1
|
Mahendran M, Upton JEM, Ramasubramanian R, Memmott HL, Germain G, Büsch K, Laliberté F, Harrington A. Overall survival among patients with activated phosphoinositide 3-kinase delta syndrome (APDS). Orphanet J Rare Dis 2025; 20:212. [PMID: 40319290 PMCID: PMC12049806 DOI: 10.1186/s13023-025-03734-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/15/2025] [Indexed: 05/07/2025] Open
Abstract
BACKGROUND This study aimed to describe overall survival (OS) of patients with APDS relative to the global population as well as among subsets of patients with concurrent lymphoma or hematopoietic stem cell transplant (HSCT) relative to the overall APDS population. METHODS Patient-level data were extracted from a recent systematic literature review of 351 unique patients with APDS. OS was evaluated using the Kaplan-Meier method up to age 65 years. OS rate and corresponding 95% CI were reported at each decade of age. Global mortality estimates were obtained from World Health Organization life tables for 2019. RESULTS Of the 351 patients with APDS (APDS1, 267 [76.1%]; APDS2, 83 [23.6%]; unspecified, 1 [0.3%]), 41 (11.7%) died. The OS rate was 25.0% (95% CI, 1.6-62.7%) by the last death event at 64 years of age. Starting at 12 years of age, the OS rate was numerically lower in patients with APDS relative to the global population (median OS, 64 vs. 75 years, respectively). Relative to the overall APDS population, OS rates were numerically similar in those who underwent HSCT (median OS, 64 years for both; p = 0.569), whereas OS rates were numerically lower in patients with concurrent lymphoma (median OS, 41 vs. 64 years, respectively; p = 0.109). Publication bias in source data was a possible limitation. CONCLUSION Reduced survival in patients with APDS suggests a high disease burden, particularly in those with concurrent lymphoma. These results highlight the unmet need for disease-modifying treatments for APDS.
Collapse
Affiliation(s)
| | - Julia E M Upton
- Clinical Immunology and Allergy, Department of Pediatrics, The Hospital For Sick Children, Toronto, ON, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON, Canada
| | | | | | | | | | | | | |
Collapse
|
2
|
Büsch K, Memmott HL, McLaughlin HM, Upton JEM, Harrington A. Genetic Etiologies and Outcomes in Malignancy and Mortality in Activated Phosphoinositide 3-Kinase Delta Syndrome: A Systematic Review. Adv Ther 2025; 42:752-771. [PMID: 39636570 PMCID: PMC11787279 DOI: 10.1007/s12325-024-03066-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024]
Abstract
INTRODUCTION This analysis evaluated literature on patients with activated phosphoinositide 3-kinase delta syndrome (APDS) to better understand the genetic etiologies and occurrence of mortality in this population. METHODS A systematic review was performed according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses approach, including all articles published in English prior to March 13, 2023, in PubMed and Embase. Patients included in the study had reported either (1) APDS diagnosis or (2) ≥ 1 clinical sign consistent with APDS and a first-degree relative with genetically confirmed APDS. Reported age at last observation was also a required outcome. Publications not meeting these criteria were excluded. Data were summarized using descriptive statistics. RESULTS The search identified 108 publications describing 351 unique patients with 39 distinct disease-causing variants. Among these, 41 (12%) deaths were reported, with a mean age at last follow-up of 19.6 (range, 1-64) years. A cause of death was reported for 80% (33/41) of deaths; lymphoma (24%, 10/41) and infections (22%, 9/41) were the most common causes. Types of infections causing death were severe uncontrollable infections (n = 3), sepsis (n = 2), viral infection (varicella zoster pneumonitis [n = 1], cytomegalovirus and adenovirus [n = 1], and Epstein-Barr virus [n = 1]), and infection (n = 1). Mean age at death for lymphoma was 24.9 (range, 1-41) years, and all nine patients who died from infections died before the age of 15 years. The mean age at first APDS symptom was 2.0 (range, < 1-22) years, and mean age at APDS diagnosis was 13.4 (range, 0-56) years; the mean time between symptoms and diagnosis was 10.6 (range, 0-44) years. Limitations of the study were primarily related to the data source. CONCLUSION Patients with APDS suffer early mortality, largely from lymphoma and infection, with large time gaps between symptoms and diagnosis. These findings highlight the need for improved diagnostics, earlier genetic testing for APDS, increased awareness of familial testing, and targeted therapies.
Collapse
Affiliation(s)
- Katharina Büsch
- KJM Büsch Consulting GmbH, Industriestrasse 24, 6300, Zug, Switzerland
| | - Heidi L Memmott
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA
| | | | - Julia E M Upton
- Division of Immunology and Allergy, Department of Paediatrics, The Hospital For Sick Children, 175 Elizabeth St, Room 13-14-027, Toronto, ON, M5G 2G3, Canada
- Department of Paediatrics, Temerty School of Medicine, University of Toronto, 1 King's College Circle, Toronto, ON, M5S 1A8, Canada
| | - Amanda Harrington
- Pharming Healthcare, Inc., 10 Independence Blvd, Warren, NJ, 07059, USA.
| |
Collapse
|
3
|
Conti F, Moratti M, Sabattini E, Zinzani PL. Expert insights on Hodgkin's lymphoma development in an activated PI3K delta syndrome patient undergoing leniolisib treatment. Front Immunol 2025; 15:1517543. [PMID: 39872539 PMCID: PMC11770023 DOI: 10.3389/fimmu.2024.1517543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/11/2024] [Indexed: 01/30/2025] Open
Abstract
Activated PI3K delta syndrome (APDS) is a primary immunodeficiency that is caused by mutations in the PI3K signalling pathway resulting in either gain-of-function or loss-of-function phenotypes of APDS 1 and 2. Malignancy is one of the most serious complications associated with APDS patients, with the most commonly occurring of these being lymphoma, and is the most common cause of death in APDS patients. Management of APDS is complex and variable due to the heterogeneous nature of the disease and ranges from antimicrobial and immunosuppressant agents to haematopoetic stem cell transplantation. More recently, an increasing level of interest has been shown in the use of more targeted agents such as PI3Kδ-specific inhibitors. Here, we provide expert perspective on the suspected causality of a case of lymphoma observed in a 20-year-old female patient who was included in a clinical trial of leniolisib, a PI3K inhibitor.
Collapse
Affiliation(s)
- Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
| | - Mattia Moratti
- Specialty School of Paediatrics-Alma Mater Studiorum, University of Bologna, Bologna, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Elena Sabattini
- Haematopathology Unit, IRCCS Azienda Ospedaliero-Universitaria Di Bologna, Bologna, Italy
| | - Pier Luigi Zinzani
- Department of Medical and Surgical Sciences (DIMEC), University of Bologna, Bologna, Italy
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Istituto di Ematologia “Seràgnoli”, Bologna, Italy
| |
Collapse
|
4
|
Barzaghi F, Moratti M, Panza G, Rivalta B, Giardino G, De Rosa A, Baselli LA, Chinello M, Marzollo A, Montin D, Marinoni M, Costagliola G, Ricci S, Lodi L, Martire B, Milito C, Trizzino A, Tommasini A, Zecca M, Badolato R, Cancrini C, Lougaris V, Pignata C, Conti F. Report of the Italian Cohort with Activated Phosphoinositide 3-Kinase δ Syndrome in the Target Therapy Era. J Clin Immunol 2024; 45:58. [PMID: 39714594 DOI: 10.1007/s10875-024-01835-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 11/05/2024] [Indexed: 12/24/2024]
Abstract
BACKGROUND Activated Phosphoinositide 3-Kinase (PI3K) δ Syndrome (APDS), an inborn error of immunity due to upregulation of the PI3K pathway, leads to recurrent infections and immune dysregulation (lymphoproliferation and autoimmunity). METHODS Clinical and genetic data of 28 APDS patients from 25 unrelated families were collected from fifteen Italian centers. RESULTS Patients were genetically confirmed with APDS-1 (n = 20) or APDS-2 (n = 8), with pathogenic mutations in the PIK3CD or PIK3R1 genes. The median age at diagnosis was 15.5 years, with a median follow-up of 74 months (range 6-384). The main presenting symptoms were respiratory tract infections alone (57%) or associated with lymphoproliferation (17%). Later, non-clonal lymphoproliferation was the leading clinical sign (86%), followed by respiratory infections (79%) and gastrointestinal complications (43%). Malignant lymphoproliferative disorders, all EBV-encoding RNA (EBER)-positive at the histological analysis, occurred in 14% of patients aged 17-19 years, highlighting the role of EBV in lymphomagenesis in this disorder. Diffuse large B-cell lymphoma was the most frequent. Immunological work-up revealed combined T/B cell abnormalities in most patients. Treatment strategies included immunosuppression and PI3K/Akt/mTOR inhibitor therapy. Rapamycin, employed in 36% of patients, showed efficacy in controlling lymphoproliferation, while selective PI3Kδ inhibitor leniolisib, administered in 32% of patients, was beneficial on both infections and immune dysregulation. Additionally, three patients underwent successful HSCT due to recurrent infections despite ongoing prophylaxis or lymphoproliferation poorly responsive to Rapamycin. CONCLUSIONS This study underscores the clinical heterogeneity and challenging diagnosis of APDS, highlighting the importance of multidisciplinary management tailored to individual needs and further supporting leniolisib efficacy.
Collapse
Affiliation(s)
- Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mattia Moratti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Systems Medicine, University of Tor Vergata, Rome, Italy
| | - Giuseppina Panza
- Pediatric Immunohematology and Bone Marrow Transplantation Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Università Vita-Salute San Raffaele, Milan, Italy
| | - Beatrice Rivalta
- Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- PhD Program in Immunology, Molecular Medicine and Applied Biotechnology, University of Rome Tor Vergata, Rome, Italy
| | - Giuliana Giardino
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Antonio De Rosa
- Pediatric Section, Department of Translational Medical Sciences, Federico II University, Naples, Italy
| | - Lucia Augusta Baselli
- Pediatric Immunorheumatology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Matteo Chinello
- Pediatric Hematology-Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata Verona, Verona, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Davide Montin
- Department of Pediatric and Public Health Sciences, University of Torino and Regina Margherita Children's Hospital, AOU Città della Salute e della Scienza di Torino, Turin, Italy
| | - Maddalena Marinoni
- SSD Oncoematologia Pediatrica, Dipartimento materno infantile, Ospedale Filippo del Ponte, ASST Sette Laghi, Varese, Italy
| | - Giorgio Costagliola
- Section of Pediatric Hematology and Oncology, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Silvia Ricci
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Unit, Department of Pediatrics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Lorenzo Lodi
- Department of Health Sciences, University of Florence, Florence, Italy
- Immunology Unit, Department of Pediatrics, Meyer Children's Hospital IRCCS, Florence, Italy
| | - Baldassarre Martire
- Maternal and Child Department, Unit of Pediatrics and Neonatology, "Monsignor A.R. Dimiccoli" Hospital, Barletta, Italy
| | - Cinzia Milito
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Antonino Trizzino
- Department of Pediatric Hematology and Oncology, "ARNAS Civico Di Cristina Benfratelli" Hospital, Palermo, Italy
| | - Alberto Tommasini
- Department of Medical Sciences, University of Trieste, Trieste, Italy
- Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Marco Zecca
- Paediatric Haematology and Oncology, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - Raffaele Badolato
- Molecular Medicine Institute "Angelo Nocivelli", Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali civili, Brescia, Italy
| | - Caterina Cancrini
- Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy
| | - Vassilios Lougaris
- Pediatrics Clinic, Department of Clinical and Experimental Sciences, University of Brescia, Azienda Socio Sanitaria Territoriale Spedali Civili di Brescia, Brescia, Italy
| | - Claudio Pignata
- Department of Translational Medical Science, Pediatric Section, Federico II University, Via S. Pansini, 5, 80131 , Naples, Italy.
| | - Francesca Conti
- Pediatric Unit, IRCCS Azienda Ospedaliero-Universitaria di Bologna, University of Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, Bologna, Italy
| |
Collapse
|
5
|
Cortesi M, Dotta L, Cattalini M, Lougaris V, Soresina A, Badolato R. Unmasking inborn errors of immunity: identifying the red flags of immune dysregulation. Front Immunol 2024; 15:1497921. [PMID: 39749336 PMCID: PMC11693724 DOI: 10.3389/fimmu.2024.1497921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Inborn errors of immunity (IEI) are rare diseases that affect the immune system. According to the latest International Union of Immunological Societies (IUIS) classification, 485 different IEI have been identified. Even if increased susceptibility to infections is the best-known symptom, IEI are no longer defined by the higher likelihood of infections alone. Immune dysregulation with autoimmune disease and hyperinflammation, lymphoproliferation, and malignancy are common manifestations and could be the only symptoms of IEI that must be recognized. An exclusive focus on infection-centered warning signs would miss around 25% of patients with IEI who initially present with other manifestations. Timely and appropriate diagnosis and treatment are essential to enhance the quality of life (QoL) and, in some cases, survival, as patients are susceptible to life-threatening infections or autoimmunity. In addition, the advantage of early diagnosis in IEI with immune dysregulation (i.e. CTLA4 deficiency, LRBA deficiency, NF-kB1/NF-kB2 deficiency, activated phosphoinositide 3-kinase delta syndrome -APDS-) is the initiation of targeted therapies with precise re-balancing of the dysregulated immune pathways (i.e., biologicals, selective inhibitors) or definitive therapy (i.e., HSCT).
Collapse
Affiliation(s)
- Manuela Cortesi
- Pediatrics Clinic and Institute for Molecular Medicine “A. Nocivelli”, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili di Brescia, Brescia, Italy
| | | | | | | | | | | |
Collapse
|
6
|
Bildik HN, Esenboga S, Halaclı SO, Karaatmaca B, Aytekin ES, Nabiyeva N, Akarsu A, Ocak M, Erman B, Tan C, Arikoglu T, Yaz I, Cicek B, Tezcan I, Cagdas D. A single center experience on PI3K/AKT/MTOR signaling defects: Towards pathogenicity assessment for four novel defects. Pediatr Allergy Immunol 2024; 35:e14245. [PMID: 39312287 DOI: 10.1111/pai.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024]
Abstract
BACKGROUND Phosphoinositide 3 kinases (PI3K) are lipid kinases expressed in lymphocytes/myeloid cells. PI3K/AKT/mTOR signaling defects present with recurrent infections, autoimmunity, lymphoproliferation, and agammaglobulinemia. OBJECTIVE To characterize the PI3K/AKT/mTOR pathway defects and perform pathway analyses to assess novel variant pathogenicity. METHODS We included 12 patients (heterozygous PIK3CD (n = 9) and PIK3R1 (n = 1) (activated PI3K delta syndrome (APDS) with gain-of-function mutations) and homozygous PIK3R1 variant (n = 2)), performed clinical/laboratory/genetic evaluation, and flow cytometric PI3K/AKT/mTOR pathway analyses. RESULTS Median age at onset of complaints was 17.5 months (3 months to 12 years) and at diagnosis was 15.7 years (2.5-37) in APDS. Median diagnostic delay was 12.9 years (1.6-27). Recurrent respiratory tract infections (90%), lymphoproliferation (70%), autoimmune/inflammatory findings (60%), and allergy (40%) were common in APDS. Recurrent viral infections were present in 4/10 and malignancy (non-Hodgkin lymphoma and testicular yolk sac tumor) was present in 2/10 in APDS. Low CD4+ T cells(5/8) with increased CD4+ effector memory (8/8) and CD4+ TEMRA cells (6/8) were present in the given number of APDS patients. We diagnosed tubulointerstitial nephritis, Langerhans cell histiocytosis, and late-onset congenital adrenal hyperplasia in APDS. Allergic findings, lymphoproliferation/malignancy, and high IgM were present in the APDS but not in PIK3R1 deficiency. Low IgM/IgG/CD19+ B cell counts were characteristic in patients with PIK3R1 homozygous loss-of function mutations. CONCLUSION Differential diagnosis with combined immunodeficiency and diseases of immune dysregulation make molecular genetic analysis crucial for diagnosing mTOR pathway defects. It is easy to differentiate APDS and homozygous PIK3R1 defects with specific laboratory features. Additionally, mTOR pathway functional analysis is a definitive diagnostic and pathogenicity assessment tool for novel APDS mutations.
Collapse
Affiliation(s)
- Hacer Neslihan Bildik
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Saliha Esenboga
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Sevil Oskay Halaclı
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Betül Karaatmaca
- Pediatric Allergy and Immunology, Ankara Bilkent City Hospital, Ankara, Turkey
| | - Elif Soyak Aytekin
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Nadira Nabiyeva
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ayşegul Akarsu
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Melike Ocak
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Baran Erman
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Can Sucak Research Laboratory for Translational Immunology, Hacettepe University, Ankara, Turkey
| | - Cagman Tan
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Tugba Arikoglu
- Department of Pediatrics, Division of Allergy and Immunology, Mersin University Faculty of Medicine, Mersin, Turkey
| | - Ismail Yaz
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Begum Cicek
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Ilhan Tezcan
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| | - Deniz Cagdas
- Institute of Child Health, Immunology, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Ihsan Dogramaci Childrens' Hospital, Hacettepe University Faculty of Medicine, Ankara, Turkey
- Division of Immunology, Department of Pediatrics, Hacettepe University Faculty of Medicine, Ankara, Turkey
| |
Collapse
|
7
|
Tessarin G, Baronio M, Lougaris V. Monogenic forms of common variable immunodeficiency and implications on target therapeutic approaches. Curr Opin Allergy Clin Immunol 2023; 23:461-466. [PMID: 37767915 PMCID: PMC10621638 DOI: 10.1097/aci.0000000000000947] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
PURPOSE OF REVIEW Common variable immunodeficiency (CVID) is the most common symptomatic inborn error of immunity. The disorder is characterized by variable clinical and immunological manifestations, and, in a small minority of patients, a monogenic cause may be identified. In this review, we focalized on three different monogenic forms of CVID-like disease. RECENT FINDINGS Activated phosphoinositide 3-kinase delta syndrome (APDS) is a rare disorder characterized by hyperactivated class I phosphatidylinositol-3 kinase (PI3K) pathway. Affected patients present with respiratory infectious episodes, impaired viral clearance and lymphoproliferation. Recently, a direct PI3K inhibitor has been approved and it showed encouraging results both in controlling clinical and immunological manifestations of the disease. On the other hand, patients with defects in CTLA-4 or LRBA gene present with life-threatening immune dysregulation, autoimmunity and lymphocytic infiltration of multiple organs. Abatacept, a soluble cytotoxic T lymphocyte antigen 4 (CTLA-4) fusion protein that acts as a costimulation modulator, has been widely implemented for affected patients with good results as bridge treatment. SUMMARY Understanding the biological basis of CVID is important not only for enriching our knowledge of the human immune system, but also for setting the basis for potential targeted treatments in this disorder.
Collapse
Affiliation(s)
- Giulio Tessarin
- Pediatrics Clinic and Institute for Molecular Medicine 'A. Nocivelli', Department of Clinical and Experimental Sciences, University of Brescia and ASST Spedali Civili of Brescia, Brescia, Italy
| | | | | |
Collapse
|
8
|
Maccari ME, Wolkewitz M, Schwab C, Lorenzini T, Leiding JW, Aladjdi N, Abolhassani H, Abou-Chahla W, Aiuti A, Azarnoush S, Baris S, Barlogis V, Barzaghi F, Baumann U, Bloomfield M, Bohynikova N, Bodet D, Boutboul D, Bucciol G, Buckland MS, Burns SO, Cancrini C, Cathébras P, Cavazzana M, Cheminant M, Chinello M, Ciznar P, Coulter TI, D'Aveni M, Ekwall O, Eric Z, Eren E, Fasth A, Frange P, Fournier B, Garcia-Prat M, Gardembas M, Geier C, Ghosh S, Goda V, Hammarström L, Hauck F, Heeg M, Heropolitanska-Pliszka E, Hilfanova A, Jolles S, Karakoc-Aydiner E, Kindle GR, Kiykim A, Klemann C, Koletsi P, Koltan S, Kondratenko I, Körholz J, Krüger R, Jeziorski E, Levy R, Le Guenno G, Lefevre G, Lougaris V, Marzollo A, Mahlaoui N, Malphettes M, Meinhardt A, Merlin E, Meyts I, Milota T, Moreira F, Moshous D, Mukhina A, Neth O, Neubert J, Neven B, Nieters A, Nove-Josserand R, Oksenhendler E, Ozen A, Olbrich P, Perlat A, Pac M, Schmid JP, Pacillo L, Parra-Martinez A, Paschenko O, Pellier I, Sefer AP, Plebani A, Plantaz D, Prader S, Raffray L, Ritterbusch H, Riviere JG, Rivalta B, Rusch S, Sakovich I, Savic S, Scheible R, Schleinitz N, Schuetz C, Schulz A, et alMaccari ME, Wolkewitz M, Schwab C, Lorenzini T, Leiding JW, Aladjdi N, Abolhassani H, Abou-Chahla W, Aiuti A, Azarnoush S, Baris S, Barlogis V, Barzaghi F, Baumann U, Bloomfield M, Bohynikova N, Bodet D, Boutboul D, Bucciol G, Buckland MS, Burns SO, Cancrini C, Cathébras P, Cavazzana M, Cheminant M, Chinello M, Ciznar P, Coulter TI, D'Aveni M, Ekwall O, Eric Z, Eren E, Fasth A, Frange P, Fournier B, Garcia-Prat M, Gardembas M, Geier C, Ghosh S, Goda V, Hammarström L, Hauck F, Heeg M, Heropolitanska-Pliszka E, Hilfanova A, Jolles S, Karakoc-Aydiner E, Kindle GR, Kiykim A, Klemann C, Koletsi P, Koltan S, Kondratenko I, Körholz J, Krüger R, Jeziorski E, Levy R, Le Guenno G, Lefevre G, Lougaris V, Marzollo A, Mahlaoui N, Malphettes M, Meinhardt A, Merlin E, Meyts I, Milota T, Moreira F, Moshous D, Mukhina A, Neth O, Neubert J, Neven B, Nieters A, Nove-Josserand R, Oksenhendler E, Ozen A, Olbrich P, Perlat A, Pac M, Schmid JP, Pacillo L, Parra-Martinez A, Paschenko O, Pellier I, Sefer AP, Plebani A, Plantaz D, Prader S, Raffray L, Ritterbusch H, Riviere JG, Rivalta B, Rusch S, Sakovich I, Savic S, Scheible R, Schleinitz N, Schuetz C, Schulz A, Sediva A, Semeraro M, Sharapova SO, Shcherbina A, Slatter MA, Sogkas G, Soler-Palacin P, Speckmann C, Stephan JL, Suarez F, Tommasini A, Trück J, Uhlmann A, van Aerde KJ, van Montfrans J, von Bernuth H, Warnatz K, Williams T, Worth AJJ, Ip W, Picard C, Catherinot E, Nademi Z, Grimbacher B, Forbes Satter LR, Kracker S, Chandra A, Condliffe AM, Ehl S. Activated phosphoinositide 3-kinase δ syndrome: Update from the ESID Registry and comparison with other autoimmune-lymphoproliferative inborn errors of immunity. J Allergy Clin Immunol 2023; 152:984-996.e10. [PMID: 37390899 DOI: 10.1016/j.jaci.2023.06.015] [Show More Authors] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 07/02/2023]
Abstract
BACKGROUND Activated phosphoinositide-3-kinase δ syndrome (APDS) is an inborn error of immunity (IEI) with infection susceptibility and immune dysregulation, clinically overlapping with other conditions. Management depends on disease evolution, but predictors of severe disease are lacking. OBJECTIVES This study sought to report the extended spectrum of disease manifestations in APDS1 versus APDS2; compare these to CTLA4 deficiency, NFKB1 deficiency, and STAT3 gain-of-function (GOF) disease; and identify predictors of severity in APDS. METHODS Data was collected from the ESID (European Society for Immunodeficiencies)-APDS registry and was compared with published cohorts of the other IEIs. RESULTS The analysis of 170 patients with APDS outlines high penetrance and early onset of APDS compared to the other IEIs. The large clinical heterogeneity even in individuals with the same PIK3CD variant E1021K illustrates how poorly the genotype predicts the disease phenotype and course. The high clinical overlap between APDS and the other investigated IEIs suggests relevant pathophysiological convergence of the affected pathways. Preferentially affected organ systems indicate specific pathophysiology: bronchiectasis is typical of APDS1; interstitial lung disease and enteropathy are more common in STAT3 GOF and CTLA4 deficiency. Endocrinopathies are most frequent in STAT3 GOF, but growth impairment is also common, particularly in APDS2. Early clinical presentation is a risk factor for severe disease in APDS. CONCLUSIONS APDS illustrates how a single genetic variant can result in a diverse autoimmune-lymphoproliferative phenotype. Overlap with other IEIs is substantial. Some specific features distinguish APDS1 from APDS2. Early onset is a risk factor for severe disease course calling for specific treatment studies in younger patients.
Collapse
Affiliation(s)
- Maria Elena Maccari
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Martin Wolkewitz
- Institute of Medical Biometry and Statistics, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Charlotte Schwab
- Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tiziana Lorenzini
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Jennifer W Leiding
- Division of Allergy and Immunology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Md
| | - Nathalie Aladjdi
- Pediatric Haemato-Immunology, Clinical Investigation Center (CIC) 1401, Institut National de la Santé et de la Recherche Médicale (INSERM) Centre d'Investigation Clinique Pluridisciplinaire (CICP), Bordeaux University Hospital and Centre de Reference National des Cytopenies Auto-immunoes de l'Enfant (CEREVANCE), Bordeaux, France
| | - Hassan Abolhassani
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Wadih Abou-Chahla
- Department of Pediatric Hematology, Jeanne de Flandre Hospital, Centre Hospitalier Universitaire (CHU), Lille, France
| | - Alessandro Aiuti
- San Raffaele Telethon Institute for Gene Therapy (Sr-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy; Università Vita-Salute San Raffaele, Milan, Italy
| | - Saba Azarnoush
- Pediatric Hematology and Immunology Unit, Robert Debré Hospital, Paris, France
| | - Safa Baris
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Vincent Barlogis
- Pediatric Hematology, Immunology and Oncology, Aix-Marseille Université, Marseille, France
| | - Federica Barzaghi
- San Raffaele Telethon Institute for Gene Therapy (Sr-Tiget), Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Ospedale San Raffaele, Milan, Italy
| | - Ulrich Baumann
- Pediatric Pulmonology, Allergy, and Neonatology, Hannover Medical School, Hannover, Germany
| | - Marketa Bloomfield
- Department of Immunology, Motol University Hospital, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Nadezda Bohynikova
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Damien Bodet
- Department of Pediatric Hematology and Oncology, University Hospital of Caen, Caen, France
| | - David Boutboul
- Clinical Immunology Department, Hôpital Saint-Louis, Paris, France
| | - Giorgia Bucciol
- Departments of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Microbiology, Immunology, and Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Matthew S Buckland
- Barts Health National Health Service Trust, London, United Kingdom; Molecular and Cellular Immunology Section, Immunity and Inflammation Department, Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Siobhan O Burns
- Institute of Immunity and Transplantation, London, United Kingdom; Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Caterina Cancrini
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy; Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | | | - Marina Cavazzana
- Imagine Institute, INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France; Biotherapy Department, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Biotherapy Clinical Investigation Center Groupe Hospitalier Centre, AP-HP, INSERM, Paris, France
| | - Morgane Cheminant
- Imagine Institute, INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France; Service d'Hématologie Adulte, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Matteo Chinello
- Pediatric Hematology Oncology, Department of Mother and Child, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Peter Ciznar
- Pediatric Department, Comenius University Medical Faculty, Bratislava, Slovakia
| | - Tanya I Coulter
- Belfast Health and Social Care Trust, Ireland, United Kingdom
| | - Maud D'Aveni
- Department of Hematology, Nancy University Hospital, Université de Lorraine, Nancy, France; UMR 7365, Centre National de la Recherche Scientifique, Ingénierie Moléculaire et Physiopathologie Articulaire, Université de Lorraine, Nancy, France
| | - Olov Ekwall
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Rheumatology and Inflammation Research, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Zelimir Eric
- University Clinical Centre of the Republic of Srpska, Republic of Srpska, Bosnia and Herzegovina
| | - Efrem Eren
- University Hospital Southampton, Southampton, United Kingdom
| | - Anders Fasth
- Department of Pediatrics, Institute of Clinical Sciences, The Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Medicine, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Pierre Frange
- Unité de Recherche Propre 7328, Fédération pour l'Étude et évaluation des Thérapeutiques intra-UtérineS (FETUS), Institut Imagine, Université Paris Cité, Paris, France; Laboratory of Clinical Microbiology, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Benjamin Fournier
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Marina Garcia-Prat
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | | | - Christoph Geier
- Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Sujal Ghosh
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University-University Hospital Düsseldorf, Düsseldorf, Germany
| | - Vera Goda
- Central Hospital of Southern Pest, National Institute of Hematology and Infectious Diseases, Budapest, Hungary
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden
| | - Fabian Hauck
- Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Maximilian Heeg
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | - Anna Hilfanova
- Department of Pediatrics, Immunology, Infectious and Rare Diseases, European Medical School, International European University, Kyiv, Ukraine
| | - Stephen Jolles
- Immunodeficiency Centre for Wales, University Hospital of Wales, Cardiff, United Kingdom
| | - Elif Karakoc-Aydiner
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Gerhard R Kindle
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Biobanking FREEZE, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ayca Kiykim
- Pediatric Allergy and Immunology, Istanbul University Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Christian Klemann
- Departments of Human Genetics, Hannover Medical School, Hannover, Germany; Department of Pediatric Immunology, Rheumatology, & Infectiology, Hospital for Children and Adolescents, Leipzig University, Leipzig, Germany
| | - Patra Koletsi
- Department of Pediatrics, Penteli Children's Hospital, Athens, Greece
| | - Sylwia Koltan
- Department of Paediatric Haematology and Oncology, Ludwik Rydygier Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Bydgoszcz, Poland
| | - Irina Kondratenko
- Russian Clinical Childrens Hospital, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Julia Körholz
- Department of Pediatrics, Universitätsklinikum Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Renate Krüger
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Berlin Institute of Health, Berlin, Germany
| | - Eric Jeziorski
- General Pediatrics, CHU Montpellier, Montpellier, France; Pathogenesis and Control of Chronic Infections, INSERM, Université de Montpellier, Montpellier, France
| | - Romain Levy
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Guillaume Le Guenno
- Department of Internal Medicine, Hôpital d'Estaing, Clermont-Ferrand, France
| | - Guillaume Lefevre
- CHU Lille, Institut d'Immunologie and University of Lille, Lille, France; Inserm U995, LIRIC-Lille Inflammation Research International Center, Lille, France
| | - Vassilios Lougaris
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Antonio Marzollo
- Pediatric Hematology, Oncology, and Stem Cell Transplant Division, Padua University Hospital, Padua, Italy
| | - Nizar Mahlaoui
- Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Necker Enfants Malades University Hospital, AP-HP, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Paris Université Cité, Paris, France
| | | | - Andrea Meinhardt
- Center for Pediatrics and Adolescent Medicine, Department of Pediatric Hematology and Oncology, Medical Center, University Hospital Giessen, Giessen, Germany
| | - Etienne Merlin
- Department of Pediatrics, CHU Clermont-Ferrand, Clermont-Ferrand, France
| | - Isabelle Meyts
- Departments of Pediatrics, University Hospitals Leuven, Leuven, Belgium; Microbiology, Immunology, and Transplantation, University Hospitals Leuven, Leuven, Belgium
| | - Tomas Milota
- Department of Immunology, Motol University Hospital, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Fernando Moreira
- Department of Immunology, Royal Free London National Health Service Foundation Trust, London, United Kingdom
| | - Despina Moshous
- Laboratories of Dynamique du Génome et Système Immunitaire, Institut Imagine, Université Paris Cité, Paris, France; Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Necker Enfants Malades University Hospital, AP-HP, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Paris Université Cité, Paris, France
| | - Anna Mukhina
- Department of Immunology, Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Olaf Neth
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Red de Investigación Translacional en Infectología Pediátrica, Seville, Spain
| | - Jennifer Neubert
- Department of Pediatric Oncology, Hematology and Clinical Immunology, Medical Faculty, Heinrich-Heine-University-University Hospital Düsseldorf, Düsseldorf, Germany
| | - Benedicte Neven
- Laboratory of Immunogenetics of Pediatric Autoimmune Diseases, Institut Imagine, Université Paris Cité, Paris, France; Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Alexandra Nieters
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Centre for Biobanking FREEZE, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | | | | | - Ahmet Ozen
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey; Isil Berat Barlan Center for Translational Medicine, Istanbul, Turkey
| | - Peter Olbrich
- Paediatric Infectious Diseases, Rheumatology and Immunology Unit, Hospital Universitario Virgen del Rocío, Instituto de Biomedicina de Sevilla, Universidad de Sevilla, Consejo Superior de Investigaciones Cientificas, Red de Investigación Translacional en Infectología Pediátrica, Seville, Spain
| | | | - Malgorzata Pac
- Department of Immunology, Children's Memorial Health Institute, Warsaw, Poland
| | - Jana Pachlopnik Schmid
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, Zurich, Switzerland
| | - Lucia Pacillo
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy; Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Alba Parra-Martinez
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Olga Paschenko
- Russian Clinical Childrens Hospital, Pirogov Russian National Research Medical University, Moscow, Russia
| | | | - Asena Pinar Sefer
- Pediatric Allergy and Immunology, Faculty of Medicine, Marmara University, Istanbul, Turkey; Istanbul Jeffrey Modell Diagnostic and Research Center for Primary Immunodeficiencies, Istanbul, Turkey
| | - Alessandro Plebani
- Pediatrics Clinic and Institute for Molecular Medicine A. Nocivelli, Department of Clinical and Experimental Sciences, University of Brescia and ASST-Spedali Civili of Brescia, Brescia, Italy
| | - Dominique Plantaz
- Unit of Pediatric Immuno Hemato and Oncology, University Hospital Centre of Grenoble, Grenoble, France
| | - Seraina Prader
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, Zurich, Switzerland
| | - Loic Raffray
- Internal Medicine Department, Felix Guyon University Hospital, Saint Denis, La Réunion, France; Mixed Research Unit (UMR) "Infectious Processes in Tropical Island Environments", La Réunion, France
| | - Henrike Ritterbusch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jacques G Riviere
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Beatrice Rivalta
- Department of System Medicine, Pediatric Chair, University of Tor Vergata, Rome, Italy; Research and Clinical Unit of Primary Immunodeficiencies, IRCCS Bambin Gesù Children Hospital, Rome, Italy
| | - Stephan Rusch
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Inga Sakovich
- Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Sinisa Savic
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds, United Kingdom; Department of Clinical Immunology and Allergy, St James's University Hospital, Leeds, United Kingdom
| | - Raphael Scheible
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Institute for AI and Informatics in Medicine, University Hospital Rechts der Isar, Technical University Munich, Munich, Germany
| | - Nicolas Schleinitz
- Département de Médecine Interne, Timone Hospital, Assistance Publique-Hôpitaux de Marseille, Aix-Marseille Université, Marseille, France
| | - Catharina Schuetz
- Department of Pediatrics, Universitätsklinikum Carl-Gustav-Carus, Technische Universität Dresden, Dresden, Germany
| | - Ansgar Schulz
- Department of Pediatrics, University Medical Center Ulm, Ulm, Germany
| | - Anna Sediva
- Department of Immunology, Motol University Hospital, Prague, Czech Republic; Second Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Michaela Semeraro
- Clinical Investigation Center (CIC) 1419, Necker-Enfants Malades Hospital, AP-HP, Groupe Hospitalier Paris Centre, Paris, France; EA7323 Pediatric and Perinatal Drug Evaluation and Pharmacology Research Unit, Université Paris Cité, Paris, France
| | - Svetlana O Sharapova
- Belarusian Research Center for Pediatric Oncology, Hematology, and Immunology, Minsk, Belarus
| | - Anna Shcherbina
- Department of Immunology, Research and Clinical Center for Pediatric Hematology, Oncology and Immunology, Moscow, Russia
| | - Mary A Slatter
- Great North Children' s Hospital, Newcastle upon Tyne, United Kingdom; Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Georgios Sogkas
- Rheumatology and Immunology, Hannover Medical School, Hannover, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Pere Soler-Palacin
- Pediatric Infectious Diseases and Immunodeficiencies Unit, Vall d'Hebron University Hospital, Barcelona, Spain
| | - Carsten Speckmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Division of Pediatric Hematology and Oncology, Department of Pediatrics and Adolescent Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jean-Louis Stephan
- Department of Pediatrics, North Hospital, University Hospital of Saint Etienne, Saint-Etienne, France; University Jean Monnet, Saint-Etienne, France
| | - Felipe Suarez
- Imagine Institute, INSERM U1163, Institut Imagine, Université Paris Cité, Paris, France; Service d'Hématologie Adulte, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France
| | - Alberto Tommasini
- Department of Medical Sciences, University of Trieste, Trieste, Italy; Institute for Maternal and Child Health, IRCCS Burlo Garofalo, Trieste, Italy
| | - Johannes Trück
- Division of Immunology, University Children's Hospital Zurich, Zurich, Switzerland; Children's Research Center, Zurich, Switzerland
| | - Annette Uhlmann
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Clinical Trials Unit, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Koen J van Aerde
- Amalia Children's Hospital, Radboudumc, Nijmegen, The Netherlands
| | - Joris van Montfrans
- Department of Pediatric Immunology and Infectious Diseases, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Horst von Bernuth
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Pediatric Respiratory Medicine, Immunology and Critical Care Medicine, Berlin Institute of Health, Berlin, Germany
| | - Klaus Warnatz
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Immunology, University Hospital Zurich, Zurich, Switzerland
| | - Tony Williams
- University Hospital Southampton, Southampton, United Kingdom
| | - Austen J J Worth
- Great Ormond Street Hospital for Children, University College London, London, United Kingdom
| | - Winnie Ip
- Great Ormond Street Institute of Child Health, London, United Kingdom; Great Ormond Street Hospital for Children, University College London, London, United Kingdom
| | - Capucine Picard
- Lymphocyte Activation and Susceptibility to EBV Infection, Institut Imagine, Université Paris Cité, Paris, France; Pediatric Immunology-Hematology and Rheumatology Unit, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Study Center for Primary Immunodeficiencies, Necker-Enfants Malades Hospital, Assistance Publique-Hôpitaux de Paris (AP-HP) Centre, Paris, France; Necker Enfants Malades University Hospital, AP-HP, French National Reference Center for Primary Immune Deficiencies (CEREDIH), Paris Université Cité, Paris, France
| | | | - Zohreh Nademi
- Great North Children' s Hospital, Newcastle upon Tyne, United Kingdom; Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Bodo Grimbacher
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Rheumatology and Clinical Immunology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany; DZIF-German Center for Infection Research, Satellite Center Freiburg, Freiburg, Germany; CIBSS-Centre for Integrative Biological Signalling Studies, Albert-Ludwigs University, Freiburg, Germany; Cluster of Excellence RESIST (EXC 2155), Hannover Medical School, Hannover, Germany
| | - Lisa R Forbes Satter
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, Tex; William T. Shearer Center for Human Immunobiology, Texas Children's Hospital, Houston, Tex
| | - Sven Kracker
- Human Lymphohematopoiesis, INSERM Unité Mixte de Recherche (UMR) 1163, Institut Imagine, Université Paris Cité, Paris, France; Université Paris Cité, Paris, France
| | - Anita Chandra
- Department of Clinical Immunology, Cambridge University Hospitals National Health Service Foundation Trust, Cambridge, United Kingdom; Department of Medicine, University of Cambridge, Cambridge, United Kingdom
| | - Alison M Condliffe
- Department of Infection, Immunity and Cardiovascular Diseases, University of Sheffield, Sheffield, United Kingdom
| | - Stephan Ehl
- Institute for Immunodeficiency, Center for Chronic Immunodeficiency, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
9
|
Diao J, Liu H, Cao H, Chen W. The dysfunction of Tfh cells promotes pediatric recurrent respiratory tract infections development by interfering humoral immune responses. Heliyon 2023; 9:e20778. [PMID: 37876425 PMCID: PMC10590952 DOI: 10.1016/j.heliyon.2023.e20778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/06/2023] [Accepted: 10/06/2023] [Indexed: 10/26/2023] Open
Abstract
Recurrent respiratory tract infections (RRTIs) are one of the most common pediatric diseases. Although the pathogenesis of pediatric RRTIs remains unknown, ineffective B cell-dominated humoral immunity has been considered as the core mechanism. During the course of pediatric RRTIs, B cell-dominated humoral immunity has changed from "protector" of respiratory system to "bystander" of respiratory tract infections. Under physiological condition, Tfh cells are essential for B cell-dominated humoral immunity, including regulating GC formation, promoting memory B cell (MB)/plasma cell (PC) differentiation, inducting immunoglobulin (Ig) class switching, and selecting affinity-matured antibodies. However, in disease states, Tfh cells are dysfunctional, which can be reflected by phenotypes and cytokine production. Tfh cell dysfunctions can cause the disorders of B cell-dominated humoral immunity, such as promoting B cell presented apoptosis, abrogating total Ig production, reducing MB/PC populations, and delaying affinity maturation of antigens-specific antibodies. In this review, we focused on the functions of B and Tfh cells in the homeostasis of respiratory system, and specifically discussed the disorders of humoral immunity and aberrant Tfh cell responses in the disease process of pediatric RRTIs. We hoped to provide some clues for the prevention and treatment of pediatric RRTIs.
Collapse
Affiliation(s)
- Jun Diao
- Department of Pediatrics, Yueyang Hospital of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huosheng Liu
- Department of Acupuncture and Moxibustion, Jiading Hospital of Traditional Chinese Medicine, Shanghai, 201800, China
| | - Hui Cao
- Department of Liver Diseases, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibin Chen
- Department of Pediatrics, Yueyang Hospital of Chinese Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
10
|
Jiang L, Hu X, Lin Q, Chen R, Shen Y, Zhu Y, Xu Q, Li X. Two cases of successful sirolimus treatment for patients with activated phosphoinositide 3-kinase δ syndrome 1. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2023; 19:86. [PMID: 37742016 PMCID: PMC10518115 DOI: 10.1186/s13223-023-00840-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 09/05/2023] [Indexed: 09/25/2023]
Abstract
BACKGROUND Activated phosphoinositide3-kinase (PI3K) δ syndrome 1 (APDS1) is a novel inborn errors of immunity (IEIs) caused by heterozygous gain of function mutations in PI3Kδ catalytic p110δ (PIK3CD). APDS1 has a spectrum of clinical manifestations. Recurrent respiratory infections, lymphoproliferation, hepatosplenomegaly, hyper-IgM syndrome and autoimmunity are the common symptoms of this disease. CASE PRESENTATION Patient 1 presented with recurrent respiratory infections, hepatosplenomegaly and hyper-IgM syndrome. Patient 2 developed early onset systemic lupus erythematosus (SLE)-like disease with resistant thrombocytopenia. c.3061 G > A and c.2314G > A variants in the PIK3CD gene were detected by whole exome sequencing in two patients respectively. c.2314G > A variant in PIK3CD gene of patient 2 is a newly report. After genetic diagnosis, two patients received sirolimus treatment and sirolimus alleviated clinical manifestations, including hepatosplenomegaly in patient 1 and thrombocytopenia in patient 2. CONCLUSION Genetics diagnosis should be considered in patients with complicated clinical manifestations with no or insufficient response to the conventional therapies. If whole exome sequencing suggests a variant in PIK3CD gene, sirolimus may relieve hepatosplenomegaly and resistant thrombocytopenia. This is the first report of c.2314G > A variant in PIK3CD gene.
Collapse
Affiliation(s)
- Lu Jiang
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Xiaohan Hu
- Institute of Pediatrics, Children's Hospital of Soochow University, Suzhou, 215003, China
| | - Qiang Lin
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Ruyue Chen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Yunyan Shen
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Yun Zhu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Qinying Xu
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China
| | - Xiaozhong Li
- Department of Nephrology and Immunology, Children's Hospital of Soochow University, No. 303, Jingde Road, Suzhou, 215003, Jiangsu, China.
| |
Collapse
|
11
|
Sood AK, Francis O, Schworer SA, Johnson SM, Smith BD, Googe PB, Wu EY. ANCA vasculitis expands the spectrum of autoimmune manifestations of activated PI3 kinase δ syndrome. Front Pediatr 2023; 11:1179788. [PMID: 37274825 PMCID: PMC10235767 DOI: 10.3389/fped.2023.1179788] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/03/2023] [Indexed: 06/07/2023] Open
Abstract
Activated phosphoinositide 3-kinase δ syndrome (APDS) is a combined immunodeficiency with a broad clinical phenotype, including not only an increased propensity for sinopulmonary and herpesviruses infections but also immune dysregulation, such as benign lymphoproliferation, autoimmunity, and malignancy. Autoimmune complications are increasingly recognized as initial presenting features of immune dysregulation in inborn errors of immunity (IEIs), including APDS, so awareness of the spectrum of autoimmune features inherit within these disorders is critical. We present here a patient vignette to highlight cutaneous antineutrophil cytoplasmic antibody (ANCA) vasculitis as an underrecognized autoimmune manifestation of APDS. The genetic defects underlying APDS result in increased PI3Kδ signaling with aberrant downstream signaling pathways and loss of B- and/or T-cell immunologic tolerance mechanisms, which promote the development of autoimmunity. An understanding of the molecular pathways and mechanisms that lead to immune dysregulation in APDS has allowed for significant advancements in the development of precision-medicine therapeutics, such as leniolisib, to reduce the morbidity and mortality for these patients. Overall, this case and review highlight the need to maintain a high index of suspicion for IEIs, such as APDS, in those presenting with autoimmunity in combination with a dysregulated immune phenotype for prompt diagnosis and targeted intervention.
Collapse
Affiliation(s)
- Amika K. Sood
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, The University of North Carolina, Chapel Hill, NC, United States
| | - Olivia Francis
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
| | - Stephen A. Schworer
- Division of Rheumatology, Allergy, and Immunology, Department of Internal Medicine, The University of North Carolina, Chapel Hill, NC, United States
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
| | - Steven M. Johnson
- Department of Pathology and Laboratory Medicine, The University of North Carolina, Chapel Hill, NC, United States
| | - Benjamin D. Smith
- Division of Pediatric Radiology, Department of Radiology, The University of North Carolina, Chapel Hill, NC, United States
| | - Paul B. Googe
- Dermatopathology, Department of Dermatology, The University of North Carolina, Chapel Hill, NC, United States
| | - Eveline Y. Wu
- Division of Allergy/Immunology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
- Division of Rheumatology, Department of Pediatrics, The University of North Carolina, Chapel Hill, NC, United States
| |
Collapse
|
12
|
Ogishi M, Yang R, Rodriguez R, Golec DP, Martin E, Philippot Q, Bohlen J, Pelham SJ, Arias AA, Khan T, Ata M, Al Ali F, Rozenberg F, Kong XF, Chrabieh M, Laine C, Lei WT, Han JE, Seeleuthner Y, Kaul Z, Jouanguy E, Béziat V, Youssefian L, Vahidnezhad H, Rao VK, Neven B, Fieschi C, Mansouri D, Shahrooei M, Pekcan S, Alkan G, Emiroğlu M, Tokgöz H, Uitto J, Hauck F, Bustamante J, Abel L, Keles S, Parvaneh N, Marr N, Schwartzberg PL, Latour S, Casanova JL, Boisson-Dupuis S. Inherited human ITK deficiency impairs IFN-γ immunity and underlies tuberculosis. J Exp Med 2023; 220:213662. [PMID: 36326697 PMCID: PMC9641312 DOI: 10.1084/jem.20220484] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 09/14/2022] [Accepted: 10/04/2022] [Indexed: 11/06/2022] Open
Abstract
Inborn errors of IFN-γ immunity can underlie tuberculosis (TB). We report three patients from two kindreds without EBV viremia or disease but with severe TB and inherited complete ITK deficiency, a condition associated with severe EBV disease that renders immunological studies challenging. They have CD4+ αβ T lymphocytopenia with a concomitant expansion of CD4-CD8- double-negative (DN) αβ and Vδ2- γδ T lymphocytes, both displaying a unique CD38+CD45RA+T-bet+EOMES- phenotype. Itk-deficient mice recapitulated an expansion of the γδ T and DN αβ T lymphocyte populations in the thymus and spleen, respectively. Moreover, the patients' T lymphocytes secrete small amounts of IFN-γ in response to TCR crosslinking, mitogens, or forced synapse formation with autologous B lymphocytes. Finally, the patients' total lymphocytes secrete small amounts of IFN-γ, and CD4+, CD8+, DN αβ T, Vδ2+ γδ T, and MAIT cells display impaired IFN-γ production in response to BCG. Inherited ITK deficiency undermines the development and function of various IFN-γ-producing T cell subsets, thereby underlying TB.
Collapse
Affiliation(s)
- Masato Ogishi
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,The David Rockefeller Graduate Program, Rockefeller University, New York, NY
| | - Rui Yang
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Rémy Rodriguez
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Paris, France.,Imagine Institute, University of Paris Cité, Paris, France
| | - Dominic P Golec
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Emmanuel Martin
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Paris, France.,Imagine Institute, University of Paris Cité, Paris, France
| | - Quentin Philippot
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Jonathan Bohlen
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Simon J Pelham
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Andrés Augusto Arias
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Primary Immunodeficiencies Group, University of Antioquia UdeA, Medellin, Colombia.,School of Microbiology, University of Antioquia UdeA, Medellin, Colombia
| | - Taushif Khan
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Manar Ata
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Fatima Al Ali
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar
| | - Flore Rozenberg
- Department of Virology, Cochin Hospital, University of Paris, Paris, France
| | - Xiao-Fei Kong
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Maya Chrabieh
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Candice Laine
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Wei-Te Lei
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Ji Eun Han
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY
| | - Yoann Seeleuthner
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Zenia Kaul
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Emmanuelle Jouanguy
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Vivien Béziat
- Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Leila Youssefian
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Philadelphia, PA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Hassan Vahidnezhad
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Philadelphia, PA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - V Koneti Rao
- Laboratory of Clinical Immunology and Microbiology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Bénédicte Neven
- Pediatric Immunology and Hematology Department, Necker Hospital for Sick Children Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Claire Fieschi
- Clinical Immunology Department, Saint Louis Hospital, AP-HP Université de Paris, Paris, France.,INSERM UMR1126, Institut de Recherche Saint-Louis, Université de Paris, Paris, France
| | - Davood Mansouri
- Clinical Tuberculosis and Epidemiology Research Center, National Research Institute of Tuberculosis and Lung Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Shahrooei
- Department of Microbiology and Immunology, Laboratory of Clinical Bacteriology and Mycology, KU Leuven, Leuven, Belgium
| | - Sevgi Pekcan
- Department of Pediatric Pulmonology, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Gulsum Alkan
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Melike Emiroğlu
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Selcuk University Faculty of Medicine, Konya, Turkey
| | - Hüseyin Tokgöz
- Department of Pediatric Hematology, Meram School of Medicine, Necmettin Erbakan University, Konya, Turkey
| | - Jouni Uitto
- Department of Dermatology and Cutaneous Biology, Sidney Kimmel Medical College, Philadelphia, PA.,Jefferson Institute of Molecular Medicine, Thomas Jefferson University, Philadelphia, PA
| | - Fabian Hauck
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Paris, France.,Imagine Institute, University of Paris Cité, Paris, France.,Division of Pediatric Immunology and Rheumatology, Department of Pediatrics, Dr. von Hauner Children's Hospital, University Hospital, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jacinta Bustamante
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Center for the Study of Primary Immunodeficiencies, Necker Hospital for Sick Children Assistance Publique-Hôpitaux de Paris (AP-HP), Paris, France
| | - Laurent Abel
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| | - Sevgi Keles
- Division of Pediatric Allergy and Immunology, Necmettin Erbakan University, Meram Medical Faculty, Konya, Turkey
| | - Nima Parvaneh
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Tehran University of Medical Sciences, Tehran, Iran.,Research Center for Immunodeficiencies, Tehran University of Medical Sciences, Tehran, Iran
| | - Nico Marr
- Department of Immunology, Research Branch, Sidra Medicine, Doha, Qatar.,College of Health and Life Sciences, Hamad Bin Khalifa University, Doha, Qatar
| | - Pamela L Schwartzberg
- Cell Signaling and Immunity Section, Laboratory of Immune System Biology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD
| | - Sylvain Latour
- Laboratory of Lymphocyte Activation and Susceptibility to EBV Infection, INSERM UMR1163, Paris, France.,Imagine Institute, University of Paris Cité, Paris, France
| | - Jean-Laurent Casanova
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France.,Department of Pediatrics, Necker Hospital for Sick Children, Paris, France.,Howard Hughes Medical Institute, New York, NY
| | - Stéphanie Boisson-Dupuis
- St. Giles Laboratory of Human Genetics of Infectious Diseases, Rockefeller Branch, Rockefeller University, New York, NY.,Imagine Institute, University of Paris Cité, Paris, France.,Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Paris, France
| |
Collapse
|
13
|
Fang S, Zeng A, Xu Q, Zhou L, Zhang Z, An Y, Zhao X. Generation of human induced pluripotent stem cell line from peripheral blood mononuclear cells from an activated phosphoinositide 3-kinase δ syndrome patient. Stem Cell Res 2022; 62:102822. [PMID: 35660815 DOI: 10.1016/j.scr.2022.102822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/23/2022] [Accepted: 05/29/2022] [Indexed: 10/18/2022] Open
Abstract
Activated phosphoinositide 3-kinase δ syndrome (APDS) is a rare autosomal dominant primary immunodeficiency disease (PID) which was caused by the acquired mutation of PIK3CD gene. In this study, we generated a human induced pluripotent stem cell (hiPSC) line CHCMUi001-A from the peripheral blood mononuclear cells (PBMCs) of a APDS patient, who has a heterozygous mutation (c.3061 G > A) in the PIK3CD gene. This iPSC line presented a normal karyotype and exhibited characteristics of pluripotent stem cells. This iPSC line can be very useful for not only studying disease mechanisms but also developing new potential clinical treatments for APDS patients.
Collapse
Affiliation(s)
- Shuyu Fang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China; Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China
| | - Anle Zeng
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China; Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China
| | - Qiling Xu
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China; Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China
| | - Lina Zhou
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China; Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China
| | - Zhiyong Zhang
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China; Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China
| | - Yunfei An
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China; Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.
| | - Xiaodong Zhao
- Department of Pediatric Research Institute, Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Children's Hospital of Chongqing Medical University, Chongqing, People's Republic of China; Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China; Department of Rheumatology and Immunology, Children's Hospital of Chongqing Medical University, Chongqing 400014, People's Republic of China.
| |
Collapse
|