1
|
Hu D, Zhang Z, Wang Y, Li S, Zhang J, Wu Z, Sun M, Jiang J, Liu D, Ji X, Wang S, Wang Y, Luo X, Huang W, Xia L. Transcription factor ELF4 in physiology and diseases: Molecular roles and clinical implications. Genes Dis 2025; 12:101394. [PMID: 40083328 PMCID: PMC11904542 DOI: 10.1016/j.gendis.2024.101394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 06/21/2024] [Accepted: 07/28/2024] [Indexed: 03/16/2025] Open
Abstract
Transcription factor E74 like ETS transcription factor 4 (ELF4), a member of the ETS family, is highly expressed in normal human hematopoietic tissue, ovary, placenta, colon, and certain pathological cell lines. During normal physiological processes, ELF4 regulates differentiation in osteogenic, adipocyte, and neuronal types. It also exerts a critical impact on the development of the immune system. However, its function is dysregulated through posttranslational modifications, gene fusions, and complex signaling crosstalk under pathological conditions. Furthermore, serving as a double-edged sword in cancer, ELF4 exhibits both tumor-suppressing and tumor-promoting effects. Specifically, ELF4 plays a critical role in cancer metastasis, proliferation, and modulation of the tumor microenvironment. This review provides an in-depth overview of the molecular structure and post-translational modifications of ELF4. It also summarizes the hallmarks of ELF4 in physiology and diseases, with a particular focus on its significance in oncology. Notably, this review underscores the potential of ELF4 as a prognostic biomarker, highlighting its clinical relevance. Finally, it discusses unresolved questions and future research directions of ELF4. An in-depth understanding of ELF4 biology could facilitate its clinical translation and offer promising targeted therapeutic strategies.
Collapse
Affiliation(s)
- Dian Hu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zerui Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Yijun Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Siwen Li
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jiaqian Zhang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhangfan Wu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Mengyu Sun
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Junqing Jiang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Danfei Liu
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiaoyu Ji
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hangzhou First People's Hospital, Westlake University School of Medicine, Hangzhou, Zhejiang 310006, China
| | - Yufei Wang
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Xiangyuan Luo
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Wenjie Huang
- Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Hepatic Surgery Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Clinical Medicine Research Center for Hepatic Surgery of Hubei Province, Key Laboratory of Organ Transplantation, Ministry of Education and Ministry of Public Health, Wuhan, Hubei 430030, China
| | - Limin Xia
- Department of Gastroenterology, Institute of Liver and Gastrointestinal Diseases, Hubei Key Laboratory of Hepato-Pancreato-Biliary Diseases, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, Shannxi 710032, China
| |
Collapse
|
2
|
Zhao R, Zhang Z, Mei S, Sun L, Zhang Q, Lv Q, Zhou F, Sun G, Zhou L, Tang X, An Y, Liu Z, Zhao X, Du H. X-linked Deficiency in ELF4 in Females with Skewed X Chromosome Inactivation. J Clin Immunol 2025; 45:76. [PMID: 39976696 PMCID: PMC11842529 DOI: 10.1007/s10875-025-01866-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 01/29/2025] [Indexed: 02/23/2025]
Abstract
Deficiency in ELF4, X-linked (DEX) is a newly identified monogenic autoinflammatory disease. Most reported cases are male, leading to the recognition of DEX being primarily limited to male patients. Here we described 3 pediatric female patients with DEX from 3 unrelated families, who are all heterozygous for ELF4 mutations (c.320_c.321insA, c.329delA and c.685 A > G). Similar to reported male DEX patients, the main clinical features include recurring oral ulcers, abdominal pain and diarrhea with colonoscopy showing ulcers in the colon. Meanwhile, novel and effective treatment strategies, such as the use of the biologic vedolizumab and exclusive enteral nutrition (EEN), have provided additional options for the treatment of DEX. Finally, we observed skewed X chromosome inactivation patterns in all three female patients, with over-inactivation of the X chromosome carrying the wild-type allele confirmed in two of them.
Collapse
Affiliation(s)
- Rongtao Zhao
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhuo Zhang
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Shiyue Mei
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Department of Gastroenterology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Li Sun
- Department of Rheumatology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, (Shanghai), China
| | - Qianlu Zhang
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Qianying Lv
- Department of Rheumatology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, (Shanghai), China
| | - Fang Zhou
- Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Department of Gastroenterology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, China
| | - Gan Sun
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhifeng Liu
- Department of Gastroenterology, Children's Hospital of Nanjing Medical University, Nanjing, China.
| | - Xiaodong Zhao
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
| | - Hongqiang Du
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
3
|
Pelissier A, Laragione T, Harris C, Rodríguez Martínez M, Gulko PS. BACH1 as a key driver in rheumatoid arthritis fibroblast-like synoviocytes identified through gene network analysis. Life Sci Alliance 2025; 8:e202402808. [PMID: 39467637 PMCID: PMC11519322 DOI: 10.26508/lsa.202402808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/30/2024] Open
Abstract
RNA-sequencing and differential gene expression studies have significantly advanced our understanding of pathogenic pathways underlying rheumatoid arthritis (RA). Yet, little is known about cell-specific regulatory networks and their contributions to disease. In this study, we focused on fibroblast-like synoviocytes (FLS), a cell type central to disease pathogenesis and joint damage in RA. We used a strategy that computed sample-specific gene regulatory networks to compare network properties between RA and osteoarthritis FLS. We identified 28 transcription factors (TFs) as key regulators central to the signatures of RA FLS. Six of these TFs are new and have not been previously implicated in RA through ex vivo or in vivo studies, and included BACH1, HLX, and TGIF1. Several of these TFs were found to be co-regulated, and BACH1 emerged as the most significant TF and regulator. The main BACH1 targets included those implicated in fatty acid metabolism and ferroptosis. The discovery of BACH1 was validated in experiments with RA FLS. Knockdown of BACH1 in RA FLS significantly affected the gene expression signatures, reduced cell adhesion and mobility, interfered with the formation of thick actin fibers, and prevented the polarized formation of lamellipodia, all required for the RA destructive behavior of FLS. This study establishes BACH1 as a central regulator of RA FLS phenotypes and suggests its potential as a therapeutic target to selectively modulate RA FLS.
Collapse
Affiliation(s)
- Aurelien Pelissier
- IBM Research Europe, Eschlikon, Switzerland
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Teresina Laragione
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carolyn Harris
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | | | - Percio S Gulko
- Division of Rheumatology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
4
|
Sun L, Han Y, Li B, Yang Y, Fang Y, Ren X, An L, Hou X, Fan H, Wu Y. A Novel Frameshift Variant of the ELF4 Gene in a Patient with Autoinflammatory Disease: Clinical Features, Transcriptomic Profiling and Functional Studies. J Clin Immunol 2024; 44:127. [PMID: 38773005 DOI: 10.1007/s10875-024-01732-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024]
Abstract
We described the diagnosis and treatment of a patient with autoinflammatory disease, named "Deficiency in ELF4, X-linked (DEX)". A novel ELF4 variant was discovered and its pathogenic mechanism was elucidated. The data about clinical, laboratory and endoscopic features, treatment, and follow-up of a patient with DEX were analyzed. Whole exome sequencing and Sanger sequencing were performed to identify potential pathogenic variants. The mRNA and protein levels of ELF4 were analyzed by qPCR and Western blotting, respectively. The association of ELF4 frameshift variant with nonsense-mediated mRNA decay (NMD) in the pathogenesis DEX was examined. Moreover, RNA-seq was performed to identify the key molecular events triggered by ELF4 variant. The relationship between ELF4 and IFN-β activity was validated using a dual-luciferase reporter assay and a ChIP-qPCR assay. An 11-year-old boy presented with a Behçet's-like phenotype. The laboratory abnormality was the most obvious in elevated inflammatory indicators. Endoscopy revealed multiple ileocecal ulcers. Intestinal histopathology showed inflammatory cell infiltrations. The patient was treated with long-term immunosuppressant and TNF-α blocker (adalimumab), which reaped an excellent response over 16 months of follow-up. Genetic analysis identified a maternal hemizygote frameshift variant (c.1022del, p.Q341Rfs*30) in ELF4 gene in the proband. The novel variant decreased the mRNA level of ELF4 via the NMD pathway. Mechanistically, insufficient expression of ELF4 disturbed the immune system, leading to immunological disorders and pathogen susceptibility, and disrupted ELF4-activating IFN-β responses. This analysis detailed the clinical characteristics of a Chinese patient with DEX who harbored a novel ELF4 frameshift variant. For the first time, we used patient-derived cells and carried out transcriptomic analysis to delve into the mechanism of ELF4 variant in DEX.
Collapse
Affiliation(s)
- Lina Sun
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi, 710049, China
- Department of Gastroenterology, Xi'an Children's Hospital, Xi'an, China
| | - Ya'nan Han
- Department of Gastroenterology, Xi'an Children's Hospital, Xi'an, China
| | - Benchang Li
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Ying Yang
- Shaanxi Institute of Pediatric Diseases, Xi'an Children's Hospital, Xi'an, China
| | - Ying Fang
- Department of Gastroenterology, Xi'an Children's Hospital, Xi'an, China
| | - Xiaoxia Ren
- Department of Gastroenterology, Xi'an Children's Hospital, Xi'an, China
| | - Lu An
- Department of Pathology, Xi'an Children's Hospital, Xi'an, China
| | - Xin Hou
- Department of Imaging, Xi'an Children's Hospital, Xi'an, China
| | - Huafeng Fan
- Department of Education Science, Xi'an Children's Hospital, Xi'an, China
| | - Yi Wu
- MOE Key Laboratory of Environment and Genes Related to Diseases, School of Basic Medical Sciences, Xi'an Jiaotong University, No.28 Xianning West Road, Xi'an, Shaanxi, 710049, China.
| |
Collapse
|
5
|
王 楠, 谢 咏, 汪 志. [Two Cases of Behcet's Disease-Like Syndrome with Gene Deficiency in ELF4]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2024; 55:756-761. [PMID: 38948265 PMCID: PMC11211776 DOI: 10.12182/20240560606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Indexed: 07/02/2024]
Abstract
The patient 1, a 13-year-old boy, was admitted due to "recurrent oral ulcers for 3 years, abdominal pain for 8 months, and perianal ulcers for 10 days"; The patient 2, a 3-year-old boy, was admitted due to "recurrent abdominal pain, diarrhea, and fever for over 3 months". Genetic testing of both patients revealed "deficiency in ELF4, X-linked" (DEX), and the patients were diagnosed with Behcet's disease-like syndrome due to deficiency in ELF4, accordingly. The patient 1 was successively given intravenous methylprednisolone pulses and oral prednisone and mesalazine for symptomatic treatment. The patient 2 was successively treated with corticosteroids combined with enteral nutrition, as well as oral mercaptopurine. Subsequently, both patients showed improvements in symptoms and were discharged.
Collapse
Affiliation(s)
- 楠 王
- 四川大学华西第二医院 儿科 (成都 610041)Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 出生缺陷与相关妇儿疾病教育部重点实验室(四川大学) (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, Chengdu 610041, China
- 四川大学华西临床医学院 (成都 610041)West China College of Clinical Medicine, Sichuan University, Chengdu 610041, China
| | - 咏梅 谢
- 四川大学华西第二医院 儿科 (成都 610041)Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 出生缺陷与相关妇儿疾病教育部重点实验室(四川大学) (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, Chengdu 610041, China
| | - 志凌 汪
- 四川大学华西第二医院 儿科 (成都 610041)Department of Pediatrics, West China Second University Hospital, Sichuan University, Chengdu 610041, China
- 出生缺陷与相关妇儿疾病教育部重点实验室(四川大学) (成都 610041)Key Laboratory of Birth Defects and Related Diseases of Women and Children of the Ministry of Education, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Du HQ, Zhao XD. Current understanding of ELF4 deficiency: a novel inborn error of immunity. World J Pediatr 2024; 20:444-450. [PMID: 38733460 DOI: 10.1007/s12519-024-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 03/12/2024] [Indexed: 05/13/2024]
Abstract
BACKGROUND ELF4 deficiency has been recently recognized as a novel disorder within the spectrum of inborn errors of immunity (IEIs), specifically categorized as a "disease of immune dysregulation." Cases of this condition, reported by our team and others, are very limited worldwide. As such, our current knowledge of this new disease remains preliminary. This review aims to provide a brief overview of the clinical manifestations, pathogenesis, and treatment strategies for this novel IEI. DATA SOURCES A comprehensive review was conducted after an extensive literature search in the PubMed/Medline database and websites concerning transcriptional factor ELF4 and reports concerning patients with ELF4 deficiency. Our search strategy was "ELF4 OR ETS-related transcription factor Elf-4 OR EL4-like factor 4 OR myeloid Elf-1-like factor" as of the time of manuscript submission. RESULTS The current signature manifestations of ELF4 deficiency disorder are recurrent and prolonged oral ulcer, abdominal pain, and diarrhea in pediatric males. In some cases, immunodeficiency and autoimmunity can also be prominent. Targeted Sanger sequencing or whole exome sequencing can be used to detect variation in ELF4 gene. Western blotting for ELF4 expression of the patient's cells can confirm the pathogenic effect of the variant. To fully confirm the pathogenicity of the variant, further functional test is strongly advised. Glucocorticoid and biologics are the mainstream management of ELF4 deficiency disorder. CONCLUSIONS Pediatric males presenting with recurring ulcerations in digestive tract epithelium with or without recurrent fever should be suspected of DEX. When atypical presentations are prominent, variations in ELF4 gene should be carefully evaluated functionally due to the complex nature of ELF4 function. Experience of treating DEX includes use of glucocorticoid and biologics and more precise treatment needs more patients to identify and further mechanistic study.
Collapse
Affiliation(s)
- Hong-Qiang Du
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Zhongshan Er Road 136Yuzhong District, Chongqing, China
| | - Xiao-Dong Zhao
- Department of Rheumatology & Immunology, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Rare Diseases in Infection and Immunity, Children's Hospital of Chongqing Medical University, Zhongshan Er Road 136Yuzhong District, Chongqing, China.
| |
Collapse
|
7
|
Abstract
Systemic autoinflammatory diseases (SAIDs) are a heterogeneous group of disorders caused by excess activation of the innate immune system in an antigen-independent manner. Starting with the discovery of the causal gene for familial Mediterranean fever, more than 50 monogenic SAIDs have been described. These discoveries, paired with advances in immunology and genomics, have allowed our understanding of these diseases to improve drastically in the last decade. The genetic causes of SAIDs are complex and include both germline and somatic pathogenic variants that affect various inflammatory signaling pathways. We provide an overview of the acquired SAIDs from a genetic perspective and summarize the clinical phenotypes and mechanism(s) of inflammation, aiming to provide a comprehensive understanding of the pathogenesis of autoinflammatory diseases.
Collapse
Affiliation(s)
- Jiahui Zhang
- Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Pui Y Lee
- Division of Immunology, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Ivona Aksentijevich
- Inflammatory Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA;
| | - Qing Zhou
- Life Sciences Institute, Zhejiang University, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou, China;
| |
Collapse
|
8
|
Cao M, Chen P, Peng B, Cheng Y, Xie J, Hou Z, Chen H, Ye L, Li H, Wang H, Ren L, Xiong L, Geng L, Gong S. The transcription factor ELF4 alleviates inflammatory bowel disease by activating IL1RN transcription, suppressing inflammatory TH17 cell activity, and inducing macrophage M2 polarization. Front Immunol 2023; 14:1270411. [PMID: 38022496 PMCID: PMC10657822 DOI: 10.3389/fimmu.2023.1270411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/06/2023] [Indexed: 12/01/2023] Open
Abstract
Background Inflammatory bowel disease (IBD) is a chronic immune-mediated disorder affecting millions worldwide. Due to the complexity of its pathogenesis, the treatment options for IBD are limited. This study focuses on ELF4, a member of the ETS transcription factor family, as a target to elucidate its role in IBD and investigate its mechanism of action in alleviating IBD symptoms by activating IL1RN transcription to suppress the activity of inflammatory TH17 cells. Methods Using the GEO database, this study examined LPS-induced intestinal inflammatory genes and their regulation mechanisms. We examined the colon length of LPS-treated mice and derived the Disease Activity Index (DAI). H&E staining, ELISA, and flow cytometry were used to detect mice colon tissue damage, inflammatory factor levels in mouse serum, mouse macrophage types and inflammatory TH17 cell activity. RT-qPCR and Western blot detected ELF4, IL1RN, M1, and M2 polarization markers. In Vitro, using dual-luciferase and ChIP assays, we tested mouse bone marrow-derived macrophages (BMDMs) and mouse intestinal epithelial cells for IL1RN promoter activity and ELF4 enrichment. Results Bioinformatics showed that LPS-induced colitis animals have reduced ELF4 expression in their colon tissue. In vivo tests confirmed reduced ELF4 expression in mice with LPS-induced colitis. ELF4 overexpression reduced mouse intestinal inflammation. ELF4 activated IL1RN transcription in bioinformatics and in vitro tests. ELF4 promoted IL1RN transcription and macrophage M2 polarization to limit intestinal epithelial cell death and inflammation and reduce mouse intestinal inflammation in vitro. ELF4 also reduced the Th17/Treg ratio by increasing IL1RN transcription. Conclusion ELF4 activates IL1RN transcription, suppresses inflammatory TH17 cells, and induces macrophage M2 polarization to treat IBD.
Collapse
Affiliation(s)
- Meiwan Cao
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Peiyu Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Baoling Peng
- Center for Child Health and Mental Health, Shenzhen Childen’s Hospital, Shenzhen, China
| | - Yang Cheng
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Jing Xie
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Ziang Hou
- Department of Internal, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huan Chen
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liping Ye
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Huiwen Li
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Hongli Wang
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lu Ren
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Liya Xiong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Lanlan Geng
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Sitang Gong
- Department of Gastroenterology, Guangzhou Women and Children’s Medical Center, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
9
|
Abstract
PURPOSE OF REVIEW Although the concept of systemic autoinflammatory diseases (SAIDs) is still very young, our knowledge about them is exponentially growing. In the current review, we aim to discuss novel SAIDs and autoinflammatory pathways discovered in the last couple of years. RECENT FINDINGS Advances in immunology and genetics have led to the discovery of new pathways involved in autoinflammation, as well as several new SAIDs, including retinal dystrophy, optic nerve edema, splenomegaly, anhidrosis, and migraine headache (ROSAH syndrome), vacuoles, E1 enzyme, X-linked autoinflammatory somatic (VEXAS) syndrome, TBK1 deficiency, NEMO deleted exon 5 autoinflammatory syndrome (NDAS), and disabling pansclerotic morphea. Progress in immunobiology and genetics has also brought forth novel treatments for SAIDs. Personalized medicine has made significant progress in areas such as cytokine-targeted therapies and gene therapies. However, much work remains, especially in measuring and improving the quality of life in patients with SAIDs. SUMMARY In the current review, we discuss the novelties in the world of SAIDs, including mechanistic pathways of autoinflammation, pathogenesis, and treatment. We hope this review helps rheumatologists to gain an updated understanding of SAIDs.
Collapse
Affiliation(s)
- Kosar Asna Ashari
- Children's Medical Center, Pediatrics Center of Excellence
- Department of Pediatrics, Tehran University of Medical Sciences
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Jonathan S Hausmann
- Division of Immunology, Rheumatology Program, Department of Medicine, Boston Children's Hospital, Pediatrics, Harvard Medical School
- Division of Rheumatology, Dermatology, Allergy, and Immunology, Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Fatma Dedeoglu
- Division of Immunology, Rheumatology Program, Department of Medicine, Boston Children's Hospital, Pediatrics, Harvard Medical School
| |
Collapse
|
10
|
Sun G, Wu M, Lv Q, Yang X, Wu J, Tang W, Dai R, Zhou L, Ding Y, Zhang Z, An Y, Tang X, Zheng X, Wang Z, Sun L, Xie Y, Zhao X, Du H. A Multicenter Cohort Study of Immune Dysregulation Disorders Caused by ELF4 Variants in China. J Clin Immunol 2023; 43:933-939. [PMID: 36823308 DOI: 10.1007/s10875-023-01453-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/15/2023] [Indexed: 02/25/2023]
Abstract
Patients with DEX (deficiency in ELF4, X-linked) were recently reported by our team and others, and cases are very limited worldwide. Our knowledge of this new disease is currently preliminary. In this study, we described 5 more cases presenting mainly with oral ulcer, inflammatory bowel disease-like symptoms, fever of unknown origin, anemia, or systemic lupus erythematosus. Whole exome sequencing identified potential pathogenic ELF4 variants in all cases. The pathogenicity of these variants was confirmed by the detection of ELF4 expression in peripheral blood mononuclear cells from patients and utilizing a simple IFN-b luciferase reporter assay, as previously reported. Our findings significantly contribute to the current understanding of DEX.
Collapse
Affiliation(s)
- Gan Sun
- National Clinical Research Center for Child Health and Disorders (Chongqing), Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Maolan Wu
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China
| | - Qianying Lv
- Department of Rheumatology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China
| | - Xi Yang
- National Clinical Research Center for Child Health and Disorders (Chongqing), Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Junfeng Wu
- National Clinical Research Center for Child Health and Disorders (Chongqing), Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Wenjing Tang
- National Clinical Research Center for Child Health and Disorders (Chongqing), Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Rongxin Dai
- National Clinical Research Center for Child Health and Disorders (Chongqing), Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lina Zhou
- National Clinical Research Center for Child Health and Disorders (Chongqing), Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yuan Ding
- National Clinical Research Center for Child Health and Disorders (Chongqing), Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Zhiyong Zhang
- National Clinical Research Center for Child Health and Disorders (Chongqing), Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Yunfei An
- National Clinical Research Center for Child Health and Disorders (Chongqing), Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Tang
- National Clinical Research Center for Child Health and Disorders (Chongqing), Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangrong Zheng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha, China.
| | - Zhaoxia Wang
- Department of Gastroenterology, Shenzhen Children's Hospital, Shenzhen, China.
| | - Li Sun
- Department of Rheumatology, Children's Hospital of Fudan University, National Pediatric Medical Center of China, Shanghai, China.
| | - Yongmei Xie
- Department of Pediatrics, West China Second University Hospital, Sichuan University, Sichuan province, Chengdu, China.
| | - Xiaodong Zhao
- National Clinical Research Center for Child Health and Disorders (Chongqing), Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.
- The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| | - Hongqiang Du
- National Clinical Research Center for Child Health and Disorders (Chongqing), Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Child Infection and Immunity, Department of Rheumatology & Immunology, Children's Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
11
|
The link between rheumatic disorders and inborn errors of immunity. EBioMedicine 2023; 90:104501. [PMID: 36870198 PMCID: PMC9996386 DOI: 10.1016/j.ebiom.2023.104501] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 12/11/2022] [Accepted: 02/10/2023] [Indexed: 03/06/2023] Open
Abstract
Inborn errors of immunity (IEIs) are immunological disorders characterized by variable susceptibility to infections, immune dysregulation and/or malignancies, as a consequence of damaging germline variants in single genes. Though initially identified among patients with unusual, severe or recurrent infections, non-infectious manifestations and especially immune dysregulation in the form of autoimmunity or autoinflammation can be the first or dominant phenotypic aspect of IEIs. An increasing number of IEIs causing autoimmunity or autoinflammation, including rheumatic disease have been reported over the last decade. Despite their rarity, identification of those disorders provided insight into the pathomechanisms of immune dysregulation, which may be relevant for understanding the pathogenesis of systemic rheumatic disorders. In this review, we present novel IEIs primarily causing autoimmunity or autoinflammation along with their pathogenic mechanisms. In addition, we explore the likely pathophysiological and clinical relevance of IEIs in systemic rheumatic disorders.
Collapse
|
12
|
Tangye SG, Al-Herz W, Bousfiha A, Cunningham-Rundles C, Franco JL, Holland SM, Klein C, Morio T, Oksenhendler E, Picard C, Puel A, Puck J, Seppänen MRJ, Somech R, Su HC, Sullivan KE, Torgerson TR, Meyts I. Human Inborn Errors of Immunity: 2022 Update on the Classification from the International Union of Immunological Societies Expert Committee. J Clin Immunol 2022; 42:1473-1507. [PMID: 35748970 PMCID: PMC9244088 DOI: 10.1007/s10875-022-01289-3] [Citation(s) in RCA: 635] [Impact Index Per Article: 211.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 05/02/2022] [Indexed: 12/19/2022]
Abstract
We report the updated classification of inborn errors of immunity, compiled by the International Union of Immunological Societies Expert Committee. This report documents the key clinical and laboratory features of 55 novel monogenic gene defects, and 1 phenocopy due to autoantibodies, that have either been discovered since the previous update (published January 2020) or were characterized earlier but have since been confirmed or expanded in subsequent studies. While variants in additional genes associated with immune diseases have been reported in the literature, this update includes only those that the committee assessed that reached the necessary threshold to represent novel inborn errors of immunity. There are now a total of 485 inborn errors of immunity. These advances in discovering the genetic causes of human immune diseases continue to significantly further our understanding of molecular, cellular, and immunological mechanisms of disease pathogenesis, thereby simultaneously enhancing immunological knowledge and improving patient diagnosis and management. This report is designed to serve as a resource for immunologists and geneticists pursuing the molecular diagnosis of individuals with heritable immunological disorders and for the scientific dissection of cellular and molecular mechanisms underlying monogenic and related human immune diseases.
Collapse
Affiliation(s)
- Stuart G Tangye
- Garvan Institute of Medical Research, Darlinghurst, Sydney, NSW, 2010, Australia.
- St Vincent's Clinical School, Faculty of Medicine & Health, UNSW Sydney, Darlinghurst, NSW, Australia.
| | - Waleed Al-Herz
- Department of Pediatrics, Faculty of Medicine, Kuwait University, Kuwait City, Kuwait
| | - Aziz Bousfiha
- Laboratoire d'Immunologie Clinique, d'Inflammation et d'Allergy LICIA Clinical Immunology Unit, Casablanca Children's Hospital, Ibn Rochd Medical School, King Hassan II University, Casablanca, Morocco
| | | | - Jose Luis Franco
- Grupo de Inmunodeficiencias Primarias, Facultad de Medicina, Universidad de Antioquia UdeA, Medellin, Colombia
| | - Steven M Holland
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Christoph Klein
- Dr von Hauner Children's Hospital, Ludwig-Maximilians-University Munich, Munich, Germany
| | - Tomohiro Morio
- Department of Pediatrics and Developmental Biology, Tokyo Medical and Dental University, Tokyo, Japan
| | - Eric Oksenhendler
- Department of Clinical Immunology, Hôpital Saint-Louis, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Capucine Picard
- Study Center for Primary Immunodeficiencies, Necker Hospital for Sick Children, APHP, Paris, France
- Laboratory of Lymphocyte Activation and Susceptibility to EBV, INSERM UMR1163, Imagine Institute, Necker Hospital for Sick Children, Université Paris Cité, Paris, France
| | - Anne Puel
- Laboratory of Human Genetics of Infectious Diseases, INSERM U1163, Necker Hospital, 75015, Paris, France
- Université Paris Cité, Imagine Institute, 75015, Paris, France
| | - Jennifer Puck
- Department of Pediatrics, University of California San Francisco and UCSF Benioff Children's Hospital, San Francisco, CA, USA
| | - Mikko R J Seppänen
- Adult Immunodeficiency Unit, Infectious Diseases, Inflammation Center and Rare Diseases Center, Children's Hospital, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Raz Somech
- Pediatric Department and Immunology Unit, Sheba Medical Center, Tel Aviv, Israel
| | - Helen C Su
- Laboratory of Clinical Immunology & Microbiology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kathleen E Sullivan
- Division of Allergy Immunology, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | | | - Isabelle Meyts
- Department of Immunology and Microbiology, Laboratory for Inborn Errors of Immunity, Department of Pediatrics, University Hospitals Leuven and KU Leuven, 3000, Leuven, Belgium
| |
Collapse
|