1
|
Day CL, Willis F, Staitieh BS, Campbell A, Martinson N, Gandhi NR, Auld SC. Mycobacterium tuberculosis-specific cytokine responses according to HIV status among household contacts of people with TB. Tuberculosis (Edinb) 2023; 139:102328. [PMID: 36871409 PMCID: PMC10040086 DOI: 10.1016/j.tube.2023.102328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/21/2023] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Following exposure to Mycobacterium tuberculosis (Mtb), a coordinated host response comprising both pro- and anti-inflammatory cytokines is critical for pathogen control. Although tuberculosis (TB) remains the leading cause of death among people with human immunodeficiency virus (HIV), the impact of HIV infection on Mtb-specific immune responses remains unclear. In this cross-sectional study of TB-exposed household contacts with and without HIV, we collected remaining supernatant from interferon-gamma release assay (IGRA) testing (QuantiFERON-TB Gold Plus [QFT-Plus]) and measured Mtb-specific pro-inflammatory, anti-inflammatory, and regulatory cytokine responses with a multiplex assay of 11 analytes. While people with HIV had lower responses to mitogen stimulation for some cytokines (granulocyte-macrophage colony-stimulating factor [GM-CSF], interleukin [IL]-2, IL-10, IL-17A, IL-22), there was no difference in cytokine levels for people with and without HIV following stimulation with Mtb-specific antigens. Future studies are necessary to explore whether changes in Mtb-specific cytokine responses over time are associated with distinct clinical outcomes following exposure to TB.
Collapse
Affiliation(s)
- Cheryl L Day
- Department of Microbiology and Immunology, School of Medicine, Emory University, Atlanta, USA
| | - Fay Willis
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Bashar S Staitieh
- Department of Medicine, School of Medicine, Emory University, Atlanta, USA
| | - Angela Campbell
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA
| | | | - Neel R Gandhi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA; Department of Medicine, School of Medicine, Emory University, Atlanta, USA; Department of Global Health, Rollins School of Public Health, Emory University, Atlanta, USA
| | - Sara C Auld
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, USA; Department of Medicine, School of Medicine, Emory University, Atlanta, USA.
| |
Collapse
|
2
|
Siddhi P, Raveendranath R, Pulgari P, Chinnaswamy A, Song R, Welch S. A systematic review on Correlates of Risk of TB disease in children and adults. Indian J Tuberc 2022; 70:197-213. [PMID: 37100577 DOI: 10.1016/j.ijtb.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 05/16/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Tuberculosis (TB) remains one of the leading causes of death in the world. Targeted treatment to prevent progression from TB exposure and infection to disease is a key element of WHO End-TB strategy. A systematic review to identify and develop correlates of risk (COR) of TB disease is timely. METHOD EMBASE, MEDLINE, PUBMED were searched using relevant keywords and MeSH terms published between 2000 and 2020 on COR of TB disease in children and adults. Preferred Reporting Items for Systematic reviews and Meta-analysis (PRISMA) framework was used for structuring and reporting of outcomes. Risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies tool-2 (QUADAS-2). RESULTS 4105 studies were identified. Following eligibility screening, 27 studies were quality assessed. Risk of bias was high in all studies. Broad variations in COR type, study population, methodology and result reporting were observed. Tuberculin skin test (TST) and interferon gamma release essays (IGRA) are poor COR. Transcriptomic signatures although promising require validation studies to assess wider applicability. Performance consistency of other CORs-cell marker, cytokines and metabolites are much needed. CONCLUSION This review identifies the need for a standardized approach to identify a universally applicable COR signature to achieve the WHO END-TB targets.
Collapse
|
3
|
Parihar SP, Ozturk M, Höft MA, Chia JE, Guler R, Keeton R, van Rensburg IC, Loxton AG, Brombacher F. IL-4-Responsive B Cells Are Detrimental During Chronic Tuberculosis Infection in Mice. Front Immunol 2021; 12:611673. [PMID: 34220793 PMCID: PMC8243286 DOI: 10.3389/fimmu.2021.611673] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 05/25/2021] [Indexed: 12/02/2022] Open
Abstract
In tuberculosis, T cell-mediated immunity is extensively studied whilst B cells received limited attention in human and mice. Of interest, Mycobacterium tuberculosis (Mtb) does increase IL-4 Receptor-alpha (IL4Rα) expression in murine B cells. To better understand the role of IL4Rα signalling in B cells, we compared wild type mice with B cell-specific IL4Rα deficient mice (mb1creIL-4Rα-/lox mice). Chronic Mtb aerosol infection in mb1creIL-4Rα-/lox mice reduced lung and spleen bacterial burdens, compared to littermate (IL-4Rα-/lox) control animals. Consequently, lung pathology, inflammation and inducible nitric oxide synthase (iNOS) expression were reduced in the lungs of mb1creIL-4Rα-/lox mice, which was also accompanied by increased lung IgA and decreased IgG1 levels. Furthermore, intratracheal adoptive transfer of wild-type B cells into B cell-specific IL4Rα deficient mice reversed the protective phenotype. Moreover, constitutively mCherry expressing Mtb showed decreased association with B cells from mb1creIL-4Rα-/lox mice ex vivo. In addition, supernatants from Mtb-exposed B cells of mb1creIL-4Rα-/lox mice also increased the ability of macrophages to produce nitric oxide, IL-1β, IL-6 and TNF. Together, this demonstrates that IL-4-responsive B cells are detrimental during the chronic phase of tuberculosis in mice with perturbed antibody profiles, inflammatory cytokines and tnf and stat1 levels in the lungs.
Collapse
Affiliation(s)
- Suraj P. Parihar
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Department of Pathology, Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Maxine A. Höft
- AFGrica Medical Mycology Research Unit, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Julius E. Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Reto Guler
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Pathology, Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Roanne Keeton
- Division of Medical Virology, Department of Pathology, Faculty of Health Sciences, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| | - Ilana C. van Rensburg
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Andre G. Loxton
- DST-NRF Centre of Excellence for Biomedical Tuberculosis Research, South African Medical Research Council Centre for Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology and South African Medical Research Council (SAMRC) Immunology of Infectious Diseases, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Department of Pathology, Faculty of Health Sciences, Wellcome Centre for Infectious Diseases Research in Africa (CIDRI-Africa) and Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
| |
Collapse
|
4
|
Auld SC, Staitieh BS. HIV and the tuberculosis "set point": how HIV impairs alveolar macrophage responses to tuberculosis and sets the stage for progressive disease. Retrovirology 2020; 17:32. [PMID: 32967690 PMCID: PMC7509826 DOI: 10.1186/s12977-020-00540-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
As HIV has fueled a global resurgence of tuberculosis over the last several decades, there is a growing awareness that HIV-mediated impairments in both innate and adaptive immunity contribute to the heightened risk of tuberculosis in people with HIV. Since early immune responses to Mycobacterium tuberculosis (Mtb) set the stage for subsequent control or progression to active tuberculosis disease, early host-pathogen interactions following Mtb infection can be thought of as establishing a mycobacterial "set point," which we define as the mycobacterial burden at the point of adaptive immune activation. This early immune response is impaired in the context of HIV coinfection, allowing for a higher mycobacterial set point and greater likelihood of progression to active disease with greater bacterial burden. Alveolar macrophages, as the first cells to encounter Mtb in the lungs, play a critical role in containing Mtb growth and establishing the mycobacterial set point. However, a number of key macrophage functions, ranging from pathogen recognition and uptake to phagocytosis and microbial killing, are blunted in HIV coinfection. To date, research evaluating the effects of HIV on the alveolar macrophage response to Mtb has been relatively limited, particularly with regard to the critical early events that help to dictate the mycobacterial set point. A greater understanding of alveolar macrophage functions impacted by HIV coinfection will improve our understanding of protective immunity to Mtb and may reveal novel pathways amenable to intervention to improve both early immune control of Mtb and clinical outcomes for the millions of people worldwide infected with HIV.
Collapse
Affiliation(s)
- Sara C Auld
- Emory University School of Medicine, Atlanta, GA, USA.
- Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| | | |
Collapse
|
5
|
Pooran A, Davids M, Nel A, Shoko A, Blackburn J, Dheda K. IL-4 subverts mycobacterial containment in Mycobacterium tuberculosis-infected human macrophages. Eur Respir J 2019; 54:13993003.02242-2018. [PMID: 31097521 DOI: 10.1183/13993003.02242-2018] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 05/07/2019] [Indexed: 12/17/2022]
Abstract
Protective immunity against Mycobacterium tuberculosis is poorly understood. The role of interleukin (IL)-4, the archetypal T-helper type 2 (Th2) cytokine, in the immunopathogenesis of human tuberculosis remains unclear.Blood and/or bronchoalveolar lavage fluid (BAL) were obtained from participants with pulmonary tuberculosis (TB) (n=23) and presumed latent TB infection (LTBI) (n=22). Messenger RNA expression levels of interferon (IFN)-γ, IL-4 and its splice variant IL-4δ2 were determined by real-time PCR. The effect of human recombinant (hr)IL-4 on mycobacterial survival/containment (CFU·mL-1) was evaluated in M. tuberculosis-infected macrophages co-cultured with mycobacterial antigen-primed effector T-cells. Regulatory T-cell (Treg) and Th1 cytokine levels were evaluated using flow cytometry.In blood, but not BAL, IL-4 mRNA levels (p=0.02) and the IL-4/IFN-γ ratio (p=0.01) was higher in TB versus LTBI. hrIL-4 reduced mycobacterial containment in infected macrophages (p<0.008) in a dose-dependent manner and was associated with an increase in Tregs (p<0.001), but decreased CD4+Th1 cytokine levels (CD4+IFN-γ+ p<0.001; CD4+TNFα+ p=0.01). Blocking IL-4 significantly neutralised mycobacterial containment (p=0.03), CD4+IFNγ+ levels (p=0.03) and Treg expression (p=0.03).IL-4 can subvert mycobacterial containment in human macrophages, probably via perturbations in Treg and Th1-linked pathways. These data may have implications for the design of effective TB vaccines and host-directed therapies.
Collapse
Affiliation(s)
- Anil Pooran
- Centre for Lung Infection and Immunity, Division of Pulmonology, Dept of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Malika Davids
- Centre for Lung Infection and Immunity, Division of Pulmonology, Dept of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa
| | - Andrew Nel
- Dept of Integrative Biomedical Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Aubrey Shoko
- Centre for Proteomics and Genomics Research, Cape Town, South Africa
| | - Jonathan Blackburn
- Dept of Integrative Biomedical Sciences, Institute for Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
| | - Keertan Dheda
- Centre for Lung Infection and Immunity, Division of Pulmonology, Dept of Medicine and UCT Lung Institute & South African MRC/UCT Centre for the Study of Antimicrobial Resistance, University of Cape Town, Cape Town, South Africa .,Faculty of Infectious and Tropical Diseases, Dept of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
6
|
Hamada Y, Glaziou P, Sismanidis C, Getahun H. Prevention of tuberculosis in household members: estimates of children eligible for treatment. Bull World Health Organ 2019; 97:534-547D. [PMID: 31384072 PMCID: PMC6653819 DOI: 10.2471/blt.18.218651] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 04/24/2019] [Accepted: 05/06/2019] [Indexed: 02/08/2023] Open
Abstract
Objective To estimate of the number of children younger than 5 years who were household contacts of people with tuberculosis and were eligible for tuberculosis preventive treatment in 2017. Methods To estimate the number of eligible children, we obtained national values for the number of notified cases of bacteriologically confirmed pulmonary tuberculosis in 2017, the proportion of the population younger than 5 years in 2017 and average household size from published sources. We obtained global values for the number of active tuberculosis cases per household with an index case and for the prevalence of latent tuberculosis infection among children younger than 5 years who were household contacts of a tuberculosis case through systematic reviews, meta-analysis and Poisson regression models. Findings The estimated number of children younger than 5 years eligible for tuberculosis preventive treatment in 2017 globally was 1.27 million (95% uncertainty interval, UI: 1.24–1.31), which corresponded to an estimated global coverage of preventive treatment in children of 23% at best. By country, the estimated number ranged from less than one in the Bahamas, Iceland, Luxembourg and Malta to 350 000 (95% UI: 320 000–380 000) in India. Regionally, the highest estimates were for the World Health Organization (WHO) South-East Asia Region (510 000; 95% UI: 450 000–580 000) and the WHO African Region (470 000; 95% UI: 440 000–490 000). Conclusion Tuberculosis preventive treatment in children was underutilized globally in 2017. Treatment should be scaled up to help eliminate the pool of tuberculosis infection and achieve the End TB Strategy targets.
Collapse
Affiliation(s)
- Yohhei Hamada
- Global Tuberculosis Programme, World Health Organization, 20 avenue Appia, 1211 Geneva 27, Switzerland
| | - Philippe Glaziou
- Global Tuberculosis Programme, World Health Organization, 20 avenue Appia, 1211 Geneva 27, Switzerland
| | - Charalambos Sismanidis
- Global Tuberculosis Programme, World Health Organization, 20 avenue Appia, 1211 Geneva 27, Switzerland
| | - Haileyesus Getahun
- Global Tuberculosis Programme, World Health Organization, 20 avenue Appia, 1211 Geneva 27, Switzerland
| |
Collapse
|
7
|
Iqbal NT, Hussain R, Shahid F, Dawood G. Association of plasma cytokines with radiological recovery in pulmonary tuberculosis patients. Int J Mycobacteriol 2016; 5:111-9. [PMID: 27242220 DOI: 10.1016/j.ijmyco.2015.12.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Accepted: 12/15/2015] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE/BACKGROUND The characterization of tuberculosis (TB) patients as slow or fast responders post anti-TB treatment has always been a matter of tremendous interest as slow responders are most likely to relapse and/or develop complications. Pulmonary tissue healing as assessed with radiology is the only available tool for tissue recovery but is not predictive at intake. The objective of the current study was to assess biomarkers associated with fast and slow recovery in TB patients at recruitment. METHODS Pulmonary TB patients (N=15) were assessed for radiological recovery serially in parallel with clinical signs and symptoms, hematological parameters, and plasma cytokines at 0months, 6months, 12months, and 24months. On the basis of differential radiological healing, patients were characterized into slow (>12months), intermediate (<12months), and fast (<6months) responders. RESULTS Baseline plasma cytokines (interleukin [IL]-2, -4, -6, -10, tumor necrosis factor-α, and interferon-γ) were determined using cytometric bead array. IL-2 and -4 were able to accurately differentiate slow and fast responders into two distinct clusters using hierarchal clustering analysis. Compared with fast responders, slow responders showed significantly high IL-2 and -4 at baseline (p=.001 Mann-Whitney U test). CONCLUSION In-depth analysis of cytokines and its association with radiological recovery in TB patients may be useful in monitoring TB patients postchemotherapy for both clinicians and TB control program.
Collapse
Affiliation(s)
- Najeeha Talat Iqbal
- Department of Pediatrics and Child Health, Aga Khan University, Karachi, Pakistan; Department of Biological and Biomedical Sciences, Aga Khan University, Karachi, Pakistan.
| | - Rabia Hussain
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | - Firdaus Shahid
- Department of Pathology and Laboratory Medicine, Aga Khan University, Karachi, Pakistan
| | | |
Collapse
|
8
|
Lee JY, Jeong I, Joh JS, Jung YW, Sim SY, Choi B, Jee HG, Lim DG. Differential expression of CD57 in antigen-reactive CD4+ T cells between active and latent tuberculosis infection. Clin Immunol 2015; 159:37-46. [PMID: 25931385 DOI: 10.1016/j.clim.2015.04.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/07/2015] [Accepted: 04/08/2015] [Indexed: 12/24/2022]
Abstract
The development of diagnostic tests that predict the progression of latent tuberculosis infection to active disease is pivotal for the eradication of tuberculosis. As an initial step to achieve this goal, our study's aim was to identify biomarkers that differentiate active from latent tuberculosis infection. We compared active and latent tuberculosis infection groups in terms of the precursor frequency, functional subset differentiation, and senescence/exhaustion surface marker expression of antigen-specific CD4(+) T cells, which were defined as dividing cells upon their encountering with Mycobacterium (M.) tuberculosis antigens. Among several parameters shown to have statistically significant differences between the two groups, the frequency of CD57-expressing cells could differentiate effectively between active disease and latent infection. Our results suggest that the expression of CD57 in M. tuberculosis-reactive CD4(+) T cells could be a promising candidate biomarker with which to identify individuals with latent tuberculosis infection prone to progression to active disease.
Collapse
Affiliation(s)
- Ji Yeon Lee
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Medical Center, Seoul 100-799, South Korea
| | - Ina Jeong
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Medical Center, Seoul 100-799, South Korea
| | - Joon-Sung Joh
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, National Medical Center, Seoul 100-799, South Korea
| | - Young Won Jung
- Jung-gu Community Health Center, Seoul 132-713, South Korea
| | - Soo Yeon Sim
- Center for Chronic Diseases, Research Institute, National Medical Center, Seoul 100-799, South Korea
| | - Boram Choi
- Center for Chronic Diseases, Research Institute, National Medical Center, Seoul 100-799, South Korea
| | - Hyeon-Gun Jee
- Center for Chronic Diseases, Research Institute, National Medical Center, Seoul 100-799, South Korea
| | - Dong-Gyun Lim
- Center for Chronic Diseases, Research Institute, National Medical Center, Seoul 100-799, South Korea.
| |
Collapse
|
9
|
Romero-Adrian TB, Leal-Montiel J, Fernández G, Valecillo A. Role of cytokines and other factors involved in the Mycobacterium tuberculosis infection. World J Immunol 2015; 5:16-50. [DOI: 10.5411/wji.v5.i1.16] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 11/18/2014] [Accepted: 02/09/2015] [Indexed: 02/05/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is a pathogen that is widely distributed geographically and continues to be a major threat to world health. Bacterial virulence factors, nutritional state, host genetic condition and immune response play an important role in the evolution of the infection. The genetically diverse Mtb strains from different lineages have been shown to induce variable immune system response. The modern and ancient lineages strains induce different cytokines patterns. The immunity to Mtb depends on Th1-cell activity [interferon-γ (IFN-γ), interleukin-12 (IL-12) and tumor necrosis factor-α (TNF-α)]. IL-1β directly kills Mtb in murine and human macrophages. IL-6 is a requirement in host resistance to Mtb infection. IFN-γ, TNF-α, IL-12 and IL-17 are participants in Mycobacterium-induced granuloma formation. Other regulating proteins as IL-27 and IL-10 can prevent extensive immunopathology. CXCL 8 enhances the capacity of the neutrophil to kill Mtb. CXCL13 and CCL19 have been identified as participants in the formation of granuloma and control the Mtb infection. Treg cells are increased in patients with active tuberculosis (TB) but decrease with anti-TB treatment. The increment of these cells causes down- regulation of adaptive immune response facilitating the persistence of the bacterial infection. Predominance of Th2 phenotype cytokines increases the severity of TB. The evolution of the Mtb infection will depend of the cytokines network and of the influence of other factors aforementioned.
Collapse
|
10
|
Ashenafi S, Aderaye G, Bekele A, Zewdie M, Aseffa G, Hoang ATN, Carow B, Habtamu M, Wijkander M, Rottenberg M, Aseffa A, Andersson J, Svensson M, Brighenti S. Progression of clinical tuberculosis is associated with a Th2 immune response signature in combination with elevated levels of SOCS3. Clin Immunol 2014; 151:84-99. [PMID: 24584041 DOI: 10.1016/j.clim.2014.01.010] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 01/08/2014] [Accepted: 01/30/2014] [Indexed: 02/06/2023]
Abstract
In this study, we explored the local cytokine/chemokine profiles in patients with active pulmonary or pleural tuberculosis (TB) using multiplex protein analysis of bronchoalveolar lavage and pleural fluid samples. Despite increased pro-inflammation compared to the uninfected controls; there was no up-regulation of IFN-γ or the T cell chemoattractant CCL5 in the lung of patients with pulmonary TB. Instead, elevated levels of IL-4 and CCL4 were associated with high mycobacteria-specific IgG titres as well as SOCS3 (suppressors of cytokine signaling) mRNA and progression of moderate-to-severe disease. Contrary, IL-4, CCL4 and SOCS3 remained low in patients with extrapulmonary pleural TB, while IFN-γ, CCL5 and SOCS1 were up-regulated. Both SOCS molecules were induced in human macrophages infected with Mycobacterium tuberculosis in vitro. The Th2 immune response signature found in patients with progressive pulmonary TB could result from inappropriate cytokine/chemokine responses and excessive SOCS3 expression that may represent potential targets for clinical TB management.
Collapse
Affiliation(s)
- Senait Ashenafi
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden; Black Lion University Hospital and Addis Ababa University, Department of Pathology, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Getachew Aderaye
- Black Lion University Hospital and Addis Ababa University, Department of Internal Medicine, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Amsalu Bekele
- Black Lion University Hospital and Addis Ababa University, Department of Internal Medicine, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Martha Zewdie
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Getachew Aseffa
- Black Lion University Hospital and Addis Ababa University, Department of Radiology, Faculty of Medicine, Addis Ababa, Ethiopia
| | - Anh Thu Nguyen Hoang
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Berit Carow
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Stockholm, Sweden
| | - Meseret Habtamu
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Maria Wijkander
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Martin Rottenberg
- Karolinska Institutet, Department of Microbiology, Tumor and Cell Biology (MTC), Stockholm, Sweden
| | - Abraham Aseffa
- Armauer Hansen Research Institute (AHRI), Addis Ababa, Ethiopia
| | - Jan Andersson
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden; Karolinska University Hospital Huddinge, Department of Medicine, Division of Infectious Diseases, Stockholm, Sweden
| | - Mattias Svensson
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Susanna Brighenti
- Karolinska Institutet, Center for Infectious Medicine (CIM), F59, Department of Medicine, Karolinska University Hospital Huddinge, Stockholm, Sweden.
| |
Collapse
|
11
|
Whitworth HS, Aranday-Cortes E, Lalvani A. Biomarkers of tuberculosis: a research roadmap. Biomark Med 2013; 7:349-62. [PMID: 23734796 DOI: 10.2217/bmm.13.53] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Tuberculosis (TB) continues to represent a major public health problem worldwide. Prompt and accurate diagnosis and effective treatment are fundamental to reducing morbidity and mortality and curtailing spread of infection. Furthermore, tackling the large reservoir of latent infection is the cornerstone to TB control in many high income low TB incidence countries. However, our existing toolkit for prevention, diagnosis and treatment remains outdated and inadequate. Here, we discuss the key targets for biomarker research and discovery in TB and recent developments in the field. We focus on host biomarkers, in particular: correlates of vaccine efficacy and sterilizing immunity; biomarkers of latent TB infection, including diagnosis, risk of progression to active TB and response to treatment; and markers of active TB, including diagnosis, response to treatment and risk of relapse. Recent scientific and technological advances have contributed to significant recent progression in biomarker discovery. Although there are clear remaining paucities, continued efforts within scientific, translational and clinical studies are likely to yield a number of clinically useful biomarkers of TB in the foreseeable future.
Collapse
Affiliation(s)
- Hilary S Whitworth
- Tuberculosis Research Unit, Department of Respiratory Medicine, National Heart & Lung Institute, Imperial College London, London W2 1PG, UK
| | | | | |
Collapse
|
12
|
Anergic pulmonary tuberculosis is associated with contraction of the Vd2+T cell population, apoptosis and enhanced inhibitory cytokine production. PLoS One 2013; 8:e71245. [PMID: 23936496 PMCID: PMC3732239 DOI: 10.1371/journal.pone.0071245] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022] Open
Abstract
Objective To study the association of anergic pulmonary tuberculosis with Vδ2+ T cells and related cytokine levels. Methods 82 pulmonary tuberculosis patients were divided into two groups according to their purified protein derivative tuberculin skin test (TST) results: 39 with TST-negative anergic pulmonary tuberculosis and 43 with TST-positive pulmonary tuberculosis, while 40 healthy volunteers were used as control. Based on chest X-ray results, the tuberculosis lesions were scored according to their severity, with a score of ≤ 2.5 ranking as mild, 2.5-6 as moderate and ≥ 6 as severe. The Vδ2+ T cell percentage and their expression levels of the apoptosis-related membrane surface molecule FasL in peripheral blood and bronchoalveolar lavage fluids (BALF) were analyzed by flow cytometry, while IL-2, IL-4, IL-6 and IL-10 cytokine and γ-interferon (γ-IFN) concentrations in peripheral blood were determined by ELISA. Results Most of the patients with chest X-ray lesion scores higher than 6 belonged to the anergic tuberculosis group (P<0.05). Anergic pulmonary tuberculosis patients displayed reduced peripheral blood Vδ2+ T cell counts (P<0.05) and higher FasL expression in peripheral blood Vδ2 + T cells (P <0.05). The Vδ2+ T cell percentages in the BALF of all tuberculosis patients were lower than in their peripheral blood (P <0.05), and IL-4 and IL-10 concentrations in peripheral blood of anergic tuberculosis patients were higher than in TST-positive tuberculosis patients and healthy controls (P <0.05). Conclusion Anergic pulmonary tuberculosis is accompanied by reduced Vδ2+ T cell percentage, and elevated Vδ2+ T cell FasL expression as well as enhanced IL-4 and IL-10 levels in peripheral blood.
Collapse
|
13
|
Jackson-Sillah D, Cliff JM, Mensah GI, Dickson E, Sowah S, Tetteh JKA, Addo KK, Ottenhoff THM, Bothamley G, Dockrell HM. Recombinant ESAT-6-CFP10 Fusion Protein Induction of Th1/Th2 Cytokines and FoxP3 Expressing Treg Cells in Pulmonary TB. PLoS One 2013; 8:e68121. [PMID: 23826366 PMCID: PMC3694917 DOI: 10.1371/journal.pone.0068121] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Accepted: 05/30/2013] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Early secretory antigenic target 6 (ESAT-6) and culture filtrate protein 10 (CFP-10) are Mycobacterium tuberculosis (Mtb)-specific antigens that are secreted by actively metabolising bacteria and contribute to the virulence of the bacteria. Their ability to induce Treg and Th2 responses, particularly during the first two weeks of treatment, has not been comprehensively examined to date. The purpose of this work was to characterise Th1, Th2 and Treg responses to rESAT-6-CFP10 fusion protein in TB patients before and during the intensive phase of treatment and in healthy M.bovis BCG vaccinated donors. METHODS Forty-six newly diagnosed, HIV-negative, smear-positive pulmonary TB patients and 20 healthy donors were recruited in the UK and Ghana. Their peripheral blood mononuclear cells (PBMC) were used in ex vivo ELISPOT and in vitro cultures to identify immunological parameters of interest. RESULTS The study confirmed that protective immune responses to rESAT-6-CFP10 are impaired in active TB but improved during treatment: circulating antigen-specific IL-4-producing T-cells were increased in untreated TB but declined by two weeks of treatment while the circulating antigen-specific IFN-γ producing T cells which showed a transient rise at one week of treatment, persisted at baseline levels at two months of treatment. In vitro T cell proliferation and IFN-γ production were reduced, while IL-4 and CD4(+)FoxP3(+)CD25(hi) cell expression were increased in response to rESAT-6-CFP10 fusion protein in untreated TB. These responses were reversed during early treatment of TB. CONCLUSIONS These observations support further investigations into the possible utility of these parameters as markers of active disease and favourable treatment outcomes.
Collapse
Affiliation(s)
- Dolly Jackson-Sillah
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
- Noguchi Memorial Institute for Medical Research (NMIMR), Accra, Ghana
| | - Jacqueline M. Cliff
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| | - Gloria Ivy Mensah
- Noguchi Memorial Institute for Medical Research (NMIMR), Accra, Ghana
| | - Emmanuel Dickson
- Noguchi Memorial Institute for Medical Research (NMIMR), Accra, Ghana
| | - Sandra Sowah
- Noguchi Memorial Institute for Medical Research (NMIMR), Accra, Ghana
| | - John K A. Tetteh
- Noguchi Memorial Institute for Medical Research (NMIMR), Accra, Ghana
| | - Kwasi K. Addo
- Noguchi Memorial Institute for Medical Research (NMIMR), Accra, Ghana
| | - Tom H. M. Ottenhoff
- Department of Infectious Diseases, Leiden University Medical Centre, Leiden, The Netherlands
| | - Graham Bothamley
- Respiratory Disease Department, Homerton University Hospital, London, United Kingdom
| | - Hazel M. Dockrell
- Faculty of Infectious and Tropical Diseases, London School of Hygiene & Tropical Medicine (LSHTM), London, United Kingdom
| |
Collapse
|
14
|
Abstract
Mycobacterium tuberculosis was one of the first human pathogens to be identified as the cause of a specific disease – TB. TB was also one of the first specific diseases for which immunotherapy was attempted. In more than a century since, multiple different immunotherapies have been attempted, alongside vaccination and antibiotic treatment, with varying degrees of success. Despite this, TB remains a major worldwide health problem that causes nearly 2 million deaths annually and has infected an estimated 2 billion people. A major reason for this is that M. tuberculosis is an ancient human pathogen that has evolved complex strategies for persistence in the human host. It has thus been long understood that, to effectively control TB, we will need to address the ability of the pathogen to establish a persistent, latent infection in most infected individuals. This review discusses what is presently known about the interaction of M. tuberculosis with the immune system, and how this knowledge has been used to design immunotherapeutic strategies.
Collapse
Affiliation(s)
- T Mark Doherty
- Medical Affairs, GlaxoSmithKline, Brøndby, DK-2605, Copenhagen, Denmark
| |
Collapse
|
15
|
Differential combination of cytokine and interferon- γ +874 T/A polymorphisms determines disease severity in pulmonary tuberculosis. PLoS One 2011; 6:e27848. [PMID: 22140472 PMCID: PMC3226558 DOI: 10.1371/journal.pone.0027848] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Accepted: 10/26/2011] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Mycobacterium tuberculosis infects nearly 1/3 of the world population and this reservoir forms the largest pool from which new cases arise. Among the cytokines, IFN-γ is a key determinant in protection against tuberculosis. Single nucleotide polymorphisms (SNPs) in IFN-γ gene (+874 T/A) which determine TT high ((hi)), AA low ((lo)) and TA intermediate ((int)) responder phenotypes have shown variable associations with tuberculosis disease outcome in different ethnic populations. The objective of the current study was to analyze IFN-γ gene combinations with other IFN-γ regulating cytokine genes (IL-10, TNF -α, IL-6) to see the effect of gene- combinations on disease severity outcome in pulmonary tuberculosis. METHODS AND FINDINGS Study groups comprised of pulmonary TB patients stratified according to lung tissue involvement into mild (Pmd = 74) or advance (Pad = 23) lung disease and compared with healthy controls (TBNA = 166). Genotype analysis was carried out using amplification refractory mutation system-PCR (ARMS-PCR). IFN-γ gene (+874 T/A) functional SNP combinations in TNFα (-308 G/A), IL-10 (-1082 A/G) and IL-6 (-174 G/C) were analyzed. Single gene analysis (Pearson χ²) showed a dominant association of IFN-γ TT (hi) genotype (p = 0.001) and T allele (p = 0.001) with mild disease. IFN-γ(lo) -IL-10(lo) genotype combination was associated with advanced disease (p = 0.002). IFN-γ(hi) -IL-6(hi) combination was associated with mild disease (p = 0.0005) while IFN-γ(lo) -IL-6(int) was associated with protection against both forms of pulmonary disease (p = 0.002). CONCLUSION Our results show that a limited number of IFN-γ gene combinations with other cytokine functional SNPs determine the outcome of disease severity in tuberculosis.
Collapse
|