1
|
Alem F, Yao K, Lane D, Calvert V, Petricoin EF, Kramer L, Hale ML, Bavari S, Panchal RG, Hakami RM. Host response during Yersinia pestis infection of human bronchial epithelial cells involves negative regulation of autophagy and suggests a modulation of survival-related and cellular growth pathways. Front Microbiol 2015; 6:50. [PMID: 25762983 PMCID: PMC4327736 DOI: 10.3389/fmicb.2015.00050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 01/14/2015] [Indexed: 12/16/2022] Open
Abstract
Yersinia pestis (Yp) causes the re-emerging disease plague, and is classified by the CDC and NIAID as a highest priority (Category A) pathogen. Currently, there is no approved human vaccine available and advances in early diagnostics and effective therapeutics are urgently needed. A deep understanding of the mechanisms of host response to Yp infection can significantly advance these three areas. We employed the Reverse Phase Protein Microarray (RPMA) technology to reveal the dynamic states of either protein level changes or phosphorylation changes associated with kinase-driven signaling pathways during host cell response to Yp infection. RPMA allowed quantitative profiling of changes in the intracellular communication network of human lung epithelial cells at different times post infection and in response to different treatment conditions, which included infection with the virulent Yp strain CO92, infection with a derivative avirulent strain CO92 (Pgm-, Pst-), treatment with heat inactivated CO92, and treatment with LPS. Responses to a total of 111 validated antibodies were profiled, leading to discovery of 12 novel protein hits. The RPMA analysis also identified several protein hits previously reported in the context of Yp infection. Furthermore, the results validated several proteins previously reported in the context of infection with other Yersinia species or implicated for potential relevance through recombinant protein and cell transfection studies. The RPMA results point to strong modulation of survival/apoptosis and cell growth pathways during early host response and also suggest a model of negative regulation of the autophagy pathway. We find significant cytoplasmic localization of p53 and reduced LC3-I to LC3-II conversion in response to Yp infection, consistent with negative regulation of autophagy. These studies allow for a deeper understanding of the pathogenesis mechanisms and the discovery of innovative approaches for prevention, early diagnosis, and treatment of plague.
Collapse
Affiliation(s)
- Farhang Alem
- National Center for Biodefense and Infectious Diseases and School of Systems Biology, George Mason University Manassas, VA, USA
| | - Kuan Yao
- National Center for Biodefense and Infectious Diseases and School of Systems Biology, George Mason University Manassas, VA, USA
| | - Douglas Lane
- U.S. Army Medical Research Institute of Infectious Diseases Frederick, MD, USA
| | - Valerie Calvert
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Emanuel F Petricoin
- Center for Applied Proteomics and Molecular Medicine, School of Systems Biology, George Mason University Manassas, VA, USA
| | - Liana Kramer
- National Center for Biodefense and Infectious Diseases and School of Systems Biology, George Mason University Manassas, VA, USA
| | - Martha L Hale
- U.S. Army Medical Research Institute of Infectious Diseases Frederick, MD, USA
| | - Sina Bavari
- U.S. Army Medical Research Institute of Infectious Diseases Frederick, MD, USA
| | - Rekha G Panchal
- U.S. Army Medical Research Institute of Infectious Diseases Frederick, MD, USA
| | - Ramin M Hakami
- National Center for Biodefense and Infectious Diseases and School of Systems Biology, George Mason University Manassas, VA, USA
| |
Collapse
|
2
|
Seki E, Yoshizumi M, Tanaka R, Ryo A, Ishioka T, Tsukagoshi H, Kozawa K, Okayama Y, Okabe-Kado J, Goya T, Kimura H. Cytokine profiles, signalling pathways and effects of fluticasone propionate in respiratory syncytial virus-infected human foetal lung fibroblasts. Cell Biol Int 2013; 37:326-39. [PMID: 23377960 DOI: 10.1002/cbin.10044] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 12/31/2012] [Indexed: 12/29/2022]
Abstract
To examine cytokine production in response to RSV infection, we assessed the levels of 29 cytokines released from RSV-infected human foetal lung fibroblasts. We also examined the relationships between the effects of fluticasone propionate and various signalling pathways in the cells. Twenty-four hours after infection (1MOI), RSV-infected cells released cytokines, for example proinflammatory cytokines (IL-1β, IL-6 and TNF-α), anti-inflammatory (IL-1ra), Th1 (IFN-γ, IFN-λ1a, IL-2 and IL-12), Th2 (IL-4, IL-5, IL-10 and IL-13), granulopoiesis-inducing (G-CSF and GM-CSF), eosinophil recruitment-inducing (eotaxin and RANTES) and neutrophil recruitment-inducing cytokines (IL-8, IP-10, MCP-1 and MIP-1α). Aberrant release of most was significantly suppressed by fluticasone propionate. Twelve hours after RSV infection, increased phosphorylation of Akt, p38 MAPK, ERK1/2 and IκB-α was noted. Fluticasone propionate suppressed the phosphorylation of Akt, p38 MAPK, and ERK1/2, but not IκB-α, in virus-infected cells. TLR-4 expression was unchanged in control and RSV-infected cells, and TLR-3 and RIG-I expression was not detected. The results indicate that RSV infection induces aberrant production and release of certain cytokines through these signalling pathways in human lung fibroblasts. Overproduction and imbalance of these cytokines may be associated with the pathophysiology of RSV-induced excessive and allergic inflammation.
Collapse
Affiliation(s)
- Erina Seki
- Department of Surgery, Institute of Medical Sciences, Kyorin University, 6-20-2 Shinkawa, Mitaka-shi, Tokyo 181-8611, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Fimbrial Polyadhesins: Anti-immune Armament of Yersinia. ADVANCES IN YERSINIA RESEARCH 2012; 954:183-201. [DOI: 10.1007/978-1-4614-3561-7_24] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
4
|
Sha J, Endsley JJ, Kirtley ML, Foltz SM, Huante MB, Erova TE, Kozlova EV, Popov VL, Yeager LA, Zudina IV, Motin VL, Peterson JW, DeBord KL, Chopra AK. Characterization of an F1 deletion mutant of Yersinia pestis CO92, pathogenic role of F1 antigen in bubonic and pneumonic plague, and evaluation of sensitivity and specificity of F1 antigen capture-based dipsticks. J Clin Microbiol 2011; 49:1708-15. [PMID: 21367990 PMCID: PMC3122665 DOI: 10.1128/jcm.00064-11] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2011] [Accepted: 02/15/2011] [Indexed: 12/24/2022] Open
Abstract
We evaluated two commercial F1 antigen capture-based immunochromatographic dipsticks, Yersinia Pestis (F1) Smart II and Plague BioThreat Alert test strips, in detecting plague bacilli by using whole-blood samples from mice experimentally infected with Yersinia pestis CO92. To assess the specificities of these dipsticks, an in-frame F1-deficient mutant of CO92 (Δcaf) was generated by homologous recombination and used as a negative control. Based on genetic, antigenic/immunologic, and electron microscopic analyses, the Δcaf mutant was devoid of a capsule. The growth rate of the Δcaf mutant generally was similar to that of the wild-type (WT) bacterium at both 26 and 37 °C, although the mutant's growth dropped slightly during the late phase at 37 °C. The Δcaf mutant was as virulent as WT CO92 in the pneumonic plague mouse model; however, it was attenuated in developing bubonic plague. Both dipsticks had similar sensitivities, requiring a minimum of 0.5 μg/ml of purified F1 antigen or 1 × 10(5) to 5 × 10(5) CFU/ml of WT CO92 for positive results, while the blood samples were negative for up to 1 × 10(8) CFU/ml of the Δcaf mutant. Our studies demonstrated the diagnostic potential of two plague dipsticks in detecting capsular-positive strains of Y. pestis in bubonic and pneumonic plague.
Collapse
Affiliation(s)
- Jian Sha
- Departments of Microbiology and Immunology
| | - Janice J. Endsley
- Departments of Microbiology and Immunology
- Pathology
- Institute of Human Infections and Immunity
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas
| | | | | | | | | | | | | | - Linsey A. Yeager
- Departments of Microbiology and Immunology
- Institute of Human Infections and Immunity
| | | | - Vladimir L. Motin
- Departments of Microbiology and Immunology
- Pathology
- Institute of Human Infections and Immunity
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas
| | - Johnny W. Peterson
- Departments of Microbiology and Immunology
- Institute of Human Infections and Immunity
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas
| | | | - Ashok K. Chopra
- Departments of Microbiology and Immunology
- Institute of Human Infections and Immunity
- Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, Texas
| |
Collapse
|
5
|
Zav'yalov V, Zavialov A, Zav'yalova G, Korpela T. Adhesive organelles of Gram-negative pathogens assembled with the classical chaperone/usher machinery: structure and function from a clinical standpoint. FEMS Microbiol Rev 2009; 34:317-78. [PMID: 20070375 DOI: 10.1111/j.1574-6976.2009.00201.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
This review summarizes current knowledge on the structure, function, assembly and biomedical applications of the superfamily of adhesive fimbrial organelles exposed on the surface of Gram-negative pathogens with the classical chaperone/usher machinery. High-resolution three-dimensional (3D) structure studies of the minifibers assembling with the FGL (having a long F1-G1 loop) and FGS (having a short F1-G1 loop) chaperones show that they exploit the same principle of donor-strand complementation for polymerization of subunits. The 3D structure of adhesive subunits bound to host-cell receptors and the final architecture of adhesive fimbrial organelles reveal two functional families of the organelles, respectively, possessing polyadhesive and monoadhesive binding. The FGL and FGS chaperone-assembled polyadhesins are encoded exclusively by the gene clusters of the γ3- and κ-monophyletic groups, respectively, while gene clusters belonging to the γ1-, γ2-, γ4-, and π-fimbrial clades exclusively encode FGS chaperone-assembled monoadhesins. Novel approaches are suggested for a rational design of antimicrobials inhibiting the organelle assembly or inhibiting their binding to host-cell receptors. Vaccines are currently under development based on the recombinant subunits of adhesins.
Collapse
|
6
|
Pan XD, Chen XC, Zhu YG, Chen LM, Zhang J, Huang TW, Ye QY, Huang HP. Tripchlorolide protects neuronal cells from microglia-mediated β-amyloid neurotoxicity through inhibiting NF-κB and JNK signaling. Glia 2009; 57:1227-38. [DOI: 10.1002/glia.20844] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
The Yersinia pestis caf1M1A1 fimbrial capsule operon promotes transmission by flea bite in a mouse model of bubonic plague. Infect Immun 2008; 77:1222-9. [PMID: 19103769 DOI: 10.1128/iai.00950-08] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Plague is a zoonosis transmitted by fleas and caused by the gram-negative bacterium Yersinia pestis. During infection, the plasmidic caf1M1A1 operon that encodes the Y. pestis F1 protein capsule is highly expressed, and anti-F1 antibodies are protective. Surprisingly, the capsule is not required for virulence after injection of cultured bacteria, even though it is an antiphagocytic factor and capsule-deficient Y. pestis strains are rarely isolated. We found that a caf-negative Y. pestis mutant was not impaired in either flea colonization or virulence in mice after intradermal inoculation of cultured bacteria. In contrast, absence of the caf operon decreased bubonic plague incidence after a flea bite. Successful development of plague in mice infected by flea bite with the caf-negative mutant required a higher number of infective bites per challenge. In addition, the mutant displayed a highly autoaggregative phenotype in infected liver and spleen. The results suggest that acquisition of the caf locus via horizontal transfer by an ancestral Y. pestis strain increased transmissibility and the potential for epidemic spread. In addition, our data support a model in which atypical caf-negative strains could emerge during climatic conditions that favor a high flea burden. Human infection with such strains would not be diagnosed by the standard clinical tests that detect F1 antibody or antigen, suggesting that more comprehensive surveillance for atypical Y. pestis strains in plague foci may be necessary. The results also highlight the importance of studying Y. pestis pathogenesis in the natural context of arthropod-borne transmission.
Collapse
|
8
|
Zavialov A, Zav'yalova G, Korpela T, Zav'yalov V. FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens. FEMS Microbiol Rev 2007; 31:478-514. [PMID: 17576202 DOI: 10.1111/j.1574-6976.2007.00075.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This review summarizes the current knowledge on the structure, function, assembly, and biomedical applications of the family of adhesive fimbrial organelles assembled on the surface of Gram-negative pathogens via the FGL chaperone/usher pathway. Recent studies revealed the unique structural and functional properties of these organelles, distinguishing them from a related family, FGS chaperone-assembled adhesive pili. The FGL chaperone-assembled organelles consist of linear polymers of one or two types of protein subunits, each possessing one or two independent adhesive sites specific to different host cell receptors. This structural organization enables these fimbrial organelles to function as polyadhesins. Fimbrial polyadhesins may ensure polyvalent fastening of bacteria to the host cells, aggregating their receptors and triggering subversive signals that allow pathogens to evade immune defense. The FGL chaperone-assembled fimbrial polyadhesins are attractive targets for vaccine and drug design.
Collapse
Affiliation(s)
- Anton Zavialov
- Department of Molecular Biology, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | | | | | | |
Collapse
|
9
|
Kim YH, Chung IY, Choi MY, Kim YS, Lee JH, Park CH, Kang SS, Roh GS, Choi WS, Yoo JM, Cho GJ. Triamcinolone suppresses retinal vascular pathology via a potent interruption of proinflammatory signal-regulated activation of VEGF during a relative hypoxia. Neurobiol Dis 2007; 26:569-76. [PMID: 17434742 DOI: 10.1016/j.nbd.2007.02.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2006] [Revised: 01/31/2007] [Accepted: 02/04/2007] [Indexed: 10/23/2022] Open
Abstract
We examined the effect of triamcinolone acetonide (TA), a corticosteroid, on the relationship between vascular pathophysiology and vascular endothelial growth factor (VEGF) activation in the retina of a rat model of oxygen-induced retinopathy (OIR). OIR was induced by exposure of hyperoxia (80% oxygen) to Sprague-Dawley (SD) rats from P2 to P14 and then returned to normoxic conditions. TA was intravitreal-injected once into the right eye of OIR rats at P15. Effects of TA on vascular pathophysiology or changes of various genes in response to hypoxia and/or proinflammation under hypoxic retina were assessed by the Evans-blue method, fluorescein isothiocyanate-dextran (FITC-D) infusion, immunoblotting, and ELIZA. TA not only reduced retinal neovascularization and vascular leakage in the OIR-rat retina, but also blocked the induction of hypoxia-response proinflammatory genes before it negatively controlled VEGF activation. These findings suggest a potential that TA suppresses retinal neovascular pathophysiology via proinflammation-mediated activation of VEGF during hypoxia.
Collapse
Affiliation(s)
- Y H Kim
- Department of Anatomy and Neurobiology, College of Medicine, Gyeongsang National University, Chilam-dong 92, Jinju, Gyungnam 660-751, South Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|