1
|
Gupta K, Moon HR, Chen Z, Han B, Green NG, Wereley ST. Optically induced electrothermal microfluidic tweezers in bio-relevant media. Sci Rep 2023; 13:9819. [PMID: 37330519 PMCID: PMC10276874 DOI: 10.1038/s41598-023-35722-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 05/23/2023] [Indexed: 06/19/2023] Open
Abstract
Non-contact micro-manipulation tools have enabled invasion-free studies of fragile synthetic particles and biological cells. Rapid electrokinetic patterning (REP) traps target particles/cells, suspended in an electrolyte, on an electrode surface. This entrapment is electrokinetic in nature and thus depends strongly on the suspension medium's properties. REP has been well characterized for manipulating synthetic particles suspended in low concentration salt solutions (~ 2 mS/m). However, it is not studied as extensively for manipulating biological cells, which introduces an additional level of complexity due to their limited viability in hypotonic media. In this work, we discuss challenges posed by isotonic electrolytes and suggest solutions to enable REP manipulation in bio-relevant media. Various formulations of isotonic media (salt and sugar-based) are tested for their compatibility with REP. REP manipulation is observed in low concentration salt-based media such as 0.1× phosphate buffered saline (PBS) when the device electrodes are passivated with a dielectric layer. We also show manipulation of murine pancreatic cancer cells suspended in a sugar-based (8.5% w/v sucrose and 0.3% w/v dextrose) isotonic medium. The ability to trap mammalian cells and deposit them in custom patterns enables high-impact applications such as determining their biomechanical properties and 3D bioprinting for tissue scaffolding.
Collapse
Affiliation(s)
- Kshitiz Gupta
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Hye-Ran Moon
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Zhengwei Chen
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Nicolas G Green
- School of Electronics and Computer Science, University of Southampton, Southampton, UK
| | - Steven T Wereley
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
3
|
Yan Y, Ding Y, Leng F, Dunlap D, Finzi L. Protein-mediated loops in supercoiled DNA create large topological domains. Nucleic Acids Res 2019. [PMID: 29538766 PMCID: PMC5961096 DOI: 10.1093/nar/gky153] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Supercoiling can alter the form and base pairing of the double helix and directly impact protein binding. More indirectly, changes in protein binding and the stress of supercoiling also influence the thermodynamic stability of regulatory, protein-mediated loops and shift the equilibria of fundamental DNA/chromatin transactions. For example, supercoiling affects the hierarchical organization and function of chromatin in topologically associating domains (TADs) in both eukaryotes and bacteria. On the other hand, a protein-mediated loop in DNA can constrain supercoiling within a plectonemic structure. To characterize the extent of constrained supercoiling, 400 bp, lac repressor-secured loops were formed in extensively over- or under-wound DNA under gentle tension in a magnetic tweezer. The protein-mediated loops constrained variable amounts of supercoiling that often exceeded the maximum writhe expected for a 400 bp plectoneme. Loops with such high levels of supercoiling appear to be entangled with flanking domains. Thus, loop-mediating proteins operating on supercoiled substrates can establish topological domains that may coordinate gene regulation and other DNA transactions across spans in the genome that are larger than the separation between the binding sites.
Collapse
Affiliation(s)
- Yan Yan
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Yue Ding
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| |
Collapse
|
4
|
Yan Y, Leng F, Finzi L, Dunlap D. Protein-mediated looping of DNA under tension requires supercoiling. Nucleic Acids Res 2019; 46:2370-2379. [PMID: 29365152 PMCID: PMC5861448 DOI: 10.1093/nar/gky021] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 01/12/2018] [Indexed: 02/06/2023] Open
Abstract
Protein-mediated DNA looping is ubiquitous in chromatin organization and gene regulation, but to what extent supercoiling or nucleoid associated proteins promote looping is poorly understood. Using the lac repressor (LacI), a paradigmatic loop-mediating protein, we measured LacI-induced looping as a function of either supercoiling or the concentration of the HU protein, an abundant nucleoid protein in Escherichia coli. Negative supercoiling to physiological levels with magnetic tweezers easily drove the looping probability from 0 to 100% in single DNA molecules under slight tension that likely exists in vivo. In contrast, even saturating (micromolar) concentrations of HU could not raise the looping probability above 30% in similarly stretched DNA or 80% in DNA without tension. Negative supercoiling is required to induce significant looping of DNA under any appreciable tension.
Collapse
Affiliation(s)
- Yan Yan
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - Fenfei Leng
- Department of Chemistry and Biochemistry, Biomolecular Sciences Institute, Florida International University, 11200 SW 8th St., Miami, FL 33199, USA
| | - Laura Finzi
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| | - David Dunlap
- Department of Physics, Emory University, 400 Dowman Dr., Atlanta, GA 30322, USA
| |
Collapse
|
6
|
Skinner GM, Kalafut BS, Visscher K. Downstream DNA tension regulates the stability of the T7 RNA polymerase initiation complex. Biophys J 2011; 100:1034-41. [PMID: 21320448 DOI: 10.1016/j.bpj.2010.11.092] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 11/25/2022] Open
Abstract
Gene transcription by the enzyme RNA polymerase is tightly regulated. In many cases, such as in the lac operon in Escherichia coli, this regulation is achieved through the action of protein factors on DNA. Because DNA is an elastic polymer, its response to enzymatic processing can lead to mechanical perturbations (e.g., linear stretching and supercoiling) that can affect the operation of other DNA processing complexes acting elsewhere on the same substrate molecule. Using an optical-tweezers assay, we measured the binding kinetics between single molecules of bacteriophage T7 RNA polymerase and DNA, as a function of tension. We found that increasing DNA tension under conditions that favor formation of the open complex results in destabilization of the preinitiation complex. Furthermore, with zero ribonucleotides present, when the closed complex is favored, we find reduced tension sensitivity, implying that it is predominantly the open complex that is sensitive. This result strongly supports the "scrunching" model for T7 transcription initiation, as the applied tension acts against the movement of the DNA into the scrunched state, and introduces linear DNA tension as a potential regulatory quantity for transcription initiation.
Collapse
Affiliation(s)
- Gary M Skinner
- Department of Physics, University of Arizona, Tucson, Arizona, USA.
| | | | | |
Collapse
|
12
|
Lia G, Semsey S, Lewis DEA, Adhya S, Bensimon D, Dunlap D, Finzi L. The antiparallel loops in gal DNA. Nucleic Acids Res 2008; 36:4204-10. [PMID: 18573800 PMCID: PMC2475638 DOI: 10.1093/nar/gkn389] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2008] [Revised: 06/02/2008] [Accepted: 06/04/2008] [Indexed: 11/14/2022] Open
Abstract
Interactions between proteins bound to distant sites along a DNA molecule require bending and twisting deformations in the intervening DNA. In certain systems, the sterically allowed protein-DNA and protein-protein interactions are hypothesized to produce loops with distinct geometries that may also be thermodynamically and biologically distinct. For example, theoretical models of Gal repressor/HU-mediated DNA-looping suggest that the antiparallel DNA loops, A1 and A2, are thermodynamically quite different. They are also biologically different, since in experiments using DNA molecules engineered to form only one of the two loops, the A2 loop failed to repress in vitro transcription. Surprisingly, single molecule measurements show that both loop trajectories form and that they appear to be quite similar energetically and kinetically.
Collapse
Affiliation(s)
- Giuseppe Lia
- Department of Chemistry, Harvard University, Cambridge, MA, USA, Department of Genetics, Eötvös Lóránd University, H-1117 Budapest, Hungary, Laboratory of Molecular Biology, NIH, Bethesda, MD, USA, Laboratoire de Physique Statistique, Ecole Normal Superieure, Paris, France, Department of Cell Biology and Department of Physics, Emory University, Atlanta, GA, USA
| | - Szabolcs Semsey
- Department of Chemistry, Harvard University, Cambridge, MA, USA, Department of Genetics, Eötvös Lóránd University, H-1117 Budapest, Hungary, Laboratory of Molecular Biology, NIH, Bethesda, MD, USA, Laboratoire de Physique Statistique, Ecole Normal Superieure, Paris, France, Department of Cell Biology and Department of Physics, Emory University, Atlanta, GA, USA
| | - Dale E. A. Lewis
- Department of Chemistry, Harvard University, Cambridge, MA, USA, Department of Genetics, Eötvös Lóránd University, H-1117 Budapest, Hungary, Laboratory of Molecular Biology, NIH, Bethesda, MD, USA, Laboratoire de Physique Statistique, Ecole Normal Superieure, Paris, France, Department of Cell Biology and Department of Physics, Emory University, Atlanta, GA, USA
| | - Sankar Adhya
- Department of Chemistry, Harvard University, Cambridge, MA, USA, Department of Genetics, Eötvös Lóránd University, H-1117 Budapest, Hungary, Laboratory of Molecular Biology, NIH, Bethesda, MD, USA, Laboratoire de Physique Statistique, Ecole Normal Superieure, Paris, France, Department of Cell Biology and Department of Physics, Emory University, Atlanta, GA, USA
| | - David Bensimon
- Department of Chemistry, Harvard University, Cambridge, MA, USA, Department of Genetics, Eötvös Lóránd University, H-1117 Budapest, Hungary, Laboratory of Molecular Biology, NIH, Bethesda, MD, USA, Laboratoire de Physique Statistique, Ecole Normal Superieure, Paris, France, Department of Cell Biology and Department of Physics, Emory University, Atlanta, GA, USA
| | - David Dunlap
- Department of Chemistry, Harvard University, Cambridge, MA, USA, Department of Genetics, Eötvös Lóránd University, H-1117 Budapest, Hungary, Laboratory of Molecular Biology, NIH, Bethesda, MD, USA, Laboratoire de Physique Statistique, Ecole Normal Superieure, Paris, France, Department of Cell Biology and Department of Physics, Emory University, Atlanta, GA, USA
| | - Laura Finzi
- Department of Chemistry, Harvard University, Cambridge, MA, USA, Department of Genetics, Eötvös Lóránd University, H-1117 Budapest, Hungary, Laboratory of Molecular Biology, NIH, Bethesda, MD, USA, Laboratoire de Physique Statistique, Ecole Normal Superieure, Paris, France, Department of Cell Biology and Department of Physics, Emory University, Atlanta, GA, USA
| |
Collapse
|