1
|
Hsu AP, Zerbe CS, Foruraghi L, Iovine NM, Leiding JW, Mushatt DM, Wild L, Kuhns DB, Holland SM. IKBKG (NEMO) 5' Untranslated Splice Mutations Lead to Severe, Chronic Disseminated Mycobacterial Infections. Clin Infect Dis 2019. [PMID: 29534156 DOI: 10.1093/cid/ciy186] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Four patients with adult-onset, disseminated mycobacterial infection had 5' UTR mutations in IKBKG without clear physical stigmata of NEMO deficiency. These mutations caused decreased levels of NEMO protein and Toll-like receptor driven cytokine production. Three patients died from disseminated disease. These mutations may be missed by whole exome sequencing.
Collapse
Affiliation(s)
- Amy P Hsu
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Christa S Zerbe
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Ladan Foruraghi
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| | - Nicole M Iovine
- Department of Internal Medicine, Division of Infectious Diseases and Global Medicine, University of Florida Health, Gainesville
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, University of South Florida at Johns Hopkins-All Children's Hospital, St Petersburg, Florida
| | - David M Mushatt
- Section of Infectious Diseases, Department of Medicine, New Orleans, Louisiana
| | - Laurianne Wild
- Section of Clinical Immunology and Allergy, Department of Medicine, Tulane University School of Medicine, New Orleans, Louisiana
| | - Douglas B Kuhns
- Neutrophil Monitoring Laboratory, Applied/Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, Maryland
| | - Steven M Holland
- Laboratory of Clinical Immunology and Microbiology, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland
| |
Collapse
|
2
|
Hoshino A, Takashima T, Yoshida K, Morimoto A, Kawahara Y, Yeh TW, Okano T, Yamashita M, Mitsuiki N, Imai K, Sakatani T, Nakazawa A, Okuno Y, Shiraishi Y, Chiba K, Tanaka H, Miyano S, Ogawa S, Kojima S, Morio T, Kanegane H. Dysregulation of Epstein-Barr Virus Infection in Hypomorphic ZAP70 Mutation. J Infect Dis 2019; 218:825-834. [PMID: 29684201 DOI: 10.1093/infdis/jiy231] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 04/17/2018] [Indexed: 12/17/2022] Open
Abstract
Background Some patients with genetic defects develop Epstein-Barr virus (EBV)-associated lymphoproliferative disorder (LPD)/lymphoma as the main feature. Hypomophic mutations can cause different clinical and laboratory manifestations from null mutations in the same genes. Methods We sought to describe the clinical and immunologic phenotype of a 21-month-old boy with EBV-associated LPD who was in good health until then. A genetic and immunologic analysis was performed. Results Whole-exome sequencing identified a novel compound heterozygous mutation of ZAP70 c.703-1G>A and c.1674G>A. A small amount of the normal transcript was observed. Unlike ZAP70 deficiency, which has been previously described as severe combined immunodeficiency with nonfunctional CD4+ T cells and absent CD8+ T cells, the patient had slightly low numbers of CD8+ T cells and a small amount of functional T cells. EBV-specific CD8+ T cells and invariant natural killer T (iNKT) cells were absent. The T-cell receptor repertoire, determined using next generation sequencing, was significantly restricted. Conclusions Our patient showed that a hypomorphic mutation of ZAP70 can lead to EBV-associated LPD and that EBV-specific CD8+ T cells and iNKT cells are critically involved in immune response against EBV infection.
Collapse
Affiliation(s)
- Akihiro Hoshino
- Department of Pediatrics, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Japan.,Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Takehiro Takashima
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Kenichi Yoshida
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Akira Morimoto
- Department of Pediatrics, Jichi Medical University of Medicine, Shimotsuke, Japan
| | - Yuta Kawahara
- Department of Pediatrics, Jichi Medical University of Medicine, Shimotsuke, Japan
| | - Tzu-Wen Yeh
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Tsubasa Okano
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Motoi Yamashita
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Noriko Mitsuiki
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Kohsuke Imai
- Department of Community Pediatrics, Perinatal and Maternal Medicine, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Takashi Sakatani
- Department of Diagnostic Pathology, Jichi Medical University Hospital, Shimotsuke, Japan
| | - Atsuko Nakazawa
- Department of Pathology, National Center for Child Health and Development, Tokyo, Japan
| | - Yusuke Okuno
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Japan
| | - Yuichi Shiraishi
- Laboratory of DNA Information Analysis, The University of Tokyo, Japan
| | - Kenichi Chiba
- Laboratory of DNA Information Analysis, The University of Tokyo, Japan
| | - Hiroko Tanaka
- Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Satoru Miyano
- Laboratory of DNA Information Analysis, The University of Tokyo, Japan.,Laboratory of Sequence Analysis, Human Genome Center, Institute of Medical Science, The University of Tokyo, Japan
| | - Seishi Ogawa
- Department of Pathology and Tumor Biology, Graduate School of Medicine, Kyoto University, Japan
| | - Seiji Kojima
- Department of Pediatrics, Nagoya University Graduate School of Medicine, Japan
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| | - Hirokazu Kanegane
- Department of Pediatrics and Developmental Biology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Japan
| |
Collapse
|
3
|
Boisson B, Honda Y, Ajiro M, Bustamante J, Bendavid M, Gennery AR, Kawasaki Y, Ichishima J, Osawa M, Nihira H, Shiba T, Tanaka T, Chrabieh M, Bigio B, Hur H, Itan Y, Liang Y, Okada S, Izawa K, Nishikomori R, Ohara O, Heike T, Abel L, Puel A, Saito MK, Casanova JL, Hagiwara M, Yasumi T. Rescue of recurrent deep intronic mutation underlying cell type-dependent quantitative NEMO deficiency. J Clin Invest 2018; 129:583-597. [PMID: 30422821 DOI: 10.1172/jci124011] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 11/08/2018] [Indexed: 12/20/2022] Open
Abstract
X-linked dominant incontinentia pigmenti (IP) and X-linked recessive anhidrotic ectodermal dysplasia with immunodeficiency (EDA-ID) are caused by loss-of-function and hypomorphic IKBKG (also known as NEMO) mutations, respectively. We describe a European mother with mild IP and a Japanese mother without IP, whose 3 boys with EDA-ID died from ID. We identify the same private variant in an intron of IKBKG, IVS4+866 C>T, which was inherited from and occurred de novo in the European mother and Japanese mother, respectively. This mutation creates a new splicing donor site, giving rise to a 44-nucleotide pseudoexon (PE) generating a frameshift. Its leakiness accounts for NF-κB activation being impaired but not abolished in the boys' cells. However, aberrant splicing rates differ between cell types, with WT NEMO mRNA and protein levels ranging from barely detectable in leukocytes to residual amounts in induced pluripotent stem cell-derived (iPSC-derived) macrophages, and higher levels in fibroblasts and iPSC-derived neuronal precursor cells. Finally, SRSF6 binds to the PE, facilitating its inclusion. Moreover, SRSF6 knockdown or CLK inhibition restores WT NEMO expression and function in mutant cells. A recurrent deep intronic splicing mutation in IKBKG underlies a purely quantitative NEMO defect in males that is most severe in leukocytes and can be rescued by the inhibition of SRSF6 or CLK.
Collapse
Affiliation(s)
- Bertrand Boisson
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Yoshitaka Honda
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiko Ajiro
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children, Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Matthieu Bendavid
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Andrew R Gennery
- Institute of Cellular Medicine, Newcastle University and Great North Children's Hospital, Newcastle upon Tyne, United Kingdom
| | - Yuri Kawasaki
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Jose Ichishima
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Mitsujiro Osawa
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Hiroshi Nihira
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takeshi Shiba
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takayuki Tanaka
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Maya Chrabieh
- Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Benedetta Bigio
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA
| | - Hong Hur
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, USA
| | - Yuval Itan
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,The Charles Bronfman Institute for Personalized Medicine, and.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Yupu Liang
- Center for Clinical and Translational Science, The Rockefeller University, New York, New York, USA
| | - Satoshi Okada
- Department of Pediatrics, Graduate School of Biomedical & Health Sciences, Hiroshima University, Japan
| | - Kazushi Izawa
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Ryuta Nishikomori
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan.,Kazusa DNA Research Institute, Kisarazu, Japan
| | - Toshio Heike
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Hyogo Prefectural Amagasaki General Medical Center, Amagasaki, Japan
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Anne Puel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France
| | - Megumu K Saito
- Department of Clinical Application, Center for iPS Cell Research and Application, Kyoto University, Kyoto, Japan
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, The Rockefeller University, New York, New York, USA.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Hospital for Sick Children, Paris, France.,Paris Descartes University, Imagine Institute, Paris, France.,Pediatric Hematology-Immunology Unit, Necker Hospital for Sick Children, AP-HP, Paris, France.,Howard Hughes Medical Institute (HHMI), New York, New York, USA
| | - Masatoshi Hagiwara
- Department of Anatomy and Developmental Biology, Kyoto University Graduate School of Medicine, Kyoto, Japan.,Department of Drug Discovery Medicine, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Takahiro Yasumi
- Department of Pediatrics, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
Jørgensen SE, Bøttger P, Kofod-Olsen E, Holm M, Mørk N, Ørntoft TF, Sørensen UBS, Bernth-Jensen JM, Herlin T, Veirum J, Larsen CS, Østergaard L, Hartmann R, Christiansen M, Mogensen TH. Ectodermal dysplasia with immunodeficiency caused by a branch-point mutation in IKBKG/NEMO. J Allergy Clin Immunol 2016; 138:1706-1709.e4. [PMID: 27477329 DOI: 10.1016/j.jaci.2016.05.030] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/12/2016] [Accepted: 05/23/2016] [Indexed: 10/21/2022]
Affiliation(s)
- Sofie E Jørgensen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Pernille Bøttger
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Emil Kofod-Olsen
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Mette Holm
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Nanna Mørk
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Torben F Ørntoft
- Department of Molecular Medicine, Aarhus University Hospital Skejby, Aarhus, Denmark
| | | | - Jens Magnus Bernth-Jensen
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; Department of Clinical Immunology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Troels Herlin
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Jens Veirum
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; Department of Pediatrics, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Carsten S Larsen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Lars Østergaard
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Rune Hartmann
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark; Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark
| | - Mette Christiansen
- International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; Department of Clinical Immunology, Aarhus University Hospital Skejby, Aarhus, Denmark
| | - Trine H Mogensen
- Department of Infectious Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; International Center for Immunodeficiency Diseases, Aarhus University Hospital Skejby, Aarhus, Denmark; Department of Biomedicine, Aarhus University, Aarhus, Denmark; Aarhus Research Center for Innate Immunity, Aarhus University, Aarhus, Denmark.
| |
Collapse
|