1
|
Pain P, Spinelli F, Gherardi G. Mitochondrial Cation Signalling in the Control of Inflammatory Processes. Int J Mol Sci 2023; 24:16724. [PMID: 38069047 PMCID: PMC10706693 DOI: 10.3390/ijms242316724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Mitochondria are the bioenergetic organelles responsible for the maintenance of cellular homeostasis and have also been found to be associated with inflammation. They are necessary to induce and maintain innate and adaptive immune cell responses, acting as signalling platforms and mediators in effector responses. These organelles are also known to play a pivotal role in cation homeostasis as well, which regulates the inflammatory responses through the modulation of these cation channels. In particular, this review focuses on mitochondrial Ca2+ and K+ fluxes in the regulation of inflammatory response. Nevertheless, this review aims to understand the interplay of these inflammation inducers and pathophysiological conditions. In detail, we discuss some examples of chronic inflammation such as lung, bowel, and metabolic inflammatory diseases caused by a persistent activation of the innate immune response due to a dysregulation of mitochondrial cation homeostasis.
Collapse
Affiliation(s)
| | | | - Gaia Gherardi
- Department of Biomedical Sciences, University of Padova, 35131 Padova, Italy; (P.P.); (F.S.)
| |
Collapse
|
2
|
Vargas-Vargas MA, Saavedra-Molina A, Gómez-Barroso M, Peña-Montes D, Cortés-Rojo C, Rodríguez-Orozco AR, Rocío MP. Diazoxide improves muscle function in association with improved dyslipidemia and decreased muscle oxidative stress in streptozotocin-induced diabetic rats. J Bioenerg Biomembr 2023; 55:71-78. [PMID: 36723797 DOI: 10.1007/s10863-023-09958-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/22/2023] [Indexed: 02/02/2023]
Abstract
AIM/INTRODUCTION Diabetes Mellitus is a chronic degenerative disease, and its main biochemical characteristic is hyperglycemia due to impaired insulin secretion, resistance to peripheral actions of insulin, or both. Hyperglycemia causes dyslipidemia and stimulates oxidative damage, leading to the main symptoms, such as fatigue and culminates in diabetic complications. Previous studies have shown that ATP-sensitive potassium channels counteract muscle fatigue and metabolic stress in healthy mouse models. To determine the effect of diazoxide on muscle strength development during diabetes, we tested the effect of diazoxide in streptozotocin-diabetic rats in muscle function, lipid profile and oxidative stress biomarkers. MATERIALS AND METHODS Wistar rats were divided into 4 groups of six animals each: (1) Control group, (2) diabetes group, (3) Control group + diazoxide, and (4) Diabetic + diazoxide (DB + DZX). 4 weeks after rats were sacrificed, soleus and extensor digitorum longus muscles (EDL) were extracted to prepare homogenates and serum was obtained for biochemical measurements. Oxidative damage was evaluated by the thiobarbituric acid method and the fluorescent for reactive oxygen species (ROS) probe 2,4-H2DCFDA, respectively. RESULTS Diabetic rats with diazoxide administration showed an increase in the development of muscle strength in both muscles; in turn, the onset of fatigue was longer compared to the group of diabetic rats without treatment. Regarding the lipid profile, diazoxide decreased total cholesterol levels in the group of diabetic rats treated with diazoxide (x̅46.2 mg/dL) compared to the untreated diabetic group (x̅=104.4 mg/dL); secondly, diazoxide decreased triglyceride concentrations (x̅=105.3 mg/dL) compared to the untreated diabetic rats (x̅=412.2 mg/dL) as well as the levels of very low-density lipoproteins (x̅=20.4 mg/dL vs. x̅=82.44 mg/dL). Regarding the various markers of oxidative stress, the diabetic group treated with diazoxide was able to reduce the concentrations of TBARS and total reactive oxygen species as well as preserve the concentrations of reduced glutathione. CONCLUSION Diazoxide administration in diabetic rats increases muscle strength development in EDL and soleus muscle, decreases fatigue, reduces cholesterol and triglyceride concentrations and improves oxidative stress parameters such as TBARS, ROS, and glutathione status.
Collapse
Affiliation(s)
- Manuel Alejandro Vargas-Vargas
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, México
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, México
| | - Mariana Gómez-Barroso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, México
| | - Donovan Peña-Montes
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, México
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, México
| | - Alain R Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas "Dr. Ignacio Chávez", Universidad Michoacana de San Nicolás de Hidalgo, Av. Dr. Rafael Carrillo S/N, Esq. Dr. Salvador González Herrejón Bosque, 58020, 58000, Cuauhtémoc, Morelia, Michoacán, México
| | - Montoya-Pérez Rocío
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, México.
| |
Collapse
|
3
|
ShamsEldeen AM, El-Aal SAA, Aboulhoda BE, AbdAllah H, Gamal SM, Hassan FE, Mehesen MN, Rashed LA, Mostafa A, Sadek NB. Combined Systemic Intake of K-ATP Opener (Nicorandil) and Mesenchymal Stem Cells Preconditioned With Nicorandil Alleviates Pancreatic Insufficiency in a Model of Bilateral Renal Ischemia/Reperfusion Injury. Front Physiol 2022; 13:934597. [PMID: 35812319 PMCID: PMC9260271 DOI: 10.3389/fphys.2022.934597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
We used nicorandil, a K-ATP channel opener, to study the role of these channels in the amelioration of renal ischemia/reperfusion (I/R)-induced pancreatic injury, and the possible involvement of PI3K/Akt/mTOR signaling pathway. Forty-two male Wistar rats were included in this study, six were sacrificed for extraction of bone marrow mesenchymal stem cells (BM-MSCs) and conducting the in-vitro work, the others were included in vivo study and equally divided into six groups. Group 1 (sham control), but groups 2-6 were subjected to bilateral renal I/R: Group 2 (I/R); Group 3 (I/R-NC), treated with nicorandil; Group 4 (I/R-MSCs), treated with BM-MSCs; Group 5 (I/R-MSCC), treated with nicorandil-preconditioned BM-MSCs; Group 6 (I/R-NC-MSCC), treated with both systemic nicorandil and preconditioned BM-MSCC. Renal injury and subsequent pancreatic damage were detected in the I/R group by a significant increase in serum urea, creatinine, fasting glucose, and pancreatic enzymes. The pancreatic tissues showed a reduction in cellularity and a significant decrease in the expression of the cell survival pathway, PI3K/Akt/mTOR, in the I/R group compared to the control. Preconditioning MSCs with nicorandil significantly enhanced the proliferation assay and decreased their apoptotic markers. Indeed, combined systemic nicorandil and nicorandil-preconditioning maintained survival of MSC in the pancreatic tissue and amelioration of apoptotic markers and pancreatic TNF-α production. Histologically, all treated groups revealed better pancreatic architecture, and increased area % of anti-insulin antibody and CD31, which were all best observed in the NC-MSCC group. Thus, using K-ATP channel opener was efficient to enhance PI3K/Akt/mTOR expression levels (in vivo and in vitro).
Collapse
Affiliation(s)
| | | | - Basma Emad Aboulhoda
- Department of Anatomy and Embryology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Hend AbdAllah
- Department of Anatomy and Embryology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Sara Mahmoud Gamal
- Department of Physiology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Fatma E. Hassan
- Department of Physiology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Marwa Nagi Mehesen
- Department of Medical Pharmacology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Laila Ahmed Rashed
- Department of Medical Biochemistry and Molecular Biology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Abeer Mostafa
- Department of Medical Biochemistry and Molecular Biology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| | - Nermeen Bakr Sadek
- Department of Physiology, Kasr Alainy, Faculty of Medicine, Cairo University, Giza, Egypt
| |
Collapse
|
4
|
Wrzosek A, Gałecka S, Żochowska M, Olszewska A, Kulawiak B. Alternative Targets for Modulators of Mitochondrial Potassium Channels. Molecules 2022; 27:299. [PMID: 35011530 PMCID: PMC8746388 DOI: 10.3390/molecules27010299] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 12/17/2022] Open
Abstract
Mitochondrial potassium channels control potassium influx into the mitochondrial matrix and thus regulate mitochondrial membrane potential, volume, respiration, and synthesis of reactive oxygen species (ROS). It has been found that pharmacological activation of mitochondrial potassium channels during ischemia/reperfusion (I/R) injury activates cytoprotective mechanisms resulting in increased cell survival. In cancer cells, the inhibition of these channels leads to increased cell death. Therefore, mitochondrial potassium channels are intriguing targets for the development of new pharmacological strategies. In most cases, however, the substances that modulate the mitochondrial potassium channels have a few alternative targets in the cell. This may result in unexpected or unwanted effects induced by these compounds. In our review, we briefly present the various classes of mitochondrial potassium (mitoK) channels and describe the chemical compounds that modulate their activity. We also describe examples of the multidirectional activity of the activators and inhibitors of mitochondrial potassium channels.
Collapse
Affiliation(s)
- Antoni Wrzosek
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Shur Gałecka
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Monika Żochowska
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| | - Anna Olszewska
- Department of Histology, Medical University of Gdansk, 1a Debinki, 80-211 Gdansk, Poland;
| | - Bogusz Kulawiak
- Laboratory of Intracellular Ion Channels, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland; (A.W.); (S.G.); (M.Ż.)
| |
Collapse
|
5
|
Jiang X, Wu D, Jiang Z, Ling W, Qian G. Protective Effect of Nicorandil on Cardiac Microvascular Injury: Role of Mitochondrial Integrity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:4665632. [PMID: 34285763 PMCID: PMC8275446 DOI: 10.1155/2021/4665632] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/28/2021] [Accepted: 06/12/2021] [Indexed: 02/06/2023]
Abstract
A major shortcoming of postischemic therapy for myocardial infarction is the no-reflow phenomenon due to impaired cardiac microvascular function including microcirculatory barrier function, loss of endothelial activity, local inflammatory cell accumulation, and increased oxidative stress. Consequently, inadequate reperfusion of the microcirculation causes secondary ischemia, aggravating the myocardial reperfusion injury. ATP-sensitive potassium ion (KATP) channels regulate the coronary blood flow and protect cardiomyocytes from ischemia-reperfusion injury. Studies in animal models of myocardial ischemia-reperfusion have illustrated that the opening of mitochondrial KATP (mito-KATP) channels alleviates endothelial dysfunction and reduces myocardial necrosis. By contrast, blocking mito-KATP channels aggravates microvascular necrosis and no-reflow phenomenon following ischemia-reperfusion injury. Nicorandil, as an antianginal drug, has been used for ischemic preconditioning (IPC) due to its mito-KATP channel-opening effect, thereby limiting infarct size and subsequent severe ischemic insult. In this review, we analyze the protective actions of nicorandil against microcirculation reperfusion injury with a focus on improving mitochondrial integrity. In addition, we discuss the function of mitochondria in the pathogenesis of myocardial ischemia.
Collapse
Affiliation(s)
- Xiaosi Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
- School of Medicine, Nankai University, Tianjin, China
| | - Dan Wu
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zichao Jiang
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Weiwei Ling
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Geng Qian
- Department of Cardiology, The First Medical Center, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
6
|
Sánchez‐Duarte S, Márquez‐Gamiño S, Montoya‐Pérez R, Villicaña‐Gómez EA, Vera‐Delgado KS, Caudillo‐Cisneros C, Sotelo‐Barroso F, Melchor‐Moreno MT, Sánchez‐Duarte E. Nicorandil decreases oxidative stress in slow- and fast-twitch muscle fibers of diabetic rats by improving the glutathione system functioning. J Diabetes Investig 2021; 12:1152-1161. [PMID: 33503290 PMCID: PMC8264387 DOI: 10.1111/jdi.13513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 10/20/2020] [Accepted: 01/24/2021] [Indexed: 01/17/2023] Open
Abstract
AIMS/INTRODUCTION Myopathy is a common complication of any diabetes type, consisting in failure to preserve mass and muscular function. Oxidative stress has been considered one of the main causes for this condition. This study aimed to search if Nicorandil, a KATP channel opener, could protect slow- and fast-twitch diabetic rat muscles from oxidative stress, and to unveil its possible mechanisms. MATERIALS AND METHODS Diabetes was induced in male Wistar rats by applying intraperitoneally streptozotocin (STZ) at 100 mg/kg doses. Nicorandil (3 mg/kg/day) was administered along 4 weeks. An insulin tolerance test and assessment of fasting blood glucose (FBG), TBARS, reduced (GSH), and disulfide (GSSG) glutathione levels, GSH/GSSG ratio, and mRNA expression of glutathione metabolism-related genes were performed at end of treatment in soleus and gastrocnemius muscles. RESULTS Nicorandil significantly reduced FBG levels and enhanced insulin tolerance in diabetic rats. In gastrocnemius and soleus muscles, Nicorandil attenuated the oxidative stress by decreasing lipid peroxidation (TBARS), increasing total glutathione and modulating GPX1-mRNA expression in both muscle's types. Nicorandil also increased GSH and GSH/GSSG ratio and downregulated the GCLC- and GSR-mRNA in gastrocnemius, without significative effect on those enzymes' mRNA expression in diabetic soleus muscle. CONCLUSIONS In diabetic rats, Nicorandil attenuates oxidative stress in slow- and fast-twitch skeletal muscles by improving the glutathione system functioning. The underlying mechanisms for the modulation of glutathione redox state and the transcriptional expression of glutathione metabolism-related genes seem to be fiber type-dependent.
Collapse
Affiliation(s)
- Sarai Sánchez‐Duarte
- Instituto de Investigaciones Químico‐BiológicasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMichoacánMéxico
| | - Sergio Márquez‐Gamiño
- Departamento de Ciencias Aplicadas al TrabajoUniversidad de Guanajuato Campus LeónLeónGuanajuatoMéxico
| | - Rocío Montoya‐Pérez
- Instituto de Investigaciones Químico‐BiológicasUniversidad Michoacana de San Nicolás de HidalgoMoreliaMichoacánMéxico
| | | | - Karla Susana Vera‐Delgado
- Departamento de Ciencias Aplicadas al TrabajoUniversidad de Guanajuato Campus LeónLeónGuanajuatoMéxico
| | | | - Fernando Sotelo‐Barroso
- Departamento de Ciencias Aplicadas al TrabajoUniversidad de Guanajuato Campus LeónLeónGuanajuatoMéxico
| | - Ma Teresa Melchor‐Moreno
- Departamento de Ciencias Aplicadas al TrabajoUniversidad de Guanajuato Campus LeónLeónGuanajuatoMéxico
| | - Elizabeth Sánchez‐Duarte
- Departamento de Ciencias Aplicadas al TrabajoUniversidad de Guanajuato Campus LeónLeónGuanajuatoMéxico
| |
Collapse
|
7
|
Gómez-Barroso M, Moreno-Calderón KM, Sánchez-Duarte E, Cortés-Rojo C, Saavedra-Molina A, Rodríguez-Orozco AR, Montoya-Pérez R. Diazoxide and Exercise Enhance Muscle Contraction during Obesity by Decreasing ROS Levels, Lipid Peroxidation, and Improving Glutathione Redox Status. Antioxidants (Basel) 2020; 9:1232. [PMID: 33291828 PMCID: PMC7762033 DOI: 10.3390/antiox9121232] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 12/16/2022] Open
Abstract
Obesity causes insulin resistance and hyperinsulinemia which causes skeletal muscle dysfunction resulting in a decrease in contraction force and a reduced capacity to avoid fatigue, which overall, causes an increase in oxidative stress. KATP channel openers such as diazoxide and the implementation of exercise protocols have been reported to be actively involved in protecting skeletal muscle against metabolic stress; however, the effects of diazoxide and exercise on muscle contraction and oxidative stress during obesity have not been explored. This study aimed to determine the effect of diazoxide in the contraction of skeletal muscle of obese male Wistar rats (35 mg/kg), and with an exercise protocol (five weeks) and the combination from both. Results showed that the treatment with diazoxide and exercise improved muscular contraction, showing an increase in maximum tension and total tension due to decreased ROS and lipid peroxidation levels and improved glutathione redox state. Therefore, these results suggest that diazoxide and exercise improve muscle function during obesity, possibly through its effects as KATP channel openers.
Collapse
Affiliation(s)
- Mariana Gómez-Barroso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Koré M. Moreno-Calderón
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Elizabeth Sánchez-Duarte
- Departamento de Ciencias Aplicadas al Trabajo, Universidad de Guanajuato Campus León, Eugenio Garza Sada 572, Lomas del Campestre Sección 2, León, Guanajuato 37150, Mexico;
| | - Christian Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Alfredo Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| | - Alain R. Rodríguez-Orozco
- Facultad de Ciencias Médicas y Biológicas “Dr. Ignacio Chávez”, Universidad Michoacana de San Nicolás de Hidalgo Av. Dr. Rafael Carrillo S/N, Esq. Dr. Salvador González Herrejón, Bosque Cuauhtémoc, Morelia, Michoacán 58020, Mexico;
| | - Rocío Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, Morelia, Michoacán 58030, Mexico; (M.G.-B.); (K.M.M.-C.); (C.C.-R.); (A.S.-M.)
| |
Collapse
|
8
|
N-(2-mercaptopropionyl)-glycine enhances in vitro pig embryo production and reduces oxidative stress. Sci Rep 2020; 10:18632. [PMID: 33122658 PMCID: PMC7596235 DOI: 10.1038/s41598-020-75442-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 09/29/2020] [Indexed: 12/31/2022] Open
Abstract
This study evaluated the effects of different concentrations (1, 10, 25, 50, and 100 µM) of the antioxidant N-(2-mercaptopropionyl)-glycine (NMPG), during the culture of in vitro-fertilized porcine oocytes. While the highest concentrations of NMPG (50 and 100 µM) were toxic to the developing embryos during the first two days of culture, 25 µM NMPG achieved cleavage rates that were similar to those achieved by the control but did not sustain blastocyst production by Day 7 of culture. Compared to the control culture medium, the culture medium supplemented with 10 µM NMPG increased (P < 0.05) the rates of blastocyst formation, decreased (P < 0.05) the intracellular levels of reactive oxygen substances, and downregulated (P < 0.05) the expression of the oxidative stress related gene GPX1. In conclusion, these results demonstrated that supplementation of porcine embryo culture medium with 10 µM NMPG can attenuate oxidative stress and increase the yield of in vitro production of blastocysts.
Collapse
|
9
|
Sánchez-Duarte E, Cortés-Rojo C, Sánchez-Briones LA, Campos-García J, Saavedra-Molina A, Delgado-Enciso I, López-Lemus UA, Montoya-Pérez R. Nicorandil Affects Mitochondrial Respiratory Chain Function by Increasing Complex III Activity and ROS Production in Skeletal Muscle Mitochondria. J Membr Biol 2020; 253:309-318. [PMID: 32620983 DOI: 10.1007/s00232-020-00129-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 06/23/2020] [Indexed: 12/15/2022]
Abstract
Adenosine triphosphate (ATP)-dependent potassium channels openers (KATP) protect skeletal muscle against function impairment through the activation of the mitochondrial KATP channels (mitoKATP). Previous reports suggest that modulators of the mitochondrial KATP channels have additional effects on isolated mitochondria. To determine whether the KATP channel opener nicorandil has non-specific effects that explain its protective effect through the mitochondrial function, chicken muscle mitochondria were isolated, and respiration rate was determined pollarographically. The activity of the electron transport chain (ETC) complexes (I-IV) was measured using a spectrophotometric method. Reactive oxygen species (ROS) levels and lipid peroxidation were assessed using flow cytometry and thiobarbituric acid assay, respectively. Both KATP channel opener nicorandil and KATP channel blocker 5-hydroxydecanoate (5-HD) decreased mitochondrial respiration; nicorandil increased complex III activity and decreased complex IV activity. The effects of nicorandil on complex III were antagonized by 5-HD. Nicorandil increased ROS levels, effect reverted by either 5-HD or the antioxidant N-2-mercaptopropionyl glycine (MPG). None of these drugs affected lipid peroxidation levels. These findings suggest that KATP channel opener nicorandil increases mitochondrial ROS production from complex III. This results by partially blocking electron flow in the complex IV, setting electron carriers in a more reduced state, which is favored by the increase in complex III activity by nicorandil. Overall, our study showed that nicorandil like other mitochondrial KATP channel openers might not act through mitoKATP channel activation.
Collapse
Affiliation(s)
- E Sánchez-Duarte
- Departamento de Ciencias Aplicadas al Trabajo, Universidad de Guanajuato Campus León, Eugenio Garza Sada 572, Lomas del Campestre Sección 2, 37150, León, Guanajuato, Mexico
| | - C Cortés-Rojo
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, Mexico
| | - L A Sánchez-Briones
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, Mexico
| | - J Campos-García
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, Mexico
| | - A Saavedra-Molina
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, Mexico
| | - I Delgado-Enciso
- Facultad de Medicina, Universidad de Colima, Av. Universidad 333. Las Víboras, 28040, Colima, Colima, Mexico
| | - U A López-Lemus
- Center for Biodefense and Global Infectious Diseases, 28078, Colima, Colima, Mexico
| | - R Montoya-Pérez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Francisco J. Múgica S/N, Col. Felicitas del Río, 58030, Morelia, Michoacán, Mexico.
| |
Collapse
|
10
|
Signaling pathways targeting mitochondrial potassium channels. Int J Biochem Cell Biol 2020; 125:105792. [PMID: 32574707 DOI: 10.1016/j.biocel.2020.105792] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 06/08/2020] [Accepted: 06/11/2020] [Indexed: 12/11/2022]
Abstract
In this review, we describe key signaling pathways regulating potassium channels present in the inner mitochondrial membrane. The signaling cascades covered here include phosphorylation, redox reactions, modulation by calcium ions and nucleotides. The following types of potassium channels have been identified in the inner mitochondrial membrane of various tissues: ATP-sensitive, Ca2+-activated, voltage-gated and two-pore domain potassium channels. The direct roles of these channels involve regulation of mitochondrial respiration, membrane potential and synthesis of reactive oxygen species (ROS). Changes in channel activity lead to diverse pro-life and pro-death responses in different cell types. Hence, characterizing the signaling pathways regulating mitochondrial potassium channels will facilitate understanding the physiological role of these proteins. Additionally, we describe in this paper certain regulatory mechanisms, which are unique to mitochondrial potassium channels.
Collapse
|
11
|
Zhan B, Xu Z, Zhang Y, Wan K, Deng H, Wang D, Bao H, Wu Q, Hu X, Wang H, Huang X, Cheng X. Nicorandil reversed homocysteine-induced coronary microvascular dysfunction via regulating PI3K/Akt/eNOS pathway. Biomed Pharmacother 2020; 127:110121. [PMID: 32407984 DOI: 10.1016/j.biopha.2020.110121] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 12/27/2022] Open
Abstract
OBJECTIVE Nicorandil exerts a protective effect against coronary microvascular dysfunction in acute myocardial infarction (AMI) patients. However, the mechanism and effect of nicorandil in hyperhomocysteinemia (HHcy) AMI patients remain unclear. METHODS C57/BL6 mice with mild to moderate HHcy and human coronary artery endothelial cells (HCAECs) cotreated with HHcy (1 mmol/L) for 24 h and hypoxia for 6 h were selected as models. Small animal ultrasound detection was used to compare cardiac function. CD31 immunofluorescence staining and tomato lectin staining were used to assess the number of microcirculation changes in vivo. MTT, tube formation and western blotting assays were used to evaluate the effect of nicorandil on HCAECs and the PI3K/Akt/eNOS pathway. RESULTS The results showed that nicorandil improved cell viability and p-PI3K/PI3K, p-Akt/Akt, and p-eNOS/eNOS expression in the vitro HHcy and hypoxia models. The beneficial effects of nicorandil on HCAECs could be inhibited by the phosphatidylinositol 3-kinase (PI3K) inhibitor LY294002 and the nitric oxide synthase (NOS) inhibitor L-NAME. In vivo, nicorandil improved the left ventricular ejection fraction (LVEF) and left ventricular fractional shortening (LVFS) in the post-HHcy + MI model, and the levels of CD31 and tomato lectin expression were higher in the nicorandil treatment group. The effectiveness of nicorandil was inhibited in the PI3K and L-NAME groups. CONCLUSION The results suggest that nicorandil improves Hcy-induced coronary microvascular dysfunction through the PI3K/Akt/eNOS signalling pathway.
Collapse
Affiliation(s)
- Biming Zhan
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Zongyu Xu
- Department of Cardiology, Huangpu Branch of the Ninth People's Hospital Affiliated to the Medical College of Shanghai Jiaotong University, China
| | - Yang Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Nanchang University, China
| | - Kefei Wan
- Clinical Medicine, Medical College of Nanchang University, China
| | - Hanyue Deng
- Clinical Medicine, Medical College of Nanchang University, China
| | - Dimeng Wang
- Clinical Medicine, Medical College of Nanchang University, China
| | - Huihui Bao
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Xiaohong Hu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Hong Wang
- Center for Metabolic Disease Research, Department of Pharmacology Lewis Katz School of Medicine, Temple University, 3500 Broad Street, Philadelphia, PA, 19140, United States
| | - Xiao Huang
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China.
| | - Xiaoshu Cheng
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China.
| |
Collapse
|
12
|
Wang Y, Zhao H, Fei D, Shao Y, Liu J, Jiang G, Xing M. Discrepant effects of copper (II) stress on different types of skeletal muscles in chicken: Elements and amino acids. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 167:227-235. [PMID: 30342355 DOI: 10.1016/j.ecoenv.2018.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 09/19/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
Different distributions of 28 elements and 17 amino acids in pectoralis, wing biceps brachii and leg gastrocnemius of chicken upon CuSO4 (300 mg/kg) exposure for 90 days were investigated. Accompanied by copper accumulation, pathological injuries were observed in those three kinds of skeletal muscles using histological and ultrastructural methods. Based on data obtained, we analyzed leg gastrocnemius displayed the most increases (P < 0.000) in all three kinds of elements detected, including macroelements (131%), essential microelements (129%) and toxic microelements (179%) than the other two skeletal muscles. Furthermore, decreased total amino acids (P = 0.006), a susceptibility of lipid peroxidation/oxidative stress and a disequilibrium of nutrition and taste were analyzed in the leg gastrocnemius, indicating an unsuitability for human consumption. Intriguingly, these anomalies were scarce in pectoralis and wing biceps brachii. Combined with multivariate analysis we may conclude that leg gastrocnemius are more vulnerable to copper stress than pectoralis and wing biceps brachii in chicken.
Collapse
Affiliation(s)
- Yu Wang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Hongjing Zhao
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Dongxue Fei
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Yizhi Shao
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Juanjuan Liu
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China
| | - Guangshun Jiang
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| | - Mingwei Xing
- College of Wildlife Resources, Northeast Forestry University, Harbin 150040, Heilongjiang, PR China.
| |
Collapse
|