1
|
Wu X, Zhang J, Shen M. Case Report: de novo in-frame deletion in PLCG2 gene: a case report of B-cell lymphopenia, pulmonary bullae, and cutis laxa. Front Immunol 2025; 16:1556372. [PMID: 40170866 PMCID: PMC11959379 DOI: 10.3389/fimmu.2025.1556372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Accepted: 02/26/2025] [Indexed: 04/03/2025] Open
Abstract
Phospholipase C gamma 2 (PLCG2) gene mutations might cause PLCG2-associated antibody deficiency and immune dysregulation (PLAID)/autoinflammation and PLCG2-associated antibody deficiency and immune dysregulation (APLAID) syndrome. They are two forms of autosomal-dominant immune dysregulation (ID). APLAID patients are usually characterized by skin lesions, pulmonary involvement, and musculoskeletal, ophthalmic, and gastrointestinal tract symptoms, but unlike PLAID patients, these patients do not present with cold urticaria or autoimmunity. Here, we report a 25-year-old man with B-cell lymphopenia, pulmonary bullae, recurrent sinopulmonary infections, and cutis laxa but without cold-induced urticaria. Anti-nuclear antibodies were negative. Trio whole-genome sequencing revealed a de novo heterozygous PLCG2 gene (NM_002661.5) variant c.3417_3419del, p.E1139del, located on chromosome chr16-81973600-81973602. Our findings expand the variety of clinical and genetic phenotypes for APLAID and suggest that this variant would be meaningful.
Collapse
Affiliation(s)
- Xiaoqi Wu
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, Beijing, China
- Department of Rheumatology and Clinical Immunology, Tianjin Children’s Hospital, Tianjin, China
| | - Jingyuan Zhang
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, Beijing, China
- Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Min Shen
- Department of Rare Diseases, Peking Union Medical College Hospital (PUMCH), Chinese Academy of Medical Sciences & Peking Union Medical College; State Key Laboratory of Complex Severe and Rare Diseases, PUMCH, Beijing, China
- Department of Rheumatology and Clinical Immunology, PUMCH; National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Ministry of Science & Technology; Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| |
Collapse
|
2
|
Bunney TD, Kampyli C, Gregory A, Katan M. Characterisation of molecular mechanisms for PLCγ2 disease-linked variants. Adv Biol Regul 2024; 94:101053. [PMID: 39313402 DOI: 10.1016/j.jbior.2024.101053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/18/2024] [Indexed: 09/25/2024]
Abstract
The phospholipase C enzyme PLCγ2 is best characterised in the context of immune cell regulation. Furthermore, many mutations discovered in PLCγ2 have been linked to the development of complex immune disorders as well as resistance to ibrutinib treatment in chronic lymphocytic leukaemia. Importantly, it has also been found that a rare variant of PLCγ2 (P522R) has a protective role in Alzheimer's disease (AD). Despite initial characterisation of these disease-linked variants, a comprehensive understanding of their differences and underpinning molecular mechanisms, needed to facilitate therapeutic efforts, is lacking. Here, we used available structural insights for PLCγ enzymes to further analyse PLCγ2 M1141K mutation, representative for mutations in immune disorders and cancer resistance, and the AD-protective variant, PLCγ2 P522R. Together with several other mutations in the autoinhibitory interface, the PLCγ2 M1141K mutation was strongly activating in a cell-based assay, under basal and stimulated conditions. Measurements of PLC activity in various in vitro assays demonstrated enhanced activity of PLCγ2 M1141K while the activity of PLCγ2 P522R was not significantly different from the WT. Similar trends were observed in several other assays, including direct liposome binding. However, an enhanced rate of phosphorylation of a functionally important tyrosine by Btk in vitro was observed for PLCγ2 P522R variants. To further assess implications of these in vitro findings in a cellular context relevant for the PLCγ2 P522R variant, microglia (BV2) stable cell lines were generated and analysed under growth conditions. The PLC activity in cells expressing PLCγ2 P522R at physiologically relevant levels was clearly enhanced compared to the WT, and differences in cell morphology observed. These data, combined with the structural insights, suggest that the PLCγ2 P522R variant has subtle, localised structural changes that do not directly affect the PLC activity by compromising autoinhibition, as determined for PLCγ2 M1141K. It is also likely that in contrast to the PLCγ2 M1141K, the functional impact of the P522R substitution completely depends on further interactions with upstream kinases and other regulatory proteins in a relevant cellular context, where changes in the PLCγ2 P522R variant could facilitate processes such as phosphorylation and protein-protein interactions.
Collapse
Affiliation(s)
- Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Charis Kampyli
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Ashley Gregory
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, UK.
| |
Collapse
|
3
|
Shin YC, Plummer-Medeiros AM, Mungenast A, Choi HW, TenDyke K, Zhu X, Shepard J, Sanders K, Zhuang N, Hu L, Qian D, Song K, Xu C, Wang J, Poda SB, Liao M, Chen Y. The crystal and cryo-EM structures of PLCγ2 reveal dynamic interdomain recognitions in autoinhibition. SCIENCE ADVANCES 2024; 10:eadn6037. [PMID: 39612343 PMCID: PMC11606444 DOI: 10.1126/sciadv.adn6037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 10/28/2024] [Indexed: 12/01/2024]
Abstract
Phospholipase C gamma 2 (PLCγ2) plays important roles in cell signaling downstream of various membrane receptors. PLCγ2 contains a multidomain inhibitory region critical for its regulation, while it has remained unclear how these domains contribute to PLCγ2 activity modulation. Here we determined three structures of human PLCγ2 in autoinhibited states, which reveal dynamic interactions at the autoinhibition interface, involving the conformational flexibility of the Src homology 3 (SH3) domain in the inhibitory region, and its previously unknown interaction with a carboxyl-terminal helical domain in the core region. We also determined a structure of PLCγ2 bound to the kinase domain of fibroblast growth factor receptor 1 (FGFR1), which demonstrates the recognition of FGFR1 by the nSH2 domain in the inhibitory region of PLCγ2. Our results provide structural insights into PLCγ2 regulation that will facilitate future mechanistic studies to understand the entire activation process.
Collapse
Affiliation(s)
- Young-Cheul Shin
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | - Karen TenDyke
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Xiaojie Zhu
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | | | - Kristen Sanders
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Ningning Zhuang
- Viva Biotech Ltd., 735 Ziping Road, Pudong New District, Shanghai 201318, China
| | - Liang Hu
- Viva Biotech Ltd., 735 Ziping Road, Pudong New District, Shanghai 201318, China
| | - Dongming Qian
- Viva Biotech Ltd., 735 Ziping Road, Pudong New District, Shanghai 201318, China
| | - Kangkang Song
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - Chen Xu
- Department of Biochemistry and Molecular Biotechnology, University of Massachusetts Medical School, Worcester, MA 01605, USA
- Cryo-EM Core Facility, University of Massachusetts Medical School, Worcester, MA 01655, USA
| | - John Wang
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Suresh B. Poda
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| | - Maofu Liao
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Yu Chen
- Eisai Inc., 35 Cambridgepark Drive, Cambridge, MA 02140, USA
| |
Collapse
|
4
|
Yang Z, Tao P, Han X, Kozlova A, He T, Volchkov E, Nesterenko Z, Pershin D, Raykina E, Fatkhudinov T, Korobeynikova A, Aksentijevich I, Yang J, Shcherbina A, Zhou Q, Yu X. Characterization of a Novel Pathogenic PLCG2 Variant Leading to APLAID Syndrome Responsive to a TNF Inhibitor. Arthritis Rheumatol 2024; 76:1670-1678. [PMID: 38965708 DOI: 10.1002/art.42948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 05/13/2024] [Accepted: 07/25/2024] [Indexed: 07/06/2024]
Abstract
OBJECTIVE Autoinflammation and phospholipase C (PLC) γ2-associated antibody deficiency and immune dysregulation (APLAID) syndrome is an autoinflammatory disease caused by gain-of-function variants in PLCG2. This study investigates the pathogenic mechanism of a novel variant of PLCG2 in a patient with APLAID syndrome. METHODS Whole-exome sequencing and Sanger sequencing were used to identify the pathogenic variant in the patient. Single-cell RNA sequencing, immunoblotting, luciferase assay, inositol monophosphate enzyme-linked immunosorbent assay, calcium flux assay, quantitative PCR, and immunoprecipitation were used to define inflammatory signatures and evaluate the effects of the PLCG2 variant on protein functionality and immune signaling. RESULTS We identified a novel de novo variant, PLCG2 p.D993Y, in a patient with colitis, pansinusitis, skin rash, edema, recurrent respiratory infections, B-cell deficiencies, and hypogammaglobulinemia. The single-cell transcriptome revealed exacerbated inflammatory responses in the patient's peripheral blood mononuclear cells. Expression of the D993Y variant in HEK293T, COS-7, and PLCG2 knock-out THP-1 cell lines showed heightened PLCγ2 phosphorylation; elevated inositol-1,4,5-trisphosphate production and intracellular Ca2+ release; and activation of the MAPK, NF-κB, and NFAT signaling pathways compared with control-transfected cells. In vitro experiments indicated that the D993Y variant altered amino acid properties, disrupting the interaction between the catalytic and autoinhibitory domains of PLCγ2, resulting in PLCγ2 autoactivation. CONCLUSION Our findings demonstrated that the PLCG2 D993Y variant is a gain-of-function mutation via impairing its autoinhibition, activating multiple inflammatory signaling pathways, thus leading to APLAID syndrome. This study further broadens the molecular underpinnings and phenotypic spectrum of PLCγ2-related disorders.
Collapse
Affiliation(s)
- Zhaohui Yang
- The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Panfeng Tao
- The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xu Han
- The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Anna Kozlova
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Tingyan He
- Shenzhen Children's Hospital, Shenzhen, China
| | - Egor Volchkov
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation and Peoples' Friendship University of Russia (RUDN University), Moscow, Russia
| | - Zoya Nesterenko
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Dmitryi Pershin
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Elena Raykina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Timur Fatkhudinov
- Peoples' Friendship University of Russia (RUDN University) and Avtsyn Research Institute of Human Morphology of Federal State Budgetary Scientific Institution "Petrovsky National Research Centre of Surgery", Moscow, Russia
| | - Anastasia Korobeynikova
- Peoples' Friendship University of Russia (RUDN University), Moscow, and Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - Ivona Aksentijevich
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland
| | - Jun Yang
- Shenzhen Children's Hospital, Shenzhen, China
| | - Anna Shcherbina
- Dmitry Rogachev National Medical Research Center of Pediatric Hematology, Oncology and Immunology of Ministry of Healthcare of the Russian Federation, Moscow, Russia
| | - Qing Zhou
- The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| | - Xiaomin Yu
- The Second Affiliated Hospital, Zhejiang University School of Medicine and Liangzhu Laboratory, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Wang T, Wang X, Teng Y, Wu L, Zhu F, Ma D, Wang H, Liu X. APLAID complicated with arrhythmogenic dilated cardiomyopathy caused by a novel PLCG2 variant. Immunol Res 2024; 72:512-519. [PMID: 38243104 DOI: 10.1007/s12026-024-09455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/10/2024] [Indexed: 01/21/2024]
Affiliation(s)
- Tianjiao Wang
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, China
| | - Xinyu Wang
- Department of Pediatrics, Jiaxing University Master Degree Cultivation Base Zhejiang Chinese Medical University, Jiaxing, Zhejiang, 314000, China
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, China
| | - Yiqun Teng
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, China
| | - Lifang Wu
- Department of Pediatrics, Pinghu Maternal and Child Health Center, Jiaxing, Zhejiang, 314200, China
| | - Feng Zhu
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, China
| | - Danjie Ma
- Department of Ultrasound, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, China
| | - Hua Wang
- Department of Pediatrics, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, China.
| | - Xiaolin Liu
- Department of General Surgery, The Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, 314000, China.
| |
Collapse
|
6
|
Bull D, Matte JC, Navarron CM, McIntyre R, Whiting P, Katan M, Ducotterd F, Magno L. The hypermorphic PLCγ2 S707Y variant dysregulates microglial cell function - Insight into PLCγ2 activation in brain health and disease, and opportunities for therapeutic modulation. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166978. [PMID: 38061598 DOI: 10.1016/j.bbadis.2023.166978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 10/29/2023] [Accepted: 11/27/2023] [Indexed: 12/30/2023]
Abstract
Phospholipase C-gamma 2 (PLCγ2) is highly expressed in hematopoietic and immune cells, where it is a key signalling node enabling diverse cellular functions. Within the periphery, gain-of-function (GOF) PLCγ2 variants, such as the strongly hypermorphic S707Y, cause severe immune dysregulation. The milder hypermorphic mutation PLCγ2 P522R increases longevity and confers protection in central nervous system (CNS) neurodegenerative disorders, implicating PLCγ2 as a novel therapeutic target for treating these CNS indications. Currently, nothing is known about what consequences strong PLCγ2 GOF has on CNS functionality, and more precisely on the specific biological functions of microglia. Using the PLCγ2 S707Y variant as a model of chronic activation we investigated the functional consequences of strong PLCγ2 GOF on human microglia. PLCγ2 S707Y expressing human inducible pluripotent stem cells (hiPSC)-derived microglia exhibited hypermorphic enzymatic activity under both basal and stimulated conditions, compared to PLCγ2 wild type. Despite the increase in PLCγ2 enzymatic activity, the PLCγ2 S707Y hiPSC-derived microglia display diminished functionality for key microglial processes including phagocytosis and cytokine secretion upon inflammatory challenge. RNA sequencing revealed a downregulation of genes related to innate immunity and response, providing molecular support for the phenotype observed. Our data suggests that chronic activation of PLCγ2 elicits a detrimental phenotype that is contributing to unfavourable CNS functions, and informs on the therapeutic window for targeting PLCγ2 in the CNS. Drug candidates targeting PLCγ2 will need to precisely mimic the effects of the PLCγ2 P522R variant on microglial function, but not those of the PLCγ2 S707Y variant.
Collapse
Affiliation(s)
- Daniel Bull
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Julie C Matte
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Carmen M Navarron
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Rebecca McIntyre
- Wellcome Sanger Institute, Hinxton, Cambridgeshire CB10 1SA, United Kingdom
| | - Paul Whiting
- Institute of Neurology, University College London, Queen Square, London WC1N 3BG, United Kingdom
| | - Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Fiona Ducotterd
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom
| | - Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, The Cruciform Building, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
7
|
Baysac K, Sun G, Nakano H, Schmitz EG, Cruz AC, Fisher C, Bailey AC, Mace E, Milner JD, Ombrello MJ. PLCG2-associated immune dysregulation (PLAID) comprises broad and distinct clinical presentations related to functional classes of genetic variants. J Allergy Clin Immunol 2024; 153:230-242. [PMID: 37769878 PMCID: PMC11337301 DOI: 10.1016/j.jaci.2023.08.036] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/11/2023] [Accepted: 08/21/2023] [Indexed: 10/02/2023]
Abstract
BACKGROUND Pathogenic variants of phospholipase C gamma 2 (PLCG2) cause 2 related forms of autosomal-dominant immune dysregulation (ID), PLCγ2-associated antibody deficiency and immune dysregulation (PLAID) and autoinflammatory PLAID (APLAID). Since describing these conditions, many PLCG2 variants of uncertain significance have been identified by clinical sequencing of patients with diverse features of ID. OBJECTIVE We sought to functionally classify PLCG2 variants and explore known and novel genotype-function-phenotype relationships. METHODS Clinical data from patients with PLCG2 variants were obtained via standardized questionnaire. PLCG2 variants were generated by mutagenesis of enhanced green fluorescent protein (EGFP)-PLCG2 plasmid, which was overexpressed in Plcg2-deficient DT-40 B cells. B-cell receptor-induced calcium flux and extracellular signal-regulated kinase phosphorylation were assayed by flow cytometry. In some cases, stimulation-induced calcium flux was also measured in primary patient cells. RESULTS Three-fourths of PLCG2 variants produced functional alteration of B-cell activation, in vitro. Thirteen variants led to gain of function (GOF); however, most functional variants defined a new class of PLCG2 mutation, monoallelic loss of function (LOF). Susceptibility to infection and autoinflammation were common with both GOF and LOF variants, whereas a new phenotypic cluster consisting of humoral immune deficiency, autoinflammation, susceptibility to herpesvirus infection, and natural killer cell dysfunction was observed in association with multiple heterozygous LOF variants detected in both familial and sporadic cases. In some cases, PLCG2 variants produced greater effects in natural killer cells than in B cells. CONCLUSIONS This work expands the genotypic and phenotypic associations with functional variation in PLCG2, including a novel form of ID in carriers of heterozygous loss of PLCG2 function. It also demonstrates the need for more diverse assays for assessing the impact of PLCG2 variants on human disease.
Collapse
Affiliation(s)
- Kathleen Baysac
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Guangping Sun
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Md
| | - Hiroto Nakano
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Elizabeth G Schmitz
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Anthony C Cruz
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Charles Fisher
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Alexis C Bailey
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md
| | - Emily Mace
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Joshua D Milner
- Division of Allergy, Immunology and Rheumatology, Department of Pediatrics, Columbia University Vagelos College of Physicians and Surgeons, New York, NY
| | - Michael J Ombrello
- Translational Genetics and Genomics Section, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Md.
| |
Collapse
|
8
|
Kanemaru K, Nakamura Y. Activation Mechanisms and Diverse Functions of Mammalian Phospholipase C. Biomolecules 2023; 13:915. [PMID: 37371495 DOI: 10.3390/biom13060915] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/28/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Phospholipase C (PLC) plays pivotal roles in regulating various cellular functions by metabolizing phosphatidylinositol 4,5-bisphosphate in the plasma membrane. This process generates two second messengers, inositol 1,4,5-trisphosphate and diacylglycerol, which respectively regulate the intracellular Ca2+ levels and protein kinase C activation. In mammals, six classes of typical PLC have been identified and classified based on their structure and activation mechanisms. They all share X and Y domains, which are responsible for enzymatic activity, as well as subtype-specific domains. Furthermore, in addition to typical PLC, atypical PLC with unique structures solely harboring an X domain has been recently discovered. Collectively, seven classes and 16 isozymes of mammalian PLC are known to date. Dysregulation of PLC activity has been implicated in several pathophysiological conditions, including cancer, cardiovascular diseases, and neurological disorders. Therefore, identification of new drug targets that can selectively modulate PLC activity is important. The present review focuses on the structures, activation mechanisms, and physiological functions of mammalian PLC.
Collapse
Affiliation(s)
- Kaori Kanemaru
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| | - Yoshikazu Nakamura
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Chiba 278-8510, Japan
| |
Collapse
|
9
|
Mulazzani E, Kong K, Aróstegui JI, Ng AP, Ranathunga N, Abeysekera W, Garnham AL, Ng SL, Baker PJ, Jackson JT, Lich JD, Hibbs ML, Wicks IP, Louis C, Masters SL. G-CSF drives autoinflammation in APLAID. Nat Immunol 2023; 24:814-826. [PMID: 36997670 PMCID: PMC10154231 DOI: 10.1038/s41590-023-01473-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 02/22/2023] [Indexed: 04/07/2023]
Abstract
Missense mutations in PLCG2 can cause autoinflammation with phospholipase C gamma 2-associated antibody deficiency and immune dysregulation (APLAID). Here, we generated a mouse model carrying an APLAID mutation (p.Ser707Tyr) and found that inflammatory infiltrates in the skin and lungs were only partially ameliorated by removing inflammasome function via the deletion of caspase-1. Also, deleting interleukin-6 or tumor necrosis factor did not fully prevent APLAID mutant mice from autoinflammation. Overall, these findings are in accordance with the poor response individuals with APLAID have to treatments that block interleukin-1, JAK1/2 or tumor necrosis factor. Cytokine analysis revealed increased granulocyte colony-stimulating factor (G-CSF) levels as the most distinct feature in mice and individuals with APLAID. Remarkably, treatment with a G-CSF antibody completely reversed established disease in APLAID mice. Furthermore, excessive myelopoiesis was normalized and lymphocyte numbers rebounded. APLAID mice were also fully rescued by bone marrow transplantation from healthy donors, associated with reduced G-CSF production, predominantly from non-hematopoietic cells. In summary, we identify APLAID as a G-CSF-driven autoinflammatory disease, for which targeted therapy is feasible.
Collapse
Affiliation(s)
- Elisabeth Mulazzani
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Klara Kong
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Juan I Aróstegui
- Department of Immunology, Hospital Clínic-IDIBAPS, Barcelona, Spain
| | - Ashley P Ng
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Clinical Haematology Department, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Peter MacCallum Cancer Centre, Parkville, Victoria, Australia
| | - Nishika Ranathunga
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Waruni Abeysekera
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Alexandra L Garnham
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Sze-Ling Ng
- Immunology Research Unit, GlaxoSmithKline, Collegeville, PA, USA
| | - Paul J Baker
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
| | - Jacob T Jackson
- Division of Immunology, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - John D Lich
- Immunology Research Unit, GlaxoSmithKline, Collegeville, PA, USA
| | - Margaret L Hibbs
- Department of Immunology and Pathology, Monash University, Clayton, Victoria, Australia
| | - Ian P Wicks
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia
- Rheumatology Unit, Royal Melbourne Hospital, Parkville, Victoria, Australia
| | - Cynthia Louis
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia
| | - Seth L Masters
- Inflammation Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.
- Department of Medical Biology, University of Melbourne, Parkville, Victoria, Australia.
| |
Collapse
|
10
|
Visvanathan R, Utsuki T, Beck DE, Lendy E, Sun KL, Liu Y, Hering KW, Mesecar A, Zhang ZY, Putt KS. A novel fluorogenic reporter substrate for 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase gamma-2 (PLCγ2): Application to high-throughput screening for activators to treat Alzheimer's disease. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023:S2472-5552(23)00024-2. [PMID: 36933698 DOI: 10.1016/j.slasd.2023.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 02/17/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023]
Abstract
A rare coding variant in PLCγ2 (P522R) expressed in microglia induces a mild activation of enzymatic activity when compared to wild-type. This mutation is reported to be protective against the cognitive decline associated with late-onset Alzheimer's disease (LOAD) and therefore, activation of wild-type PLCγ2 has been suggested as a potential therapeutic target for the prevention and treatment of LOAD. Additionally, PLCγ2 has been associated with other diseases such as cancer and some autoimmune disorders where mutations with much greater increases in PLCγ2 activity have been identified. Here, pharmacological inhibition may provide a therapeutic effect. In order to facilitate our investigation of the activity of PLCγ2, we developed an optimized fluorogenic substrate to monitor enzymatic activity in aqueous solution. This was accomplished by first exploring the spectral properties of various "turn-on" fluorophores. The most promising turn-on fluorophore was incorporated into a water-soluble PLCγ2 reporter substrate, which we named C8CF3-coumarin. The ability of PLCγ2 to enzymatically process C8CF3-coumarin was confirmed, and the kinetics of the reaction were determined. Reaction conditions were optimized to identify small molecule activators, and a pilot screen of the Library of Pharmacologically Active Compounds 1280 (LOPAC1280) was performed with the goal of identifying small molecule activators of PLCγ2. The optimized screening conditions allowed identification of potential PLCγ2 activators and inhibitors, thus demonstrating the feasibility of this approach for high-throughput screening.
Collapse
Affiliation(s)
- Ramya Visvanathan
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Tadanobu Utsuki
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA
| | - Daniel E Beck
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA
| | - Emma Lendy
- IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Kuai-Lin Sun
- Cayman Chemical Company, 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Yinghui Liu
- Cayman Chemical Company, 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Kirk W Hering
- Cayman Chemical Company, 1180 East Ellsworth Road, Ann Arbor, MI 48108, USA
| | - Andrew Mesecar
- IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Biochemistry, Purdue University, West Lafayette, IN 47907, USA
| | - Zhong-Yin Zhang
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA; Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA
| | - Karson S Putt
- Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA; IUSM-Purdue TREAT-AD Center, West Lafayette IN 47907, USA.
| |
Collapse
|
11
|
Li J, Huang F, Ma Q, Guo W, Feng K, Huang T, Cai YD. Identification of genes related to immune enhancement caused by heterologous ChAdOx1-BNT162b2 vaccines in lymphocytes at single-cell resolution with machine learning methods. Front Immunol 2023; 14:1131051. [PMID: 36936955 PMCID: PMC10017451 DOI: 10.3389/fimmu.2023.1131051] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/13/2023] [Indexed: 03/06/2023] Open
Abstract
The widely used ChAdOx1 nCoV-19 (ChAd) vector and BNT162b2 (BNT) mRNA vaccines have been shown to induce robust immune responses. Recent studies demonstrated that the immune responses of people who received one dose of ChAdOx1 and one dose of BNT were better than those of people who received vaccines with two homologous ChAdOx1 or two BNT doses. However, how heterologous vaccines function has not been extensively investigated. In this study, single-cell RNA sequencing data from three classes of samples: volunteers vaccinated with heterologous ChAdOx1-BNT and volunteers vaccinated with homologous ChAd-ChAd and BNT-BNT vaccinations after 7 days were divided into three types of immune cells (3654 B, 8212 CD4+ T, and 5608 CD8+ T cells). To identify differences in gene expression in various cell types induced by vaccines administered through different vaccination strategies, multiple advanced feature selection methods (max-relevance and min-redundancy, Monte Carlo feature selection, least absolute shrinkage and selection operator, light gradient boosting machine, and permutation feature importance) and classification algorithms (decision tree and random forest) were integrated into a computational framework. Feature selection methods were in charge of analyzing the importance of gene features, yielding multiple gene lists. These lists were fed into incremental feature selection, incorporating decision tree and random forest, to extract essential genes, classification rules and build efficient classifiers. Highly ranked genes include PLCG2, whose differential expression is important to the B cell immune pathway and is positively correlated with immune cells, such as CD8+ T cells, and B2M, which is associated with thymic T cell differentiation. This study gave an important contribution to the mechanistic explanation of results showing the stronger immune response of a heterologous ChAdOx1-BNT vaccination schedule than two doses of either BNT or ChAdOx1, offering a theoretical foundation for vaccine modification.
Collapse
Affiliation(s)
- Jing Li
- School of Computer Science, Baicheng Normal University, Baicheng, Jilin, China
| | - FeiMing Huang
- School of Life Sciences, Shanghai University, Shanghai, China
| | - QingLan Ma
- School of Life Sciences, Shanghai University, Shanghai, China
| | - Wei Guo
- Key Laboratory of Stem Cell Biology, Shanghai Jiao Tong University School of Medicine (SJTUSM) and Shanghai Institutes for Biological Sciences (SIBS), Chinese Academy of Sciences (CAS), Shanghai, China
| | - KaiYan Feng
- Department of Computer Science, Guangdong AIB Polytechnic College, Guangzhou, China
| | - Tao Huang
- CAS Key Laboratory of Computational Biology, Bio-Med Big Data Center, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Science, Shanghai, China
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yu-Dong Cai
- School of Life Sciences, Shanghai University, Shanghai, China
| |
Collapse
|
12
|
Peng Q, Luo D, Yang Y, Zhu Y, Luo Q, Chen H, Chen D, Zhou Z, Lu X. Clinical and immunological features of an APLAID patient caused by a novel mutation in PLCG2. Front Immunol 2023; 14:1014150. [PMID: 36776842 PMCID: PMC9911665 DOI: 10.3389/fimmu.2023.1014150] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 01/09/2023] [Indexed: 01/28/2023] Open
Abstract
Background The APLAID syndrome is a rare primary immunodeficiency caused by gain-of-function mutations in the PLCG2 gene. We present a 7-year-old APLAID patient who has recurrent blistering skin lesions, skin infections in the perineum, a rectal perineal fistula, and inflammatory bowel disease. Methods To determine the genetic cause of our patient, WES and bioinformatics analysis were performed. Flow cytometry was used for phenotyping immune cell populations in peripheral blood. Cytokines released into plasma were analyzed using protein chip technology. The PBMCs of patient and a healthy child were subjected to single-cell RNA-sequencing analysis. Results The patient carried a novel de novo missense mutation c.2534T>C in exon 24 of the PLCG2 gene that causes a leucine to serine amino acid substitution (p.Leu845Ser). Bioinformatics analysis revealed that this mutation had a negative impact on the structure of the PLCγ2 protein, which is highly conserved in many other species. Immunophenotyping by flow cytometry revealed that in addition to the typical decrease in circulating memory B cells, the levels of myeloid dendritic cells (mDCs) in the children's peripheral blood were significantly lower, as were the CD4+ effector T cells induced by their activation. Single-cell sequencing revealed that the proportion of different types of cells in the peripheral blood of the APLAID patient changed. Conclusions We present the first case of APLAID with severely reduced myeloid dendritic cells carrying a novel PLCG2 mutation, and conducted a comprehensive analysis of immunological features in the ALPAID patient, which has not been mentioned in previous reports. This study expands the spectrum of APLAID-associated immunophenotype and genotype. The detailed immune analyses in this patient may provide a basis for the development of targeted therapies for this severe autoinflammatory disease.
Collapse
Affiliation(s)
- Qi Peng
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China,Department of Genetics, Key Laboratory for Children’s Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Dong Luo
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China,Department of Genetics, Key Laboratory for Children’s Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Yi Yang
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China,Department of Genetics, Key Laboratory for Children’s Genetics and Infectious Diseases of Dongguan, Dongguan, China,Department of infectious diseases, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China
| | - Yinghua Zhu
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China,Department of Genetics, Key Laboratory for Children’s Genetics and Infectious Diseases of Dongguan, Dongguan, China
| | - Qingming Luo
- Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China,Department of Genetics, Key Laboratory for Children’s Genetics and Infectious Diseases of Dongguan, Dongguan, China,Department of infectious diseases, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children′ s Medical Center, Guangzhou, China
| | - Dapeng Chen
- Compartive Medicine Department of Researching and Teaching, Dalian Medical University, Dalian, China
| | - Zhongjun Zhou
- Faculty of Medicine, School of Biomedical Sciences, The University of Hong Kong, Hong Kong, Hong Kong SAR, China
| | - Xiaomei Lu
- Department of Genetic Medicine, Dongguan Children’s Hospital Affiliated to Guangdong Medical University, Dongguan, China,Department of Medical and Molecular Genetics, Dongguan Institute of Pediatrics, Dongguan, China,Department of Genetics, Key Laboratory for Children’s Genetics and Infectious Diseases of Dongguan, Dongguan, China,*Correspondence: Xiaomei Lu,
| |
Collapse
|
13
|
Solomon S, Sampathkumar NK, Carre I, Mondal M, Chennell G, Vernon AC, Ruepp MD, Mitchell JC. Heterozygous expression of the Alzheimer's disease-protective PLCγ2 P522R variant enhances Aβ clearance while preserving synapses. Cell Mol Life Sci 2022; 79:453. [PMID: 35895133 PMCID: PMC9329165 DOI: 10.1007/s00018-022-04473-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/29/2022] [Accepted: 07/05/2022] [Indexed: 12/01/2022]
Abstract
BACKGROUND A rare coding variant, P522R, in the phospholipase C gamma 2 (PLCG2) gene has been identified as protective against late-onset Alzheimer's disease (AD), but the mechanism is unknown. PLCG2 is exclusively expressed in microglia within the central nervous system, and altered microglial function has been implicated in the progression of AD. METHODS Healthy control hiPSCs were CRISPR edited to generate cells heterozygous and homozygous for the PLCG2P522R variant. Microglia derived from these hiPSC's were used to investigate the impact of PLCγ2P522R on disease relevant processes, specifically microglial capacity to take up amyloid beta (Aβ) and synapses. Targeted qPCR assessment was conducted to explore expression changes in core AD linked and microglial genes, and mitochondrial function was assessed using an Agilent Seahorse assay. RESULTS Heterozygous expression of the P522R variant resulted in increased microglial clearance of Aβ, while preserving synapses. This was associated with the upregulation of a number of genes, including the anti-inflammatory cytokine Il-10, and the synapse-linked CX3CR1, as well as alterations in mitochondrial function, and increased cellular motility. The protective capacity of PLCγ2P522R appeared crucially dependent on (gene) 'dose', as cells homozygous for the variant showed reduced synapse preservation, and a differential gene expression profile relative to heterozygous cells. CONCLUSION These findings suggest that PLCγ2P522R may result in increased surveillance by microglia, and prime them towards an anti-inflammatory state, with an increased capacity to respond to increasing energy demands, but highlights the delicate balance of this system, with increasing PLCγ2P522R 'dose' resulting in reduced beneficial impacts.
Collapse
Affiliation(s)
- Shiden Solomon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- UK Dementia Research Institute, King’s College London, London, UK
| | - Nirmal Kumar Sampathkumar
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- UK Dementia Research Institute, King’s College London, London, UK
- Present Address: Alzheimer’s Research UK Oxford Drug Discovery Institute, Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Ivo Carre
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- UK Dementia Research Institute, King’s College London, London, UK
| | - Mrityunjoy Mondal
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- UK Dementia Research Institute, King’s College London, London, UK
| | - George Chennell
- Wohl Cellular Imaging Centre, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Anthony C. Vernon
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, UK
| | - Marc-David Ruepp
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
- UK Dementia Research Institute, King’s College London, London, UK
| | - Jacqueline C Mitchell
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| |
Collapse
|
14
|
Welzel T, Oefelein L, Holzer U, Müller A, Menden B, Haack TB, Groβ M, Kuemmerle-Deschner JB. Variant in the PLCG2 Gene May Cause a Phenotypic Overlap of APLAID/PLAID: Case Series and Literature Review. J Clin Med 2022; 11:jcm11154369. [PMID: 35955991 PMCID: PMC9368933 DOI: 10.3390/jcm11154369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 07/19/2022] [Indexed: 12/10/2022] Open
Abstract
Background: Variants in the phospholipase C gamma 2 (PLCG2) gene can cause PLCG2-associated antibody deficiency and immune dysregulation (PLAID)/autoinflammation and PLCG2-associated antibody deficiency and immune dysregulation (APLAID) syndrome. Linking the clinical phenotype with the genotype is relevant in making the final diagnosis. Methods: This is a single center case series of five related patients (4−44 years), with a history of autoinflammation and immune dysregulation. Clinical and laboratory characteristics were recorded and a literature review of APLAID/PLAID was performed. Results: All patients had recurrent fevers, conjunctivitis, lymphadenopathy, headaches, myalgia, abdominal pain, cold-induced urticaria and recurrent airway infections. Hearing loss was detected in two patients. Inflammatory parameters were slightly elevated during flares. Unswitched B-cells were decreased. Naïve IgD+CD27− B-cells and unswitched IgD+CD27+ B-cells were decreased; switched IgD-CD27+ B-cells were slightly increased. T-cell function was normal. Genetic testing revealed a heterozygous missense variant (c.77C>T, p.Thr26Met) in the PLCG2 gene in all patients. Genotype and phenotype characteristics were similar to previously published PLAID (cold-induced urticaria) and APLAID (eye inflammation, musculoskeletal complaints, no circulating antibodies) patients. Furthermore, they displayed characteristics for both PLAID and APLAID (recurrent infections, abdominal pain/diarrhea) with normal T-cell function. Conclusion: The heterozygous missense PLCG2 gene variant (c.77C>T, p.Thr26Met) might cause phenotypical overlap of PLAID and APLAID patterns.
Collapse
Affiliation(s)
- Tatjana Welzel
- Division of Pediatric Rheumatology and Autoinflammation Reference Center Tuebingen (arcT), Department of Pediatrics, University Hospital Tuebingen, 72076 Tuebingen, Germany; (T.W.); (L.O.)
- Pediatric Pharmacology and Pharmacometrics, University Children’s Hospital Basel (UKBB), University of Basel, 4031 Basel, Switzerland
| | - Lea Oefelein
- Division of Pediatric Rheumatology and Autoinflammation Reference Center Tuebingen (arcT), Department of Pediatrics, University Hospital Tuebingen, 72076 Tuebingen, Germany; (T.W.); (L.O.)
| | - Ursula Holzer
- Pediatric Hematology and Oncology, University Children’s Hospital Tuebingen, 72076 Tuebingen, Germany;
| | - Amelie Müller
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tuebingen, Germany; (A.M.); (B.M.); (T.B.H.)
| | - Benita Menden
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tuebingen, Germany; (A.M.); (B.M.); (T.B.H.)
| | - Tobias B. Haack
- Institute of Medical Genetics and Applied Genomics, University of Tuebingen, 72076 Tuebingen, Germany; (A.M.); (B.M.); (T.B.H.)
- Center for Rare Diseases, University of Tuebingen, 72076 Tuebingen, Germany
| | - Miriam Groβ
- Institute of Immunodeficiency, Center for Chronic Immunodeficiency (CCI), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
| | - Jasmin B. Kuemmerle-Deschner
- Division of Pediatric Rheumatology and Autoinflammation Reference Center Tuebingen (arcT), Department of Pediatrics, University Hospital Tuebingen, 72076 Tuebingen, Germany; (T.W.); (L.O.)
- Correspondence:
| |
Collapse
|
15
|
Trifiletti R, Lachman HM, Manusama O, Zheng D, Spalice A, Chiurazzi P, Schornagel A, Serban AM, van Wijck R, Cunningham JL, Swagemakers S, van der Spek PJ. Identification of ultra-rare genetic variants in pediatric acute onset neuropsychiatric syndrome (PANS) by exome and whole genome sequencing. Sci Rep 2022; 12:11106. [PMID: 35773312 PMCID: PMC9246359 DOI: 10.1038/s41598-022-15279-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 06/21/2022] [Indexed: 12/13/2022] Open
Abstract
Abrupt onset of severe neuropsychiatric symptoms including obsessive-compulsive disorder, tics, anxiety, mood swings, irritability, and restricted eating is described in children with Pediatric Acute-Onset Neuropsychiatric Syndrome (PANS). Symptom onset is often temporally associated with infections, suggesting an underlying autoimmune/autoinflammatory etiology, although direct evidence is often lacking. The pathological mechanisms are likely heterogeneous, but we hypothesize convergence on one or more biological pathways. Consequently, we conducted whole exome sequencing (WES) on a U.S. cohort of 386 cases, and whole genome sequencing (WGS) on ten cases from the European Union who were selected because of severe PANS. We focused on identifying potentially deleterious genetic variants that were de novo or ultra-rare (MAF) < 0.001. Candidate mutations were found in 11 genes (PPM1D, SGCE, PLCG2, NLRC4, CACNA1B, SHANK3, CHK2, GRIN2A, RAG1, GABRG2, and SYNGAP1) in 21 cases, which included two or more unrelated subjects with ultra-rare variants in four genes. These genes converge into two broad functional categories. One regulates peripheral immune responses and microglia (PPM1D, CHK2, NLRC4, RAG1, PLCG2). The other is expressed primarily at neuronal synapses (SHANK3, SYNGAP1, GRIN2A, GABRG2, CACNA1B, SGCE). Mutations in these neuronal genes are also described in autism spectrum disorder and myoclonus-dystonia. In fact, 12/21 cases developed PANS superimposed on a preexisting neurodevelopmental disorder. Genes in both categories are also highly expressed in the enteric nervous system and the choroid plexus. Thus, genetic variation in PANS candidate genes may function by disrupting peripheral and central immune functions, neurotransmission, and/or the blood-CSF/brain barriers following stressors such as infection.
Collapse
Affiliation(s)
| | - Herbert M Lachman
- Department of Psychiatry and Behavioral Sciences, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY, 10461, USA.
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, USA.
- Department of Genetics, Albert Einstein College of Medicine, Bronx, NY, USA.
- Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, Bronx, NY, USA.
| | - Olivia Manusama
- Department of Immunology, Erasmus MC, Rotterdam, The Netherlands
| | - Deyou Zheng
- Department of Neurology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Alberto Spalice
- Department of Pediatrics, Pediatric Neurology, Sapienza University of Rome, Rome, Italy
| | - Pietro Chiurazzi
- Sezione di Medicina Genomica, Dipartimento Scienze della Vita e Sanità Pubblica, Fondazione Policlinico Universitario A. Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
- Dipartimento Scienze di Laboratorio e Infettivologiche, UOC Genetica Medica, Rome, Italy
| | - Allan Schornagel
- GGZ-Delfland, Kinderpraktijk Zoetermeer, Zoetermeer, The Netherlands
| | - Andreea M Serban
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Rogier van Wijck
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Janet L Cunningham
- Department of Neuroscience, Psychiatry, Uppsala University, Uppsala, Sweden
| | - Sigrid Swagemakers
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bioinformatics, Erasmus MC, Rotterdam, The Netherlands
| |
Collapse
|
16
|
Sirin S, Nigdelioglu Dolanbay S, Aslim B. The relationship of early- and late-onset Alzheimer’s disease genes with COVID-19. J Neural Transm (Vienna) 2022; 129:847-859. [PMID: 35429259 PMCID: PMC9012910 DOI: 10.1007/s00702-022-02499-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
Abstract
Individuals with Alzheimer’s disease and other neurodegenerative diseases have been exposed to excess risk by the COVID-19 pandemic. COVID-19’s main manifestations include high body temperature, dry cough, and exhaustion. Nevertheless, some affected individuals may have an atypical presentation at diagnosis but suffer neurological signs and symptoms as the first disease manifestation. These findings collectively show the neurotropic nature of SARS-CoV-2 virus and its ability to involve the central nervous system. In addition, Alzheimer’s disease and COVID-19 has a number of common risk factors and comorbid conditions including age, sex, hypertension, diabetes, and the expression of APOE ε4. Until now, a plethora of studies have examined the COVID-19 disease but only a few studies has yet examined the relationship of COVID-19 and Alzheimer’s disease as risk factors of each other. This review emphasizes the recently published evidence on the role of the genes of early- or late-onset Alzheimer’s disease in the susceptibility of individuals currently suffering or recovered from COVID-19 to Alzheimer’s disease or in the susceptibility of individuals at risk of or with Alzheimer’s disease to COVID-19 or increased COVID-19 severity and mortality. Furthermore, the present review also draws attention to other uninvestigated early- and late-onset Alzheimer’s disease genes to elucidate the relationship between this multifactorial disease and COVID-19.
Collapse
|
17
|
Szilveszter KP, Vikár S, Horváth ÁI, Helyes Z, Sárdy M, Mócsai A. Phospholipase Cγ2 is Essential for Experimental Models of Epidermolysis Bullosa Acquisita. J Invest Dermatol 2021; 142:1114-1125. [PMID: 34656615 DOI: 10.1016/j.jid.2021.09.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 09/01/2021] [Accepted: 09/01/2021] [Indexed: 11/30/2022]
Abstract
Phospholipase Cγ2 (PLCγ2) mediates tyrosine kinase‒coupled receptor signaling in various hematopoietic lineages. Although PLCγ2 has been implicated in certain human and mouse inflammatory disorders, its contribution to autoimmune and inflammatory skin diseases is poorly understood. In this study, we tested the role of PLCγ2 in a mouse model of epidermolysis bullosa acquisita triggered by antibodies against type VII collagen (C7), a component of the dermo-epidermal junction. PLCγ2-deficient (Plcg2-/-) mice and bone marrow chimeras with a Plcg2-/- hematopoietic system were completely protected from signs of anti-C7-induced skin disease, including skin erosions, dermal‒epidermal separation, and inflammation, despite normal circulating levels and skin deposition of anti-C7 antibodies. PLCγ2 was required for the tissue infiltration of neutrophils, eosinophils, and monocytes/macrophages as well as for the accumulation of proinflammatory mediators (including IL-1β, MIP-2, and LTB4) and reactive oxygen species. Mechanistic experiments revealed a role for PLCγ2 in the release of proinflammatory mediators and reactive oxygen species but not in the intrinsic migratory capacity of leukocytes. The phospholipase C inhibitor U73122 inhibited dermal-epidermal separation of human skin sections incubated with human neutrophils in the presence of anti-C7 antibodies. Taken together, our results suggest a critical role for PLCγ2 in the pathogenesis of the inflammatory form of epidermolysis bullosa acquisita.
Collapse
Affiliation(s)
- Kata P Szilveszter
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Simon Vikár
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Ádám I Horváth
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, Pécs, Hungary; Molecular Pharmacology Research Group, Centre for Neuroscience, János Szentágothai Research Centre, University of Pécs, Pécs, Hungary; PharmInVivo Ltd, Pécs, Hungary
| | - Miklós Sárdy
- Department of Dermatology, Venereology and Dermatooncology, Faculty of Medicine, Semmelweis University, Budapest, Hungary
| | - Attila Mócsai
- Department of Physiology, Faculty of Medicine, Semmelweis University, Budapest, Hungary.
| |
Collapse
|
18
|
Ramirez NJ, Posadas-Cantera S, Caballero-Oteyza A, Camacho-Ordonez N, Grimbacher B. There is no gene for CVID - novel monogenetic causes for primary antibody deficiency. Curr Opin Immunol 2021; 72:176-185. [PMID: 34153571 DOI: 10.1016/j.coi.2021.05.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 05/27/2021] [Accepted: 05/28/2021] [Indexed: 12/25/2022]
Abstract
'There is no gene for fate' (citation from the movie 'GATTACA') - and there is no gene for CVID. Common Variable ImmunoDeficiency (CVID) is the most prevalent primary immunodeficiency in humans. CVID is characterized by an increased susceptibility to infections, hypogammaglobulinemia, reduced switched memory B cell numbers in peripheral blood and a defective response to vaccination, often complicated by autoimmune and autoinflammatory conditions. However, as soon as a genetic diagnosis has been made in a patient with CVID, the diagnosis must be changed to the respective genetic cause (www.esid.org). Therefore, there are genetic causes for primary antibody deficiencies, but not for CVID. Primary antibody deficiencies (PADs) are a heterogeneous group of disorders. Several attempts have been made to gain further insights into the pathogenesis of PAD, using unbiased approaches such as whole exome or genome sequencing. Today, in just about 35% of cases with PAD, monogenic mutations (including those in the gene TNFRSF13B) can be identified in a set of 68 genes [1•]. These mutations occur either sporadically or are inherited and do explain an often complex phenotype. In our review, we not only discuss gene defects identified in PAD patients previously diagnosed with CVID and/or CVID-like disorders such as IKZF1, CTNNBL1, TNFSF13 and BACH2, but also genetic defects which were initially described in non-CVID patients but have later also been observed in patients with PAD such as PLCG2, PIK3CG, PMS2, RNF31, KMT2D, STAT3. We also included interesting genetic defects in which the pathophysiology suggests a close relation to other known defects of the adaptive immune response, such as DEF6, SAMD9 and SAMD9L, and hence a CVID-like phenotype may be observed in the future. However, alternative mechanisms most likely add to the development of an antibody-deficient phenotype, such as polygenic origins, epigenetic changes, and/or environmental factors.
Collapse
Affiliation(s)
- Neftali J Ramirez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Integrated Research Training Group (IRTG) Medical Epigenetics, Collaborative Research Centre 992, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Sara Posadas-Cantera
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany
| | - Andrés Caballero-Oteyza
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany
| | - Nadezhda Camacho-Ordonez
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University of Freiburg, Germany
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, Freiburg, Germany; DZIF - German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; RESIST - Cluster of Excellence 2155 to Hanover Medical School, Satellite Center Freiburg, Freiburg, Germany.
| |
Collapse
|
19
|
Wu N, Zhang B, Wang T, Shen M, Zeng X. Case Report: A Rare Case of Autoinflammatory Phospholipase Cγ2 (PLCγ2)-Associated Antibody Deficiency and Immune Dysregulation Complicated With Gangrenous Pyoderma and Literature Review. Front Immunol 2021; 12:667430. [PMID: 34093563 PMCID: PMC8170136 DOI: 10.3389/fimmu.2021.667430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Accepted: 04/26/2021] [Indexed: 11/13/2022] Open
Abstract
Background Autoinflammatory phospholipase Cγ2 (PLCγ2)-associated antibody deficiency and immune dysregulation (APLAID) is a rare autoinflammatory disease caused by gain-of-function mutations in the PLCG2 gene. Here we report a rare case of APLAID patient carrying a novel heterozygous missense PLCG2 I169V mutation with gangrenous pyoderma and concomitant high serum immunoglobulin (Ig) E level. Methods The patient was diagnosed as APLAID and has been treated in our department. His phenotype and genotype were carefully documented and studied. We also conducted a comprehensive literature review on APLAID. Results A 23-year-old Chinese Han man presented with recurrent fever for 18 years and vesiculopustular rashes for 9 years, along with chronic bronchitis, leukocytosis, increased C-reactive protein, immunodeficiency and high serum IgE. Skin biopsy showed chronic inflammatory cells infiltration. A paternal heterozygous missense variant in exon 6 of the PLCG2 gene p. I169V was identified. His vesiculopustular and IgE level responded to medium dose corticosteroids. After withdrawal of steroids, he developed severe arthritis and a large deteriorating ulceration resembling pyoderma gangrenosum on the left knee. Large dose corticosteroids were suboptimal. Then he received adalimumab with satisfactory response for arthritis and skin lesion. But he got an immunodeficiency-associated lymphoproliferative disorder 2 months later. Through literature review, there were a total of 10 APLAID patients reported by six English-language publications. Vesiculopustular rashes, sinopulmonary infection and immunodeficiency were the most frequent symptoms of APLAID patients. Glucocorticoids, intravenous immunoglobulin and biologics were clinically used to treat APLAID but none of these patients had a complete recovery. Conclusions The rarity and diversity of APLAID make it difficult to be diagnosed. Our study reported the first case of APLAID with gangrenous pyoderma and concomitant high IgE carrying a novel PLCG2 mutation, which may expand the clinical phenotype and genotype of APLAID.
Collapse
Affiliation(s)
- Na Wu
- Department of Rheumatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Bingqing Zhang
- Department of General Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| | - Tao Wang
- Department of Dermatology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Min Shen
- Department of Rheumatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases (NCRC-DID), Key Laboratory of Rheumatology and Clinical Immunology, Ministry of Education, Beijing, China
| | - Xuejun Zeng
- Department of General Internal Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
The impact of rare and low-frequency genetic variants in common variable immunodeficiency (CVID). Sci Rep 2021; 11:8308. [PMID: 33859323 PMCID: PMC8050305 DOI: 10.1038/s41598-021-87898-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 04/01/2021] [Indexed: 02/07/2023] Open
Abstract
Next Generation Sequencing (NGS) has uncovered hundreds of common and rare genetic variants involved in complex and rare diseases including immune deficiencies in both an autosomal recessive and autosomal dominant pattern. These rare variants however, cannot be classified clinically, and common variants only marginally contribute to disease susceptibility. In this study, we evaluated the multi-gene panel results of Common Variable Immunodeficiency (CVID) patients and argue that rare variants located in different genes play a more prominent role in disease susceptibility and/or etiology. We performed NGS on DNA extracted from the peripheral blood leukocytes from 103 patients using a panel of 19 CVID-related genes: CARD11, CD19, CD81, ICOS, CTLA4, CXCR4, GATA2, CR2, IRF2BP2, MOGS, MS4A1, NFKB1, NFKB2, PLCG2, TNFRSF13B, TNFRSF13C, TNFSF12, TRNT1 and TTC37. Detected variants were evaluated and classified based on their impact, pathogenicity classification and population frequency as well as the frequency within our study group. NGS revealed 112 different (a total of 227) variants with under 10% population frequency in 103 patients of which 22(19.6%) were classified as benign, 29(25.9%) were classified as likely benign, 4(3.6%) were classified as likely pathogenic and 2(1.8%) were classified as pathogenic. Moreover, 55(49.1%) of the variants were classified as variants of uncertain significance. We also observed different variant frequencies when compared to population frequency databases. Case-control data is not sufficient to unravel the genetic etiology of immune deficiencies. Thus, it is important to understand the incidence of co-occurrence of two or more rare variants to aid in illuminating their potential roles in the pathogenesis of immune deficiencies.
Collapse
|
21
|
Magno L, Bunney TD, Mead E, Svensson F, Bictash MN. TREM2/PLCγ2 signalling in immune cells: function, structural insight, and potential therapeutic modulation. Mol Neurodegener 2021; 16:22. [PMID: 33823896 PMCID: PMC8022522 DOI: 10.1186/s13024-021-00436-5] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 02/24/2021] [Indexed: 01/21/2023] Open
Abstract
The central role of the resident innate immune cells of the brain (microglia) in neurodegeneration has become clear over the past few years largely through genome-wide association studies (GWAS), and has rapidly become an active area of research. However, a mechanistic understanding (gene to function) has lagged behind. That is now beginning to change, as exemplified by a number of recent exciting and important reports that provide insight into the function of two key gene products – TREM2 (Triggering Receptor Expressed On Myeloid Cells 2) and PLCγ2 (Phospholipase C gamma2) – in microglia, and their role in neurodegenerative disorders. In this review we explore and discuss these recent advances and the opportunities that they may provide for the development of new therapies.
Collapse
Affiliation(s)
- Lorenza Magno
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK.
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London, WC1E 6BT, UK
| | - Emma Mead
- Alzheimer's Research UK Oxford Drug Discovery Institute, Nuffield Department of Medicine Research Building, University of Oxford, Oxford, OX3 7FZ, UK
| | - Fredrik Svensson
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| | - Magda N Bictash
- Alzheimer's Research UK UCL Drug Discovery Institute, University College London, Cruciform Building, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
22
|
Kutukculer N, Topyildiz E, Berdeli A, Guven Bilgin B, Aykut A, Durmaz A, Cogulu O, Aksu G, Edeer Karaca N. Four diseases, PLAID, APLAID, FCAS3 and CVID and one gene (PHOSPHOLIPASE C, GAMMA-2; PLCG2): Striking clinical phenotypic overlap and difference. Clin Case Rep 2021; 9:2023-2031. [PMID: 33936634 PMCID: PMC8077279 DOI: 10.1002/ccr3.3934] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 01/11/2021] [Accepted: 01/21/2021] [Indexed: 12/19/2022] Open
Abstract
We suggest PLAID, APLAID, and FCAS3 have to be considered as different aspects of the same underlying condition, because of our long-term clinical and genetical experiences. Some CVID patients have the same disease-causing mutations in PLCG2 gene, so it may be better to define all of them as "PLCG2deficiency."
Collapse
Affiliation(s)
- Necil Kutukculer
- Ege University Faculty of Medicine Department of Pediatric Immunology and RheumatologyIzmirTurkey
| | - Ezgi Topyildiz
- Ege University Faculty of Medicine Department of Pediatric Allergy and ImmunologyIzmirTurkey
| | - Afig Berdeli
- Ege University Faculty of Medicine Department of Pediatric Immunology and RheumatologyIzmirTurkey
| | - Burcu Guven Bilgin
- Ege University Faculty of Medicine Department of Pediatric Immunology and RheumatologyIzmirTurkey
| | - Ayca Aykut
- Ege University Faculty of Medicine Department of Medical GeneticsIzmirTurkey
| | - Asude Durmaz
- Ege University Faculty of Medicine Department of Medical GeneticsIzmirTurkey
| | - Ozgur Cogulu
- Ege University Faculty of Medicine Department of Medical GeneticsIzmirTurkey
| | - Guzide Aksu
- Ege University Faculty of Medicine Department of Pediatric Immunology and RheumatologyIzmirTurkey
| | - Neslihan Edeer Karaca
- Ege University Faculty of Medicine Department of Pediatric Immunology and RheumatologyIzmirTurkey
| |
Collapse
|
23
|
Chen F, Zhang Y, Wang L, Wang T, Han Z, Zhang H, Gao S, Hu Y, Liu G. PLCG2 rs72824905 Variant Reduces the Risk of Alzheimer's Disease and Multiple Sclerosis. J Alzheimers Dis 2021; 80:71-77. [PMID: 33523007 DOI: 10.3233/jad-201140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
We aimed to evaluate the association of PLCG2 rs72824905 variant with Alzheimer's disease (AD) and multiple sclerosis (MS) using large-scale genetic association study datasets. We selected 50,024 AD cases and 467,330 controls, and 32,367 MS cases and 36,012 controls. We found moderate heterogeneity of rs72824905 in different studies. We found significant association between rs72824905 G allele and reduced AD risk (OR = 0.66, 95% CI 0.59-0.74, p = 5.91E-14). Importantly, rs72824905 G allele could also significantly reduce the risk of MS with OR = 0.94, p = 3.63E-05. Hence, the effects of rs72824905 on AD and MS are consistent.
Collapse
Affiliation(s)
- Fan Chen
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Yan Zhang
- Department of Pathology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Longcai Wang
- Department of Anesthesiology, The Affiliated Hospital of Weifang Medical University, Weifang, China
| | - Tao Wang
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China.,Chinese Institute for Brain Research, Beijing, China
| | - Zhifa Han
- School of Medicine, School of Pharmaceutical Sciences, THU-PKU Center for Life Sciences, Tsinghua University, Beijing, China.,State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, Beijing, China.,Department of Pathophysiology, Peking Union Medical College, Beijing, China
| | - Haihua Zhang
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Shan Gao
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China
| | - Yang Hu
- Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Guiyou Liu
- Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.,Beijing Institute of Brain Disorders, Laboratory of Brain Disorders, Ministry of Science and Technology, Collaborative Innovation Center for Brain Disorders, Capital Medical University, Beijing, China.,National Engineering Laboratory of Internet Medical Diagnosis and Treatment Technology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
24
|
Raghunathan V, Fan G, Kittai AS, Okada C, Danilov AV, Spurgeon SE. A novel somatic PLCG2 variant associated with resistance to BTK and SYK inhibition in chronic lymphocytic leukemia. Eur J Haematol 2020; 106:294-297. [PMID: 33089525 DOI: 10.1111/ejh.13538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/14/2020] [Accepted: 10/17/2020] [Indexed: 11/27/2022]
Abstract
The treatment of chronic lymphocytic leukemia (CLL) has been transformed by the use of targeted small molecules inhibiting components of the B cell receptor (BCR) signaling pathway (Haematologica, 103, 2018 and e204; Curr Hematol Malig Rep, 14, 2019, 302). Chief among these is ibrutinib, an irreversible inhibitor of Bruton tyrosine kinase (BTK), which produces deep, durable responses in CLL with good tolerability (Haematologica, 103, 2018 and e204). Though prolonged exposure to the drug can exert selective pressure on CLL cells and allow for the emergence of drug-resistant clones, primary ibrutinib treatment failure is rare (Expert Rev Hematol, 11 and 2018, 185; N Engl J Med, 370, 2014 and 2352; N Engl J Med, 373, 2015 and 25, 2425; Blood, 128, 2016 and 2199). Activating mutations in the gene PLCG2, which encodes a downstream target of BTK, appear to enable constitutive BCR signaling and have been associated with ibrutinib resistance (Int J Cancer, 146 and 2020, 85; J Clin Oncol, 35, 2017 and 1437; Blood, 126, 2015 and 61). In recent years, novel investigational agents have targeted other components of the BCR pathway. Among these is entospletinib, an orally bioavailable, selective inhibitor of splenic tyrosine kinase (SYK) (Blood, 126, 2015 and 1744), which lies upstream of the enzyme phospholipase C-gamma-2 (PLCG2). Here, we describe a patient who was found to harbor a novel somatic variant of PLCG2 and experienced a lack of treatment response to both ibrutinib and entospletinib.
Collapse
Affiliation(s)
- Vikram Raghunathan
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Guang Fan
- Department of Pathology, Oregon Health & Science University, Portland, OR, USA
| | - Adam S Kittai
- The James Cancer Hospital and Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Craig Okada
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR, USA
| | - Alexey V Danilov
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope Comprehensive Cancer Center, Duarte, CA, USA
| | - Stephen E Spurgeon
- Division of Hematology and Oncology, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
25
|
Katan M, Cockcroft S. Phospholipase C families: Common themes and versatility in physiology and pathology. Prog Lipid Res 2020; 80:101065. [PMID: 32966869 DOI: 10.1016/j.plipres.2020.101065] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/14/2020] [Accepted: 09/17/2020] [Indexed: 12/20/2022]
Abstract
Phosphoinositide-specific phospholipase Cs (PLCs) are expressed in all mammalian cells and play critical roles in signal transduction. To obtain a comprehensive understanding of these enzymes in physiology and pathology, a detailed structural, biochemical, cell biological and genetic information is required. In this review, we cover all these aspects to summarize current knowledge of the entire superfamily. The families of PLCs have expanded from 13 enzymes to 16 with the identification of the atypical PLCs in the human genome. Recent structural insights highlight the common themes that cover not only the substrate catalysis but also the mechanisms of activation. This involves the release of autoinhibitory interactions that, in the absence of stimulation, maintain classical PLC enzymes in their inactive forms. Studies of individual PLCs provide a rich repertoire of PLC function in different physiologies. Furthermore, the genetic studies discovered numerous mutated and rare variants of PLC enzymes and their link to human disease development, greatly expanding our understanding of their roles in diverse pathologies. Notably, substantial evidence now supports involvement of different PLC isoforms in the development of specific cancer types, immune disorders and neurodegeneration. These advances will stimulate the generation of new drugs that target PLC enzymes, and will therefore open new possibilities for treatment of a number of diseases where current therapies remain ineffective.
Collapse
Affiliation(s)
- Matilda Katan
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, Gower Street, London WC1E 6BT, UK
| | - Shamshad Cockcroft
- Department of Neuroscience, Physiology and Pharmacology, Division of Biosciences, University College London, 21 University Street, London WC1E 6JJ, UK.
| |
Collapse
|
26
|
Martín-Nalda A, Fortuny C, Rey L, Bunney TD, Alsina L, Esteve-Solé A, Bull D, Anton MC, Basagaña M, Casals F, Deyá A, García-Prat M, Gimeno R, Juan M, Martinez-Banaclocha H, Martinez-Garcia JJ, Mensa-Vilaró A, Rabionet R, Martin-Begue N, Rudilla F, Yagüe J, Estivill X, García-Patos V, Pujol RM, Soler-Palacín P, Katan M, Pelegrín P, Colobran R, Vicente A, Arostegui JI. Severe Autoinflammatory Manifestations and Antibody Deficiency Due to Novel Hypermorphic PLCG2 Mutations. J Clin Immunol 2020; 40:987-1000. [PMID: 32671674 PMCID: PMC7505877 DOI: 10.1007/s10875-020-00794-7] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 05/20/2020] [Indexed: 01/28/2023]
Abstract
Autoinflammatory diseases (AIDs) were first described as clinical disorders characterized by recurrent episodes of seemingly unprovoked sterile inflammation. In the past few years, the identification of novel AIDs expanded their phenotypes toward more complex clinical pictures associating vasculopathy, autoimmunity, or immunodeficiency. Herein, we describe two unrelated patients suffering since the neonatal period from a complex disease mainly characterized by severe sterile inflammation, recurrent bacterial infections, and marked humoral immunodeficiency. Whole-exome sequencing detected a novel, de novo heterozygous PLCG2 variant in each patient (p.Ala708Pro and p.Leu845_Leu848del). A clear enhanced PLCγ2 activity for both variants was demonstrated by both ex vivo calcium responses of the patient's B cells to IgM stimulation and in vitro assessment of PLC activity. These data supported the autoinflammation and PLCγ2-associated antibody deficiency and immune dysregulation (APLAID) diagnosis in both patients. Immunological evaluation revealed a severe decrease of immunoglobulins and B cells, especially class-switched memory B cells, with normal T and NK cell counts. Analysis of bone marrow of one patient revealed a reduced immature B cell fraction compared with controls. Additional investigations showed that both PLCG2 variants activate the NLRP3-inflammasome through the alternative pathway instead of the canonical pathway. Collectively, the evidences here shown expand APLAID diversity toward more severe phenotypes than previously reported including dominantly inherited agammaglobulinemia, add novel data about its genetic basis, and implicate the alternative NLRP3-inflammasome activation pathway in the basis of sterile inflammation.
Collapse
Affiliation(s)
- Andrea Martín-Nalda
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Claudia Fortuny
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Department of Pediatrics, Hospital Sant Joan de Deu, Esplugues, Spain
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
| | - Lourdes Rey
- Department of Pediatrics, Hospital Alvaro Cunqueiro, Vigo, Spain
| | - Tom D Bunney
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Laia Alsina
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Allergy and Clinical Immunology Clinical Immunology and Primary, Immunodeficiencies Unit, Hospital Sant Joan de Déu, Esplugues, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
| | - Ana Esteve-Solé
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Allergy and Clinical Immunology Clinical Immunology and Primary, Immunodeficiencies Unit, Hospital Sant Joan de Déu, Esplugues, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
| | - Daniel Bull
- ARUK Drug Discovery Institute, University College London, London, UK
| | - Maria Carmen Anton
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
| | - María Basagaña
- Allergy Section, Hospital Universitari Germans Trias i Pujol, Autonomous University of Barcelona, Badalona, Spain
| | - Ferran Casals
- Genomics Core Facility, Experimental and Health Sciences Department, Universitat Pompeu Fabra, Barcelona, Spain
| | - Angela Deyá
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Allergy and Clinical Immunology Clinical Immunology and Primary, Immunodeficiencies Unit, Hospital Sant Joan de Déu, Esplugues, Spain
- Clinical Immunology Unit, Hospital Sant Joan de Déu-Hospital Clínic, Barcelona, Spain
| | - Marina García-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
| | - Ramon Gimeno
- Department of Immunology, Hospital del Mar, Institut Mar d'Investigacions Mèdiques, Barcelona, Spain
| | - Manel Juan
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Helios Martinez-Banaclocha
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Juan J Martinez-Garcia
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Anna Mensa-Vilaró
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
| | - Raquel Rabionet
- Institut de Recerca Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Spain
- Department of Genetics, Microbiology and Statistics, Faculty of Biology, University of Barcelona, IBUB, IRJSD, CIBERER, Barcelona, Spain
| | - Nieves Martin-Begue
- Department of Pediatric Ophthalmology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Francesc Rudilla
- Histocompatibility and Immunogenetics Laboratory, Blood and Tissue Bank, Barcelona, Spain
- Transfusional Medicine Group, Vall d'Hebron Research Institute, Autonomous University of Barcelona, Barcelona, Spain
| | - Jordi Yagüe
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- School of Medicine, Universitat de Barcelona, Barcelona, Spain
| | - Xavier Estivill
- Quantitative Genomic Medicine Laboratories (qGenomics), Esplugues del Llobregat, Barcelona, Catalonia, Spain
| | - Vicente García-Patos
- Department of Pediatric Dermatology, Hospital Universitari Vall d'Hebron, Vall d'Hebron Institut de Recerca, Barcelona, Spain
| | - Ramon M Pujol
- Department of Dermatology, Hospital del Mar, Institut Mar d'Investigacions Mèdiques, Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Pere Soler-Palacín
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron Institut de Recerca, Hospital Universitari Vall d'Hebron, Barcelona, Spain
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Universitat Autonoma de Barcelona, Barcelona, Spain
| | - Matilda Katan
- Institute of Structural and Molecular Biology, University College London, London, UK
| | - Pablo Pelegrín
- Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, Hospital Clínico Universitario Virgen de la Arrixaca, Murcia, Spain
| | - Roger Colobran
- Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Barcelona, Spain
- Immunology Division, Department of Clinical and Molecular Genetics, Hospital Universitari Vall d'Hebron, Vall d'Hebron Research Institute, Barcelona, Spain
- Department of Cell Biology, Physiology and Immunology, Autonomous University of Barcelona, Barcelona, Spain
| | - Asun Vicente
- Department of Pediatric Dermatology, Hospital Sant Joan de Deu, Esplugues, Spain
| | - Juan I Arostegui
- Department of Immunology-CDB (esc 4-pl 0), Hospital Clínic, Villarroel, 170, 08036, Barcelona, Spain.
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain.
- School of Medicine, Universitat de Barcelona, Barcelona, Spain.
| |
Collapse
|