliation(s)
- Raíssa Leite-Aguiar
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | | | - Robson Coutinho-Silva
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Luiz Eduardo Baggio Savio
- Laboratório de Imunofisiologia, Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil..
| |
Collapse
|
2
|
Eisenberg S, Haimov E, Walpole GFW, Plumb J, Kozlov MM, Grinstein S. Mapping the electrostatic profiles of cellular membranes. Mol Biol Cell 2020; 32:301-310. [PMID: 33263429 PMCID: PMC8098824 DOI: 10.1091/mbc.e19-08-0436] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Anionic phospholipids can confer a net negative charge on biological membranes. This surface charge generates an electric field that serves to recruit extrinsic cationic proteins, can alter the disposition of transmembrane proteins and causes the local accumulation of soluble counterions, altering the local pH and the concentration of physiologically important ions such as calcium. Because the phospholipid compositions of the different organellar membranes vary, their surface charges are similarly expected to diverge. Yet, despite the important functional implications, remarkably little is known about the electrostatic properties of the individual organellar membranes. We therefore designed and implemented approaches to estimate the surface charges of the cytosolic membranes of various organelles in situ in intact cells. Our data indicate that the inner leaflet of the plasma membrane is most negative, with a surface potential of approximately –35 mV, followed by the Golgi complex > lysosomes > mitochondria ≈ peroxisomes > endoplasmic reticulum, in decreasing order.
Collapse
Affiliation(s)
- Sharon Eisenberg
- Program in Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, Canada M5G 0A4
| | - Ehud Haimov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel.,Raymond and Beverly Sackler School of Physics and Astronomy, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Glenn F W Walpole
- Program in Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8
| | - Jonathan Plumb
- Program in Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, Canada M5G 0A4
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Sergio Grinstein
- Program in Cell Biology, Hospital for Sick Children, 686 Bay Street, Toronto, ON, Canada M5G 0A4.,Department of Biochemistry, University of Toronto, Toronto, ON, Canada M5S 1A8.,Keenan Research Centre of the Li Ka Shing Knowledge Institute, St. Michael's Hospital, Toronto, ON, Canada M5C 1N8
| |
Collapse
|
3
|
Pacheco P, Galvão R, Faria A, Von Ranke N, Rangel M, Ribeiro T, Bello M, Rodrigues C, Ferreira V, da Rocha D, Faria R. 8-Hydroxy-2-(1H-1,2,3-triazol-1-yl)-1,4-naphtoquinone derivatives inhibited P2X7 Receptor-Induced dye uptake into murine Macrophages. Bioorg Med Chem 2019; 27:1449-1455. [DOI: 10.1016/j.bmc.2018.11.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/20/2018] [Accepted: 11/26/2018] [Indexed: 12/26/2022]
|
4
|
De Bock M, Van Haver V, Vandenbroucke RE, Decrock E, Wang N, Leybaert L. Into rather unexplored terrain-transcellular transport across the blood-brain barrier. Glia 2016; 64:1097-123. [DOI: 10.1002/glia.22960] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 11/16/2015] [Accepted: 12/03/2015] [Indexed: 01/22/2023]
Affiliation(s)
- Marijke De Bock
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Valérie Van Haver
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Roosmarijn E. Vandenbroucke
- Inflammation Research Center, VIB; Ghent Belgium
- Department of Biomedical Molecular Biology; Ghent University; Ghent Belgium
| | - Elke Decrock
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Nan Wang
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| | - Luc Leybaert
- Physiology Group, Department of Basic Medical Sciences; Ghent University; Ghent Belgium
| |
Collapse
|
5
|
P2X7R large pore is partially blocked by pore forming proteins antagonists in astrocytes. J Bioenerg Biomembr 2016; 48:309-24. [DOI: 10.1007/s10863-016-9649-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 01/20/2016] [Indexed: 01/13/2023]
|
6
|
Ferreira LGB, Faria RX. TRPing on the pore phenomenon: what do we know about transient receptor potential ion channel-related pore dilation up to now? J Bioenerg Biomembr 2016; 48:1-12. [PMID: 26728159 DOI: 10.1007/s10863-015-9634-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2015] [Accepted: 12/02/2015] [Indexed: 01/06/2023]
Abstract
Ion channels allow for rapid ion diffusion through the plasma membrane. In some conditions, ion channels induce changes in the critical plasma membrane permeability that permit 900-Da solutes to enter cells. This process is known as the pore phenomenon. Some transient receptor potential (TRP) channel subtypes have been highlighted such as the P2X7 receptor, plasma membrane VDAC-1 channel, and pannexin hemichannels. The TRP ion channels are considered multimodal transducers that respond to several kinds of stimuli. In addition, many TRP channel subtypes are involved in physiological and pathophysiological processes such as inflammation, pain, and cancer. The TRPA1, TRPM8, and TRPV1-4 subtypes have been shown to promote large-molecular-weight solute uptake, including impermeable fluorescent dyes, QX-314 hydrophilic lidocaine derivative, gabapentin, and antineoplastic drugs. This review discusses the current knowledge of TRP-associated pores and encourages scientists to study their features and explore them as novel therapeutic tools.
Collapse
Affiliation(s)
- L G B Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute, FIOCRUZ, Av. Brasil, n° 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, Brazil.
| | - R X Faria
- Laboratory of Cellular Communication, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Av. Brasil, n° 4365, Manguinhos, CEP 21045-900, Rio de Janeiro, Brazil
| |
Collapse
|