1
|
Feoli A, Sarno G, Castellano S, Sbardella G. DMSO-Related Effects on Ligand-Binding Properties of Lysine Methyltransferases G9a and SETD8. Chembiochem 2024; 25:e202300809. [PMID: 38205880 DOI: 10.1002/cbic.202300809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/12/2024]
Abstract
Being the standard solvent for preparing stock solutions of compounds for drug discovery, DMSO is always present in assay buffers in concentrations ranging from 0.1 % to 5 % (v/v). Even at the lowest concentrations, DMSO-containing solutions can have significant effects on individual proteins and possible pitfalls cannot be eliminated. Herein, we used two protein systems, the lysine methyltransferases G9a/KMT1 C and SETD8/KMT5 A, to study the effects of DMSO on protein stability and on the binding of the corresponding inhibitors, using different biophysical methods such as nano Differential Scanning Fluorimetry (nanoDSF), Differential Scanning Fluorimetry (DSF), microscale thermophoresis (MST), and surface plasmon resonance (SPR), all widely used in drug discovery screening campaigns. We demonstrated that the effects of DMSO are protein- and technique-dependent and cannot be predicted or extrapolated on the basis of previous studies using different proteins and/or different assays. Moreover, we showed that the application of orthogonal biophysical methods can lead to different binding affinity data, thus confirming the importance of using at least two different orthogonal assays in screening campaigns. This variability should be taken into account in the selection and characterization of hit compounds, in order to avoid data misinterpretation.
Collapse
Affiliation(s)
- Alessandra Feoli
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Giuliana Sarno
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
- PhD Program in Drug Discovery and Development, University of Salerno, via Giovanni Paolo II 132, I-84084, Fisciano, SA, Italy
| | - Sabrina Castellano
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| | - Gianluca Sbardella
- Epigenetic Med Chem Lab, Department of Pharmacy, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano, SA, Italy
| |
Collapse
|
2
|
Lübbert C, Supper M, Kaspereit M, Walter J, Peukert W. Single-Molecule Pycnometry and Shape Analysis of Ions in the Gas Phase. Anal Chem 2023; 95:13010-13017. [PMID: 37602575 DOI: 10.1021/acs.analchem.3c00625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The analysis of ions and clusters by mobility-classified mass spectrometry provides information on the mobility of analytes in the drift gas and the analyte mass. Mass equivalent and mobility equivalent diameters of globular analytes, such as ions, poly(ethylene glycol) (PEG), and ionic liquid nanodroplets, can be correlated with good accuracy by the Stokes-Millikan mobility model. A prerequisite to such an analysis is, however, the assumption of a globular analyte shape, which then allows determination of material density for globular ions. We show that the analyte density can be evaluated with high precision, independent of any assumptions on the analyte shape, by careful analysis of analyte-PEG-cluster ions following the concept of classical pycnometry. In particular, the analyte is entrapped in a globular PEG-analyte droplet. Based on the now independently derived mobility diameter and volume equivalent diameter, it is possible to attribute two parameters, size and shape, to the analyte molecule. We demonstrate the approach for lysozyme, cyano-cobalamin (vitamin B12), and glucose, which cover two orders of magnitude in analyte mass (180···14 300 Da). The derived densities for these analytes are highly accurate, i.e., they deviate less than 1% from literature values. Our method can be applied to newly synthesized molecules, supramolecular assemblies, isolated biomolecules, and molecular clusters, where only minor amounts of materials are available. The obtained shape parameters of lysozyme and cyano-cobalamin agree well with the expected molecular shapes. Data evaluation relies only on locations of the species in the mass-mobility plane and is in principle independent of any mobility theory. Our approach is thus robust with respect to experimental uncertainties and produces identical results irrespective of the type of mobility classification and drift gas.
Collapse
Affiliation(s)
- Christian Lübbert
- Institute of Particle Technology, Friedrich Alexander University Erlangen Nuremberg, Interdisciplinary Center for Functional Particle Systems (FPS), Haberstr. 9a, 91058 Erlangen, Germany
| | - Malvina Supper
- Institute of Separation Science and Technology, Friedrich Alexander University Erlangen Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Malte Kaspereit
- Institute of Separation Science and Technology, Friedrich Alexander University Erlangen Nuremberg, Egerlandstraße 3, 91058 Erlangen, Germany
| | - Johannes Walter
- Institute of Particle Technology, Friedrich Alexander University Erlangen Nuremberg, Interdisciplinary Center for Functional Particle Systems (FPS), Haberstr. 9a, 91058 Erlangen, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology, Friedrich Alexander University Erlangen Nuremberg, Interdisciplinary Center for Functional Particle Systems (FPS), Haberstr. 9a, 91058 Erlangen, Germany
| |
Collapse
|
3
|
Ronzetti M, Baljinnyam B, Jalal I, Pal U, Simeonov A. Application of biophysical methods for improved protein production and characterization: A case study on an high-temperature requirement A-family bacterial protease. Protein Sci 2022; 31:e4498. [PMID: 36334045 PMCID: PMC9679970 DOI: 10.1002/pro.4498] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 11/02/2022] [Accepted: 11/02/2022] [Indexed: 11/07/2022]
Abstract
The high-temperature requirement A (HtrA) serine protease family presents an attractive target class for antibacterial therapeutics development. These proteins possess dual protease and chaperone functions and contain numerous binding sites and regulatory loops, displaying diverse oligomerization patterns dependent on substrate type and occupancy. HtrA proteins that are natively purified coelute with contaminating peptides and activating species, shifting oligomerization and protein structure to differently activated populations. Here, a redesigned HtrA production results in cleaner preparations with high yields by overexpressing and purifying target protein from inclusion bodies under denaturing conditions, followed by a high-throughput screen for optimal refolding buffer composition using function-agnostic biophysical techniques that do not rely on target-specific measurements. We use Borrelia burgdorferi HtrA to demonstrate the effectiveness of our function-agnostic approach, while characterization with both new and established biophysical methods shows the retention of proteolytic and chaperone activity of the refolded protein. This systematic workflow and toolset will translate to the production of HtrA-family proteins in higher quantities of pure and monodisperse composition than the current literature standard, with applicability to a broad array of protein purification strategies.
Collapse
Affiliation(s)
- Michael Ronzetti
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
- Department of Veterinary Medicine, College of Agriculture & Natural ResourcesUniversity of MarylandCollege ParkMarylandUSA
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| | | | - Utpal Pal
- Department of Veterinary Medicine, College of Agriculture & Natural ResourcesUniversity of MarylandCollege ParkMarylandUSA
| | - Anton Simeonov
- National Center for Advancing Translational SciencesNational Institutes of HealthRockvilleMarylandUSA
| |
Collapse
|
4
|
Ronzetti MH, Baljinnyam B, Itkin Z, Jain S, Rai G, Zakharov AV, Pal U, Simeonov A. Application of temperature-responsive HIS-tag fluorophores to differential scanning fluorimetry screening of small molecule libraries. Front Pharmacol 2022; 13:1040039. [PMID: 36506591 PMCID: PMC9729254 DOI: 10.3389/fphar.2022.1040039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/04/2022] [Indexed: 11/25/2022] Open
Abstract
Differential scanning fluorimetry is a rapid and economical biophysical technique used to monitor perturbations to protein structure during a thermal gradient, most often by detecting protein unfolding events through an environment-sensitive fluorophore. By employing an NTA-complexed fluorophore that is sensitive to nearby structural changes in histidine-tagged protein, a robust and sensitive differential scanning fluorimetry (DSF) assay is established with the specificity of an affinity tag-based system. We developed, optimized, and miniaturized this HIS-tag DSF assay (HIS-DSF) into a 1536-well high-throughput biophysical platform using the Borrelial high temperature requirement A protease (BbHtrA) as a proof of concept for the workflow. A production run of the BbHtrA HIS-DSF assay showed a tight negative control group distribution of Tm values with an average coefficient of variation of 0.51% and median coefficient of variation of compound Tm of 0.26%. The HIS-DSF platform will provide an additional assay platform for future drug discovery campaigns with applications in buffer screening and optimization, target engagement screening, and other biophysical assay efforts.
Collapse
Affiliation(s)
- Michael H. Ronzetti
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States,Department of Veterinary Medicine, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Bolormaa Baljinnyam
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States,*Correspondence: Bolormaa Baljinnyam, ; Anton Simeonov,
| | - Zina Itkin
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Sankalp Jain
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Ganesha Rai
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Alexey V. Zakharov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States
| | - Utpal Pal
- Department of Veterinary Medicine, College of Agriculture and Natural Resources, University of Maryland, College Park, MD, United States
| | - Anton Simeonov
- National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, United States,*Correspondence: Bolormaa Baljinnyam, ; Anton Simeonov,
| |
Collapse
|
5
|
Understanding the effects of carboxymethyl cellulose on the bioactivity of lysozyme at different mass ratios and thermal treatments. Food Hydrocoll 2021. [DOI: 10.1016/j.foodhyd.2020.106446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
6
|
Arroyo-Valdez JA, Viramontes-Gamboa G, Guerra-Gonzalez R, Ramos-Estrada M, Lima E, Rivera JL. Cation folding and the thermal stability limit of the ionic liquid [BMIM +][BF 4 -] under total vacuum. RSC Adv 2021; 11:12951-12960. [PMID: 35423826 PMCID: PMC8697363 DOI: 10.1039/d1ra00741f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 03/29/2021] [Indexed: 12/28/2022] Open
Abstract
Molecular dynamics simulations reveal the behavior of the bimodal distribution of cation conformations (folded/unfolded) in ionic liquids based on alkylated imidazoles, such as [BMIM+][BF4 -]. The alkyl chains of the cations can fold and block interactions between the cations and anions, thereby reducing the cohesivity of the liquid. At room temperature, the folded conformations represent less than one-third of the total conformations. In contrast to the behavior observed during the thermal denaturation of proteins, in ionic liquids, the concentration of folded cations grows when the temperature increases. At the equimolar concentration, the system reaches the reported experimental temperature of thermal stability (similar to the thermal denaturation behavior). There is an outermost layer of cations at the interface that can tilt toward the interface and cover a layer of anions adsorbed at the interface. This interfacial conformation makes the system stable in transverse directions and unstable in the normal direction at temperatures in the region of thermal instability, limiting the rate of vaporization of neutral ion pairs, which are observed as rare events at temperatures as low as 773.15 K.
Collapse
Affiliation(s)
- J Alberto Arroyo-Valdez
- Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo Morelia Michoacán 58000 Mexico
| | - Gonzalo Viramontes-Gamboa
- Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo Morelia Michoacán 58000 Mexico
| | - Roberto Guerra-Gonzalez
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo Morelia Michoacán 58000 Mexico
| | - Mariana Ramos-Estrada
- Facultad de Ingeniería Química, Universidad Michoacana de San Nicolás de Hidalgo Morelia Michoacán 58000 Mexico
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México Circuito Exterior S/N, CU, Del. Coyoacán Ciudad de México Mexico
| | - José L Rivera
- Facultad de Ciencias Físico-Matemáticas, Universidad Michoacana de San Nicolás de Hidalgo Morelia Michoacán 58000 Mexico
| |
Collapse
|
7
|
Real-Hohn A, Groznica M, Löffler N, Blaas D, Kowalski H. nanoDSF: In vitro Label-Free Method to Monitor Picornavirus Uncoating and Test Compounds Affecting Particle Stability. Front Microbiol 2020; 11:1442. [PMID: 32676065 PMCID: PMC7333345 DOI: 10.3389/fmicb.2020.01442] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/04/2020] [Indexed: 12/30/2022] Open
Abstract
Thermal shift assays measure the stability of macromolecules and macromolecular assemblies as a function of temperature. The Particle Stability Thermal Release Assay (PaSTRy) of picornaviruses is based on probes becoming strongly fluorescent upon binding to hydrophobic patches of the protein capsid (e.g., SYPRO Orange) or to the viral RNA genome (e.g., SYTO-82) that become exposed upon heating virus particles. PaSTRy has been exploited for studying the stability of viral mutants, viral uncoating, and the effect of capsid-stabilizing compounds. While the results were usually robust, the thermal shift assay with SYPRO Orange is sensitive to surfactants and EDTA and failed at least to correctly report the effect of excipients on an inactivated poliovirus 3 vaccine. Furthermore, interactions between the probe and capsid-binding antivirals as well as mutual competition for binding sites cannot be excluded. To overcome these caveats, we assessed differential scanning fluorimetry with a nanoDSF device as a label-free alternative. NanoDSF monitors the changes in the intrinsic tryptophan fluorescence (ITF) resulting from alterations of the 3D-structure of proteins as a function of the temperature. Using rhinovirus A2 as a model, we demonstrate that nanoDFS is well suited for recording the temperature-dependence of conformational changes associated with viral uncoating with minute amounts of sample. We compare it with orthogonal methods and correlate the increase in viral RNA exposure with PaSTRy measurements. Importantly, nanoDSF correctly identified the thermal stabilization of RV-A2 by pleconaril, a prototypic pocket-binding antiviral compound. NanoDFS is thus a label-free, high throughput-customizable, attractive alternative for the discovery of capsid-binding compounds impacting on viral stability.
Collapse
Affiliation(s)
- Antonio Real-Hohn
- Center for Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| | | | | | | | - Heinrich Kowalski
- Center for Medical Biochemistry, Max Perutz Labs, Vienna Biocenter, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Wawer J, Kaczkowska E, Karczewski J, Olszewski M, Augustin-Nowacka D, Krakowiak J. Amyloid fibril formation in the presence of water structure-affecting solutes. Biophys Chem 2019; 254:106265. [PMID: 31669866 DOI: 10.1016/j.bpc.2019.106265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 10/26/2022]
Abstract
The impact of the differently hydrated non-electrolytes (protein structure destabilizers) on the fibrillation of hen egg white lysozyme (HEWL) was investigated. Two isomeric urea derivatives i.e. butylurea (BU) and N,N,N',N'-tetramethylurea (TMU) were chosen as a tested compounds. The obtained results show that butylurea exerts greater impact on HEWL and its fibrillation than tetramethylurea. Both substances decrease the time of induction of the fibrillation (lag time) but only BU increases the efficiency of amyloidogenesis. For the systems with equivalent reduction of the HEWL stability (250mM BU and 500mM TMU) the not-equivalent increase of the protein fibrillation was recorded (higher for BU). This fact suggests that specific interactions with protein, possibly water mediated, are responsible for the action of the tested substances.
Collapse
Affiliation(s)
- Jarosław Wawer
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland.
| | - Emilia Kaczkowska
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Jakub Karczewski
- Department of Solid State Physics, Faculty of Applied Physics and Mathematics, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | - Marcin Olszewski
- Department of Molecular Biotechnology and Microbiology, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| | | | - Joanna Krakowiak
- Department of Physical Chemistry, Faculty of Chemistry, Gdańsk University of Technology, Narutowicza Str. 11/12, 80-233 Gdańsk, Poland
| |
Collapse
|