1
|
Lopez-Tello J, Kiu R, Schofield Z, Zhang CXW, van Sinderen D, Le Gall G, Hall LJ, Sferruzzi-Perri AN. Maternal gut Bifidobacterium breve modifies fetal brain metabolism in germ-free mice. Mol Metab 2024; 88:102004. [PMID: 39127167 PMCID: PMC11401360 DOI: 10.1016/j.molmet.2024.102004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 08/06/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Recent advances have significantly expanded our understanding of the gut microbiome's influence on host physiology and metabolism. However, the specific role of certain microorganisms in gestational health and fetal development remains underexplored. OBJECTIVE This study investigates the impact of Bifidobacterium breve UCC2003 on fetal brain metabolism when colonized in the maternal gut during pregnancy. METHODS Germ-free pregnant mice were colonized with or without B. breve UCC2003 during pregnancy. The metabolic profiles of fetal brains were analyzed, focusing on the presence of key metabolites and the expression of critical metabolic and cellular pathways. RESULTS Maternal colonization with B. breve resulted in significant metabolic changes in the fetal brain. Specifically, ten metabolites, including citrate, 3-hydroxyisobutyrate, and carnitine, were reduced in the fetal brain. These alterations were accompanied by increased abundance of transporters involved in glucose and branched-chain amino acid uptake. Furthermore, supplementation with this bacterium was associated with elevated expression of critical metabolic pathways such as PI3K-AKT, AMPK, STAT5, and Wnt-β-catenin signaling, including its receptor Frizzled-7. Additionally, there was stabilization of HIF-2 protein and modifications in genes and proteins related to cellular growth, axogenesis, and mitochondrial function. CONCLUSIONS The presence of maternal B. breve during pregnancy plays a crucial role in modulating fetal brain metabolism and growth. These findings suggest that Bifidobacterium could modify fetal brain development, potentially offering new avenues for enhancing gestational health and fetal development through microbiota-targeted interventions.
Collapse
Affiliation(s)
- Jorge Lopez-Tello
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK; Department of Physiology, Faculty of Medicine. Autonomous University of Madrid, Spain.
| | - Raymond Kiu
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Institute of Microbiology & Infection, University of Birmingham, Birmingham, UK; Department of Microbes, Infection & Microbiomes, School of Infection, Inflammation & Immunology, University of Birmingham, Birmingham, UK
| | - Zoe Schofield
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK
| | - Cindy X W Zhang
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | | | - Gwénaëlle Le Gall
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, James Watson Road, Norwich Research Park, Norwich NR4 7UQ, UK
| | - Lindsay J Hall
- Food, Microbiome & Health, Quadram Institute Bioscience, Norwich Research Park, Norwich, UK; Institute of Microbiology & Infection, University of Birmingham, Birmingham, UK; Department of Microbes, Infection & Microbiomes, School of Infection, Inflammation & Immunology, University of Birmingham, Birmingham, UK
| | - Amanda N Sferruzzi-Perri
- Department of Physiology, Development, and Neuroscience, Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| |
Collapse
|
2
|
Monocarboxylate Transporters Are Involved in Extracellular Matrix Remodelling in Pancreatic Ductal Adenocarcinoma. Cancers (Basel) 2022; 14:cancers14051298. [PMID: 35267606 PMCID: PMC8909080 DOI: 10.3390/cancers14051298] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 02/24/2022] [Accepted: 02/28/2022] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is an aggressive malignancy with a five-year survival rate of <8%. PDAC is characterised by desmoplasia with an abundant extracellular matrix (ECM) rendering current therapies ineffective. Monocarboxylate transporters (MCTs) are key regulators of cellular metabolism and are upregulated in different cancers; however, their role in PDAC desmoplasia is little understood. Here, we investigated MCT and ECM gene expression in primary PDAC patient biopsies using RNA-sequencing data obtained from Gene Expression Omnibus. We generated a hypernetwork model from these data to investigate whether a causal relationship exists between MCTs and ECMs. Our analysis of stromal and epithelial tissues (n = 189) revealed nine differentially expressed MCTs, including the upregulation of SLC16A2/6/10 and the non-coding SLC16A1-AS1, and 502 ECMs, including collagens, laminins, and ECM remodelling enzymes (false discovery rate < 0.05). A causal hypernetwork analysis demonstrated a bidirectional relationship between MCTs and ECMs; four MCT and 255 ECM-related transcripts correlated with 90% of the differentially expressed ECMs (n = 376) and MCTs (n = 7), respectively. The hypernetwork model was robust, established by iterated sampling, direct path analysis, validation by an independent dataset, and random forests. This transcriptomic analysis highlights the role of MCTs in PDAC desmoplasia via associations with ECMs, opening novel treatment pathways to improve patient survival.
Collapse
|
3
|
Huang H, Li S, Tang Q, Zhu G. Metabolic Reprogramming and Immune Evasion in Nasopharyngeal Carcinoma. Front Immunol 2021; 12:680955. [PMID: 34566954 PMCID: PMC8458828 DOI: 10.3389/fimmu.2021.680955] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/25/2021] [Indexed: 01/31/2023] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a malignant tumor of the nasopharynx mainly characterized by geographic distribution and EBV infection. Metabolic reprogramming, one of the cancer hallmarks, has been frequently reported in NPCs to adapt to internal energy demands and external environmental pressures. Inevitably, the metabolic reprogramming within the tumor cell will lead to a decreased pH value and diverse nutritional supplements in the tumor-infiltrating micro-environment incorporating immune cells, fibroblasts, and endothelial cells. Accumulated evidence indicates that metabolic reprogramming derived from NPC cells may facilitate cancer progression and immunosuppression by cell-cell communications with their surrounding immune cells. This review presents the dysregulated metabolism processes, including glucose, fatty acid, amino acid, nucleotide metabolism, and their mutual interactions in NPC. Moreover, the potential connections between reprogrammed metabolism, tumor immunity, and associated therapy would be discussed in this review. Accordingly, the development of targets on the interactions between metabolic reprogramming and immune cells may provide assistances to overcome the current treatment resistance in NPC patients.
Collapse
Affiliation(s)
- Huimei Huang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Shisheng Li
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Qinglai Tang
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gangcai Zhu
- Department of Otolaryngology-Head and Neck Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Overexpression of monocarboxylate transporter 4 promotes the migration and invasion of non-carcinogenic L929 fibroblast cells. Oncol Lett 2020; 21:44. [PMID: 33262836 PMCID: PMC7693126 DOI: 10.3892/ol.2020.12305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/30/2020] [Indexed: 11/13/2022] Open
Abstract
Metastasis is a primary contributor to the low survival rates of patients with cancer. Enhanced migration and invasion are two key features of the metastatic transformation of cancer cells. Furthermore, despite the fact that overexpression of the monocarboxylate transporter (MCT)1 and 4 proteins has been found to promote the migration or invasion of cancer cells, previous findings have not been conclusive and have even been contradictory. The majority of these previous studies have relied on the silencing or inhibition of MCT1/4 expression or function in highly metastatic cell lines. Silencing can be transient or incomplete, and inhibition can result in off-target effects. Employing a different approach, the present study stably transfected human MCT1 and MCT4 into the non-carcinogenic murine NCTC clone 929 (L929) cell line, which had undetectable endogenous MCT1 and MCT4 expression. It was observed that overexpression of MCT4, and not MCT1, promoted the migration and invasion of L929 cells. It was also found that overexpression of an inactive form of the MCT4 transporter with a single amino acid mutation failed to promote either migration or invasion, which suggested that MCT4 activity is required. Since an epidermal growth factor receptor (EGFR) inhibitor could reverse the effect of MCT4-overexpression, it was concluded that MCT4-overexpression exert its functions through modulating the EGF/EGFR pathway.
Collapse
|
5
|
Gu Z, Xie D, Ding R, Huang C, Qiu Y. GPR173 agonist phoenixin 20 promotes osteoblastic differentiation of MC3T3-E1 cells. Aging (Albany NY) 2020; 13:4976-4985. [PMID: 33196456 PMCID: PMC7950309 DOI: 10.18632/aging.103717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 06/29/2020] [Indexed: 11/25/2022]
Abstract
Osteogenic differentiation is critical to bone homeostasis, and its imbalance plays a key role in the progression of osteoporosis. Osteoblast cells are responsible for synthesizing new bone tissue, and understanding how to control osteoblastic differentiation is vital to the treatment of osteoporosis. Herein, we show that GPR173 signaling is involved in the regulation of osteoblastic differentiation in MC3T3-E1 cells. Our data reveals that GPR173 is abundantly expressed in MC3T3-E1 cells, and its expression is inducible upon the introduction of osteogenic media. The activation of GPR173 by its selective agonist phoenixin 20 induces the expression of several osteoblast signature genes including collagen type 1 alpha 1 (Col-I), osteocalcin (OCN), alkaline phosphatase (ALP) as well as increased matrix mineralization and ALP activity, suggesting that the activation of GPR173 promotes osteoblastic differentiation. Moreover, we show that the effect of phoenixin 20 is mediated by its induction on the key regulator runt-Related Transcription Factor 2 (Runx2). Mechanistically, we display that the action of phoenixin 20 requires the activation of MAPK kinase p38, and deactivation of p38 by its inhibitor SB203580 weakens the phoenixin 20-mediated induction of RUNX-2, ALP, and matrix mineralization. Silencing of GPR173 attenuates phoenixin 20-mediated osteoblastic differentiation, indicating its dependence on the receptor. Collectively, our study reveals a new role of GPR173 and its agonist phoenixin 20 in osteoblastic differentiation.
Collapse
Affiliation(s)
- Zhengtao Gu
- Department of Treatment Center for Traumatic Injuries, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Denghui Xie
- Division of Joint Surgery, Department of Orthopedics, Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Rui Ding
- Division of Spine Surgery, Section II, Department of Orthopedics, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Caiqiang Huang
- Division of Spine Surgery, Section II, Department of Orthopedics, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yiyan Qiu
- Division of Spine Surgery, Section II, Department of Orthopedics, Academy of Orthopedics of Guangdong Province, The Third Affiliated Hospital of Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
6
|
Anagliptin stimulates osteoblastic cell differentiation and mineralization. Biomed Pharmacother 2020; 129:109796. [PMID: 32559615 DOI: 10.1016/j.biopha.2019.109796] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Revised: 12/02/2019] [Accepted: 12/10/2019] [Indexed: 01/08/2023] Open
Abstract
Osteoporosis is a common debilitating bone disease characterized by loss of bone mass and degradation of the bone architecture, which is primarily driven by dysregulated differentiation of mesenchymal stem cells into bone-producing osteoblasts. Osteoblasts contribute to bone formation by secreting various proteins that guide the deposition of bone extracellular matrix, such as alkaline phosphatase (ALP), osteocalcin (OCN), and osteopontin (OPN). The Wnt/β-catenin pathway is widely recognized as a regulator of bone mass and is required to maintain bone homeostasis. Hormones have long been recognized as playing a key role in bone metabolism, and in recent years, growing evidence has shown that diabetes is a risk factor for osteoporosis. In the present study, we investigated the effects of the antidiabetic drug anagliptin on the differentiation and mineralization of osteoblasts induced by osteogenic medium. Anagliptin promotes insulin production via inhibition of dipeptidyl peptidase IV (DPP-4), an enzyme that targets the incretin hormone glucagon-like peptide 1 (GLP-1) for degradation. Our findings show that anagliptin significantly increases the differentiation of MSCs into osteoblasts via activation of RUNX2. Anagliptin significantly increased matrix deposition and mineralization by osteoblasts, as evidenced by elevated levels of ALP, OCN, OPN, and BMP-2. We further demonstrate that anagliptin activates the canonical and noncannonical Wnt signaling pathways and that silencing of Wnt/β-catenin signaling completely abolished the effects of anagliptin. Thus, anagliptin might be a safe, effective therapy for type II diabetes that might show promise as a therapy against osteoporosis.
Collapse
|
7
|
Xie X, Xiong G, Chen W, Fu H, Li M, Cui X. FOXD3 inhibits cell proliferation, migration, and invasion in nasopharyngeal carcinoma through regulation of the PI3K-Akt pathway. Biochem Cell Biol 2020; 98:653-660. [PMID: 32459973 DOI: 10.1139/bcb-2020-0011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
FOXD3 has been found previously to positively regulate miR-26b, a tumor inhibitor of nasopharyngeal carcinoma (NPC). However, FOXD3's precise function and associated mechanism of action in NPC have not yet been investigated. In this study, the expression of FOXD3 mRNA and protein was evaluated using RT-qPCR, western blotting, and immunohistochemistry. Protein levels involved in the phosphoinositide 3-kinase - protein kinase B (PI3K-Akt) pathway were assessed by western blot, and cell proliferation was determined by MTT and colony forming assays. Additionally, cell apoptosis was assessed by flow cytometric assay. Finally, the migration and invasion capabilities of the NPC cells were determined using wound healing and Transwell assays. We found that FOXD3 levels were relatively low in NPC tissue and cells, while an increase caused the inhibition of the PI3K-Akt pathway. Functional experiments found that overexpression of FOXD3 suppressed cell proliferation, migration, and invasion and enhanced cell apoptosis in NPC C6661 cells. IGF-1, an activator of the PI3K-Akt pathway, reversed the inhibitory effect of FOXD3. Furthermore, we found upregulation of the PI3K-Akt pathway and upregulation of the inhibitory effects of FOXD3 on C6661 cellular activities. In conclusion, FOXD3 negatively affected the PI3K-Akt pathway to restrain the processes involved in C6661 cell pathology. These findings further exposed the function and downstream axis of FOXD3 in NPC and displayed a promising new target for NPC therapy.
Collapse
Affiliation(s)
- Xiaoxing Xie
- Department of Otolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Gaoyun Xiong
- Department of Otolaryngology, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Wenjun Chen
- Department of Otolaryngology, The Traditional Chinese Medicine Hospital of Haiyan County, Jiaxing, Zhejiang 314300, P.R. China
| | - Hongdan Fu
- Department of Otolaryngology, The Traditional Chinese Medicine Hospital of Haiyan County, Jiaxing, Zhejiang 314300, P.R. China
| | - Mingqian Li
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| | - Xiaoying Cui
- Department of Anesthesiology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang 310022, P.R. China
| |
Collapse
|
8
|
Wang H, Cheng Y, Liu Y, Shi J, Cheng Z. Montelukast promotes mitochondrial biogenesis via CREB/PGC-1α in human bronchial epithelial cells. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 47:4234-4239. [PMID: 31722576 DOI: 10.1080/21691401.2019.1687502] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bronchial epithelial mitochondrial dysfunction including impaired mitochondrial biogenesis has been linked with the initiation and development of bronchial asthma. Montelukast, a robust antagonist of cysteinyl leukotriene receptors, has been widely applied for the therapies of bronchial asthma. However, the effects of montelukast in airway epithelial mitochondrial dysfunction are less reported. In the present study, we report that montelukast treatment in human bronchial epithelial cells of Beas-2b increased the expressions of PGC-1α, NRF-1 and TFAM. As expected, montelukast promoted mitochondrial biogenesis in Beas-2b cells through increasing mitochondrial mass, mtDNA/nDNA and the expression of cytochrome B. Importantly, we found that montelukast caused a functional gain in mitochondria of Beas-2b cells. Mechanistically, we found that montelukast treatment increased intracellular cAMP levels and activation of CREB. Blockage of CREB with H89 abolished montelukast-induced expression of PGC-1α. These findings report a novel pharmacological function of montelukast in stimulating mitochondrial biogenesis in Beas-2b cells, mediating by the CREB/PGC-1α pathway.
Collapse
Affiliation(s)
- Huan Wang
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yali Cheng
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Liu
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jiang Shi
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhe Cheng
- Department of Respiratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
9
|
Sun Y, Sun J, He Z, Wang G, Wang Y, Zhao D, Wang Z, Luo C, Tian C, Jiang Q. Monocarboxylate Transporter 1 in Brain Diseases and Cancers. Curr Drug Metab 2019; 20:855-866. [DOI: 10.2174/1389200220666191021103018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Revised: 09/21/2019] [Accepted: 10/04/2019] [Indexed: 12/14/2022]
Abstract
Background:
Monocarboxylate Transporter 1 (MCT1), an important membrane transport protein, mediates
the translocation of monocarboxylates together with protons across biological membranes. Due to its pathological
significance, MCT1 plays an important role in the progression of some diseases, such as brain diseases and cancers.
Methods:
We summarize the general description of MCT1 and provide a comprehensive understanding of the role of
MCT1 in brain diseases and cancers. Furthermore, this review discusses the opportunities and challenges of MCT1-
targeting drug-delivery systems in the treatment of brain diseases and cancers.
Results:
In the brain, loss of MCT1 function is associated with pathologies of degeneration and injury of the nervous
system. In tumors, MCT1 regulates the activity of signaling pathways and controls the exchange of monocarboxylates
in aerobic glycolysis to affect tumor metabolism, proliferation and invasion. Meanwhile, MCT1 also acts as a
good biomarker for the prediction and diagnosis of cancer progressions.
Conclusion:
MCT1 is an attractive transporter in brain diseases and cancers. Moreover, the development of MCT1-
based small molecule drugs and MCT1 inhibitors in the clinic is promising. This review systematically summarizes
the basic characteristics of MCT1 and its role in brain diseases and cancers, laying the foundation for further research
on MCT1.
Collapse
Affiliation(s)
- Yixin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jin Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yang Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Dongyang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhenjie Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chutong Tian
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qikun Jiang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
10
|
Zha Z, Han Q, Huo S. The protective effects of bexarotene against advanced glycation end-product (AGE)-induced degradation of articular extracellular matrix (ECM). ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 48:1-7. [PMID: 31852246 DOI: 10.1080/21691401.2019.1699802] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Zhuqing Zha
- Luoyang Orthopedic Hospital of Henan Province, Orthopedic Hospital of Henan Province, Zhengzhou, Henan, China
| | - Qingmin Han
- Department of Orthopedics, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Shaochuan Huo
- Shenzhen Hospital (Futian) of Guangzhou University of Chinese Medicine, Shenzhen, China
| |
Collapse
|
11
|
Nepstad I, Hatfield KJ, Grønningsæter IS, Aasebø E, Hernandez-Valladares M, Hagen KM, Rye KP, Berven FS, Selheim F, Reikvam H, Bruserud Ø. Effects of insulin and pathway inhibitors on the PI3K-Akt-mTOR phosphorylation profile in acute myeloid leukemia cells. Signal Transduct Target Ther 2019; 4:20. [PMID: 31240133 PMCID: PMC6582141 DOI: 10.1038/s41392-019-0050-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/05/2019] [Accepted: 04/04/2019] [Indexed: 12/17/2022] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)-Akt-mechanistic target of rapamycin (mTOR) pathway is constitutively activated in human acute myeloid leukemia (AML) cells and is regarded as a possible therapeutic target. Insulin is an agonist of this pathway and a growth factor for AML cells. We characterized the effect of insulin on the phosphorylation of 10 mediators in the main track of the PI3K-Akt-mTOR pathway in AML cells from 76 consecutive patients. The overall results showed that insulin significantly increased the phosphorylation of all investigated mediators. However, insulin effects on the pathway activation profile varied among patients, and increased phosphorylation in all mediators was observed only in a minority of patients; in other patients, insulin had divergent effects. Global gene expression profiling and proteomic/phosphoproteomic comparisons suggested that AML cells from these two patient subsets differed with regard to AML cell differentiation, transcriptional regulation, RNA metabolism, and cellular metabolism. Strong insulin-induced phosphorylation was associated with weakened antiproliferative effects of metabolic inhibitors. PI3K, Akt, and mTOR inhibitors also caused divergent effects on the overall pathway phosphorylation profile in the presence of insulin, although PI3K and Akt inhibition caused a general reduction in Akt pT308 and 4EBP1 pT36/pT45 phosphorylation. For Akt inhibition, the phosphorylation of upstream mediators was generally increased or unaltered. In contrast, mTOR inhibition reduced mTOR pS2448 and S6 pS244 phosphorylation but increased Akt pT308 phosphorylation. In conclusion, the effects of both insulin and PI3K-Akt-mTOR inhibitors differ between AML patient subsets, and differences in insulin responsiveness are associated with differential susceptibility to metabolic targeting.
Collapse
Affiliation(s)
- Ina Nepstad
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kimberley Joanne Hatfield
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Immunology and Transfusion Medicine, Haukeland University Hospital, Bergen, Norway
| | - Ida Sofie Grønningsæter
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Elise Aasebø
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Maria Hernandez-Valladares
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Karen Marie Hagen
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Kristin Paulsen Rye
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Frode S. Berven
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Frode Selheim
- Department of Biomedicine, Faculty of Medicine and Dentistry, University of Bergen, Jonas Lies vei 91, 5009 Bergen, Norway
| | - Håkon Reikvam
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Øystein Bruserud
- Section for Hematology, Department of Clinical Science, University of Bergen, Bergen, Norway
- Section for Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
12
|
LncRNA TP73-AS1 promoted the progression of lung adenocarcinoma via PI3K/AKT pathway. Biosci Rep 2019; 39:BSR20180999. [PMID: 30541897 PMCID: PMC6328885 DOI: 10.1042/bsr20180999] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 11/29/2018] [Accepted: 12/07/2018] [Indexed: 12/19/2022] Open
Abstract
Lung adenocarcinoma (LAD) is one of the most common malignancies that threats human health worldwide. Long non-coding RNAs (lncRNAs) have been reported to play significant roles in tumorigenesis and might be novel biomarkers and targets for diagnosis and treatment of cancers. TP73-AS1 is a newly discovered lncRNA involved in the tumorigenesis and development of several cancers. However, its role in LAD has not been investigated yet. In the present study, we first found that TP73-AS1 expression was markedly increased in LAD tissues and cell lines and its overexpression was strongly associated with poor clinical outcomes. Then the loss/gain-of-function assays elucidated that TP73-AS1 contributed to cell proliferation, migration, and invasion in vitro, and the in vivo experiments illustrated that its knockdown inhibited tumor growth and metastasis. What was more, we discovered that phosphoinositide 3-kinase and AKT (PI3K/AKT) pathway was activated both in LAD tissues and cell lines but inactivated under TP73-AS1 silence. Moreover, the activation of this pathway could rescue the inhibitory effects of TP73-AS1 suppression on LAD cellular processes partially. These data suggested that TP73-AS1 served as an oncogene in LAD partially through activating PI3K/AKT pathway and it could be a potential target for diagnosis and treatment of LAD.
Collapse
|