1
|
Fekrvand S, Abolhassani H, Rezaei N. An overview of early genetic predictors of IgA deficiency. Expert Rev Mol Diagn 2024; 24:715-727. [PMID: 39087770 DOI: 10.1080/14737159.2024.2385521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
INTRODUCTION Inborn errors of immunity (IEIs) refer to a heterogeneous category of diseases with defects in the number and/or function of components of the immune system. Immunoglobulin A (IgA) deficiency is the most prevalent IEI characterized by low serum level of IgA and normal serum levels of IgG and/or IgM. Most of the individuals with IgA deficiency are asymptomatic and are only identified through routine laboratory tests. Others may experience a wide range of clinical features including mucosal infections, allergies, and malignancies as the most important features. IgA deficiency is a multi-complex disease, and the exact pathogenesis of it is still unknown. AREAS COVERED This review compiles recent research on genetic and epigenetic factors that may contribute to the development of IgA deficiency. These factors include defects in B-cell development, IgA class switch recombination, synthesis, secretion, and the long-term survival of IgA switched memory B cells and plasma cells. EXPERT OPINION A better and more comprehensive understanding of the cellular pathways involved in IgA deficiency could lead to personalized surveillance and potentially curative strategies for affected patients, especially those with severe symptoms.
Collapse
Affiliation(s)
- Saba Fekrvand
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Primary Immunodeficiency Diseases Network (PIDNet), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
2
|
Li KL, Wang BZ, Li ZP, Li YL, Liang JJ. Alterations of intestinal flora and the effects of probiotics in children with recurrent respiratory tract infection. World J Pediatr 2019; 15:255-261. [PMID: 31020541 PMCID: PMC6597592 DOI: 10.1007/s12519-019-00248-0] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 03/20/2019] [Indexed: 01/08/2023]
Abstract
BACKGROUND Recurrent respiratory tract infection (RRTI) is a disease occurred frequently in preschool children. METHODS A total of 120 RRTI children were randomly divided into active group, remission group, intervention group and control group, meanwhile 30 healthy children were selected as the healthy group. Children in the intervention group were given oral Bifidobaeterium tetravaccine tablets (Live) for 2 months, while the control group received routine treatment. Stool sample were detected to analyze the bacterial strains. The occurrence of respiratory tract infection (RTI) was compared between different groups during 1 year follow-up. RESULTS Compared with the healthy group, the number of Bifidobacteria and Lactobacilli in the active group, remission group, intervention group and control group was significantly decreased (P < 0.05). The number of Bifidobacteria and Lactobacilli in the intervention group was significantly higher compared to other RRTI groups (P < 0.05). During the follow-up period, the average annual frequency of different acute RTI and use of antibiotics were significantly reduced (P < 0.05), the average duration of cough, fever and use of antibiotics at each episode were also significantly shortened (P < 0.05) in the intervention group compared to the control group. CONCLUSIONS Children with RRTI are susceptible to intestinal flora imbalance. Oral probiotics can effectively improve the RRTI intestinal microecological balance in children and reduce the frequency of RTI.
Collapse
Affiliation(s)
- Ke-Liang Li
- Heart Center, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao Women's and Children's Hospital, 6 Tongfu Road, Qingdao, 266034, Shandong, China
- Department of Pediatrics, Rizhao People's Hospital, 126 Taian Road, Rizhao, 276800, Shandong, China
| | - Ben-Zhen Wang
- Heart Center, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao Women's and Children's Hospital, 6 Tongfu Road, Qingdao, 266034, Shandong, China
| | - Zi-Pu Li
- Heart Center, Women's and Children's Hospital Affiliated to Qingdao University, Qingdao Women's and Children's Hospital, 6 Tongfu Road, Qingdao, 266034, Shandong, China.
| | - Yi-Lei Li
- Clinical Laboratory, Rizhao People's Hospital, 126 Taian Road, Rizhao, 276800, Shandong, China
| | - Jing-Jing Liang
- Department of Pediatrics, Rizhao People's Hospital, 126 Taian Road, Rizhao, 276800, Shandong, China
| |
Collapse
|
3
|
Mahdaviani SA, Rezaei N. Pulmonary Manifestations of Predominantly Antibody Deficiencies. PULMONARY MANIFESTATIONS OF PRIMARY IMMUNODEFICIENCY DISEASES 2019. [PMCID: PMC7123456 DOI: 10.1007/978-3-030-00880-2_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Predominantly antibody deficiencies (PADs) are the most frequent forms of primary immunodeficiency diseases (PIDs). Commonly accompanied with complications involving several body systems, immunoglobulin substitution therapy along with prophylactic antibiotics remained the cornerstone of treatment for PADs and related complications. Patients with respiratory complications should be prescribed an appropriate therapy as soon as possible and have to be adhering to more and longer medical therapies. Recent studies identified a gap for screening protocols to monitor respiratory manifestations in patients with PADs. In the present chapter, the pulmonary manifestations of different PADs for each have been discussed. The chapter is mainly focused on X-linked agammaglobulinemia, common variable immunodeficiency, activated PI3K-δ syndrome, LRBA deficiency, CD19 complex deficiencies, CD20 deficiency, other monogenic defects associated with hypogammaglobulinemia, immunoglobulin class switch recombination deficiencies affecting B-cells, transient hypogammaglobulinemia of infancy, and selective IgA deficiency.
Collapse
Affiliation(s)
- Seyed Alireza Mahdaviani
- Pediatric Respiratory Diseases Research Center, National Research Institute of Tuberculosis and Lung Diseases (NRITLD), Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies Children’s Medical Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| |
Collapse
|
4
|
Monogenic systemic lupus erythematosus: insights in pathophysiology. Rheumatol Int 2018; 38:1763-1775. [DOI: 10.1007/s00296-018-4048-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 05/10/2018] [Indexed: 01/02/2023]
|
5
|
Serwas NK, Huemer J, Dieckmann R, Mejstrikova E, Garncarz W, Litzman J, Hoeger B, Zapletal O, Janda A, Bennett KL, Kain R, Kerjaschky D, Boztug K. CEBPE-Mutant Specific Granule Deficiency Correlates With Aberrant Granule Organization and Substantial Proteome Alterations in Neutrophils. Front Immunol 2018; 9:588. [PMID: 29651288 PMCID: PMC5884887 DOI: 10.3389/fimmu.2018.00588] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 03/08/2018] [Indexed: 11/13/2022] Open
Abstract
Specific granule deficiency (SGD) is a rare disorder characterized by abnormal neutrophils evidenced by reduced granules, absence of granule proteins, and atypical bilobed nuclei. Mutations in CCAAT/enhancer-binding protein-ε (CEBPE) are one molecular etiology of the disease. Although C/EBPε has been studied extensively, the impact of CEBPE mutations on neutrophil biology remains elusive. Here, we identified two SGD patients bearing a previously described heterozygous mutation (p.Val218Ala) in CEBPE. We took this rare opportunity to characterize SGD neutrophils in terms of granule distribution and protein content. Granules of patient neutrophils were clustered and polarized, suggesting that not only absence of specific granules but also defects affecting other granules contribute to the phenotype. Our analysis showed that remaining granules displayed mixed protein content and lacked several glycoepitopes. To further elucidate the impact of mutant CEBPE, we performed detailed proteomic analysis of SGD neutrophils. Beside an absence of several granule proteins in patient cells, we observed increased expression of members of the linker of nucleoskeleton and cytoskeleton complex (nesprin-2, vimentin, and lamin-B2), which control nuclear shape. This suggests that absence of these proteins in healthy individuals might be responsible for segmented shapes of neutrophilic nuclei. We further show that the heterozygous mutation p.Val218Ala in CEBPE causes SGD through prevention of nuclear localization of the protein product. In conclusion, we uncover that absence of nuclear C/EBPε impacts on spatiotemporal expression and subsequent distribution of several granule proteins and further on expression of proteins controlling nuclear shape.
Collapse
Affiliation(s)
- Nina K Serwas
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jakob Huemer
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Régis Dieckmann
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Ester Mejstrikova
- Department of Pediatric Hematology and Oncology, 2nd Faculty of Medicine, University Hospital Motol, Prague, Czechia
| | - Wojciech Garncarz
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Jiri Litzman
- Department of Clinical Immunology and Allergology, St. Anne's University Hospital, Faculty of Medicine, Masaryk University, Brno, Czechia
| | - Birgit Hoeger
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Ondrej Zapletal
- Department of Pediatric Hematology, University Hospital Brno, Brno, Czechia
| | - Ales Janda
- Center for Chronic Immunodeficiency (CCI), University Medical Center, University of Freiburg, Freiburg, Germany.,Center of Pediatrics and Adolescent Medicine, University Medical Center, University of Freiburg, Freiburg, Germany
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria
| | - Renate Kain
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Dontscho Kerjaschky
- Clinical Institute of Pathology, Medical University of Vienna, Vienna, Austria
| | - Kaan Boztug
- Ludwig Boltzmann Institute for Rare and Undiagnosed Diseases, Vienna, Austria.,CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Vienna, Austria.,Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Department of Pediatrics, St. Anna Kinderspital and Children's Cancer Research Institute, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
6
|
EL-HALAWANY NERMIN, SHAWKY ABDELMONSIFA, M. AL-TOHAMY AHMEDF, HEGAZY LAMEES, ABDEL-SHAFY HAMDY, ABDEL-LATIF MAGDYA, GHAZI YASSERA, NEUHOFF CHRISTIANE, SALILEW-WONDIM DESSIE, SCHELLANDER KARL. Complement component 3: characterization and association with mastitis resistance in Egyptian water buffalo and cattle. J Genet 2017; 96:65-73. [DOI: 10.1007/s12041-017-0740-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
7
|
Abolhassani H, Aghamohammadi A, Hammarström L. Monogenic mutations associated with IgA deficiency. Expert Rev Clin Immunol 2016; 12:1321-1335. [DOI: 10.1080/1744666x.2016.1198696] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
8
|
da Silva KR, Fraga TR, Lucatelli JF, Grumach AS, Isaac L. Skipping of exon 27 in C3 gene compromises TED domain and results in complete human C3 deficiency. Immunobiology 2016; 221:641-9. [PMID: 26847111 DOI: 10.1016/j.imbio.2016.01.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/17/2015] [Accepted: 01/12/2016] [Indexed: 11/16/2022]
Abstract
Primary deficiency of complement C3 is rare and usually associated with increased susceptibility to bacterial infections. In this work, we investigated the molecular basis of complete C3 deficiency in a Brazilian 9-year old female patient with a family history of consanguinity. Hemolytic assays revealed complete lack of complement-mediated hemolytic activity in the patient's serum. While levels of the complement regulatory proteins Factor I, Factor H and Factor B were normal in the patient's and family members' sera, complement C3 levels were undetectable in the patient's serum and were reduced by at least 50% in the sera of the patient's parents and brother. Additionally, no C3 could be observed in the patient's plasma and cell culture supernatants by Western blot. We also observed that patient's skin fibroblasts stimulated with Escherichia coli LPS were unable to secrete C3, which might be accumulated within the cells before being intracellularly degraded. Sequencing analysis of the patient's C3 cDNA revealed a genetic mutation responsible for the complete skipping of exon 27, resulting in the loss of 99 nucleotides (3450-3549) located in the TED domain. Sequencing of the intronic region between the exons 26 and 27 of the C3 gene (nucleotides 6690313-6690961) showed a nucleotide exchange (T→C) at position 6690626 located in a splicing donor site, resulting in the complete skipping of exon 27 in the C3 mRNA.
Collapse
Affiliation(s)
- Karina Ribeiro da Silva
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Tatiana Rodrigues Fraga
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Juliana Faggion Lucatelli
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | - Lourdes Isaac
- Department of Immunology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
9
|
Okura Y, Kobayashi I, Yamada M, Sasaki S, Yamada Y, Kamioka I, Kanai R, Takahashi Y, Ariga T. Clinical characteristics and genotype-phenotype correlations in C3 deficiency. J Allergy Clin Immunol 2015; 137:640-644.e1. [PMID: 26435005 DOI: 10.1016/j.jaci.2015.08.017] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 08/12/2015] [Accepted: 08/18/2015] [Indexed: 10/22/2022]
Affiliation(s)
- Yuka Okura
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Department of Pediatrics, KKR Sapporo Medical Center, Sapporo, Japan.
| | - Ichiro Kobayashi
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Masafumi Yamada
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Satoshi Sasaki
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan; Department of Pediatrics, Hakodate Central General Hospital, Hakodate, Japan
| | - Yutaka Yamada
- Department of Pediatrics, Hakodate Central General Hospital, Hakodate, Japan
| | - Ichiro Kamioka
- Department of Pediatrics, Kakogawa West City Hospital, Kakogawa, Japan
| | - Rie Kanai
- Department of Pediatrics, Shimane University Faculty of Medicine, Izumo, Japan
| | - Yutaka Takahashi
- Department of Pediatrics, KKR Sapporo Medical Center, Sapporo, Japan
| | - Tadashi Ariga
- Department of Pediatrics, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| |
Collapse
|
10
|
Yazdani R, Latif A, Tabassomi F, Abolhassani H, Azizi G, Rezaei N, Aghamohammadi A. Clinical phenotype classification for selective immunoglobulin A deficiency. Expert Rev Clin Immunol 2015; 11:1245-54. [DOI: 10.1586/1744666x.2015.1081565] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|