1
|
Tangjaideborisut Y, Shanmugam P, Zheng ALT, Na Nakorn P, Boonyuen S. Microwave-Assisted Biosynthesis of Quercetin-Stabilized Gold Nanoparticles with Enhanced Antibacterial and Catalytic Properties. ACS OMEGA 2025; 10:17327-17336. [PMID: 40352574 PMCID: PMC12060039 DOI: 10.1021/acsomega.4c10323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/19/2025] [Accepted: 02/24/2025] [Indexed: 05/14/2025]
Abstract
In the past few years, substantial progress has been made in the field of microwave-assisted biosynthesis of gold nanoparticles (AuNPs) using quercetin (QT) as a natural reducing and stabilizing agent. This study explores the rapid and eco-friendly synthesis of AuNPs facilitated by microwave irradiation, offering a time-efficient alternative to conventional methods. The AuNPs were thoroughly characterized to confirm their morphology, size, crystalline structure, and surface plasmon resonance (SPR). The synthesized AuNPs were confirmed by visual color change from yellow to violet and characteristic SPR peak at 519 nm. Furthermore, XRD studies clearly confirmed the crystalline nature of the face-centered cubic structure of AuNPs. Moreover, TEM images reveal that the AuNPs were found to be more or less spherical and have a slightly variable morphology with an average diameter of 14 nm. The antibacterial properties of QT and AuNPs were evaluated against two different bacterial strains via Staphylococcus aureus and Escherichia coli, demonstrating significant activity, particularly due to the stabilizing effect of QT. Additionally, the catalytic efficiency of the AuNPs was evaluated by their ability to reduce 4-nitrophenol to 4-aminophenol, a model reaction for the catalytic activity. The results were promising, with the rate constant of QT-AuNPs determined to be 0.1016 s-1. This work highlights the dual functionality of QT-mediated AuNPs in enhancing both antimicrobial and catalytic properties, contributing to their potential applications in the biomedical and environmental fields. This study highlights the dual role of QT-mediated AuNPs in enhancing antimicrobial and catalytic properties, paving the way for innovative applications in both the biomedical and environmental fields. The uniqueness lies in leveraging the natural properties of QT to simultaneously improve biological activity and catalytic efficiency, offering a sustainable and multifunctional QT-AuNP solution.
Collapse
Affiliation(s)
- Yodchai Tangjaideborisut
- Department
of Biotechnology, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| | - Paramasivam Shanmugam
- Department
of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| | - Alvin Lim Teik Zheng
- Department
of Science and Technology, Faculty of Humanities, Management and Science, Universiti Putra Malaysia, Bintulu Campus, Bintulu 97008, Sarawak, Malaysia
| | - Pariya Na Nakorn
- Department
of Biotechnology, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| | - Supakorn Boonyuen
- Department
of Chemistry, Faculty of Science and Technology, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
2
|
Arif M, Tahir F, Hussain T, Alrokayan S, Akhter T. Catalytic reduction of aldehydic and nitro groups of nitro-benzaldehyde derivatives by silver nanoparticle-containing smart alginate-poly( N-isopropylacrylamide-methacrylic acid) microgels. RSC Adv 2025; 15:8580-8593. [PMID: 40109923 PMCID: PMC11921896 DOI: 10.1039/d5ra00713e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/07/2025] [Indexed: 03/22/2025] Open
Abstract
Aromatic compounds containing aldehyde and nitro groups are very toxic to human health. Moreover, complete degradation of these compounds is not possible. Therefore, these compounds are converted into less toxic but more useful hydroxy-methyl aniline (HMA) derivatives. This conversion is performed using a suitable catalyst and a reducing agent. Therefore, alginate-poly(N-isopropylacrylamide-methacrylic acid) (AN-P(NIPAM-MAAc)) (AN-P(NM)) microgels were synthesized via a free radical precipitation polymerization (FRPP) method and were used as a micro-reactor for synthesis of silver (Ag) nanoparticles (NPs) into the polymeric network using in situ reduction methods. The synthesized AN-P(NM) microgels and Ag-AN-P(NM) hybrid microgels were characterized through SEM, FTIR, TEM, XRD, UV-vis spectroscopy, and EDX. Ag-AN-P(NM) exhibited temperature- and pH-responsive behavior as well as long-term stability of Ag nanoparticles in a polymeric network of AP(NM). Catalytic reduction of 4-nitrobenzaldehyde (4NBA) was evaluated under different conditions, such as different contents of Ag-AN-P(NM), 4NBA concentrations, temperatures, and concentrations of NaBH4. The Ag-AP(NM) hybrid microgels catalytically reduced 3-nitrobenzaldehyde (3NBA), 4NBA, and 3,5-dinitrobanzaldehyde (3,5DNBA) into their corresponding HA compounds in a water medium. The apparent rate constant (k ob) values for 3NBA, 4NBA, and 3,5DNBA were found to be 1.73 min-1, 1.48 min-1, and 1.19 min-1, respectively. Ag-AP(NM) exhibited outstanding catalytic efficiency, recyclability, and stability as well as retained its performance across multiple cycles.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Fatima Tahir
- Department of Chemistry, School of Science, University of Management and Technology Lahore 54770 Pakistan
| | - Tajamul Hussain
- Center of Excellence in Biotechnology Research, King Saud University Riyadh 11451 Saudi Arabia
- Research Chair for Biomedical Application of Nanomaterials, Biochemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Salman Alrokayan
- Research Chair for Biomedical Application of Nanomaterials, Biochemistry Department, College of Science, King Saud University Riyadh 11451 Saudi Arabia
| | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University Seongnam-13120 Republic of Korea
| |
Collapse
|
3
|
Arif M, Raza H, Moussa SB, Alzahrani AYA, Akhter T. Poly(chitosan-N-vinylcaprolactam-methacrylic acid) microgels as microreactor for Ag(I) ions extraction and in-situ silver nanoparticles formation to reduce the toxins. Int J Biol Macromol 2024; 282:136906. [PMID: 39476896 DOI: 10.1016/j.ijbiomac.2024.136906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/24/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
The toxicity of organic molecules and transition metal cations imposes their removal from aqueous medium to protect human health. Traditionally, systems have been designed to target either organic molecules or transition metal cations individually. However, a homogenous poly(chitosan-N-vinylcaprolactam-methacrylic acid) P(CVM) microgel system has been introduced to effectively eliminate both types of pollutants. This P(CVM) system was synthesized using the free radical precipitation polymerization (FRPP) method and employed as an adsorbent for the removal of silver (I) (Ag(I)) ions from aqueous medium under various environments, including different Ag(I) ions content, agitation times, pH levels, and dose of P(CVM). The extraction behavior of Ag(I) ions onto P(CVM) was analyzed using different adsorption isotherms, while the kinetics of the process were studied using Elovich model (ElM), pseudo-second-order (Ps2O), intra-particle-diffusion model (InPDM), and pseudo-first-order (Ps1O) models. Furthermore, silver nanoparticles (Ag NPs) were synthesized by using loaded Ag(I) ions within P(CVM) through in-situ reduction approach. The resulting Ag nanoparticles decorated P(CVM) (Ag-P(CVM)) hybrid microgels exhibited the ability to catalytically reduce various contaminants from water such as p-nitroaniline (PNiA), methyl red (MeR), chromium (VI) ions (CrM), and eosin Y (EoY). The catalytic activity was measured by determining the pseudo-first-order rate constant (kap), which were found to be 1.166 min-1, 0.562 min-1, 0.157 min-1, and 1.350 min-1 for the catalytic reduction of PNiA, MeR, CrM, and EoY, respectively. Overall, the Ag-P(CVM) system shows superb catalytic activity for various pollutants reduction.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan.
| | - Hamid Raza
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Sana Ben Moussa
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia
| | | | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
4
|
Arif M, Rauf A, Raza H, Moussa SB, Haroon SM, Alzahrani AYA, Akhter T. Catalytic reduction of nitroarenes by palladium nanoparticles decorated silica@poly(chitosan-N-isopropylacrylamide-methacrylic acid) hybrid microgels. Int J Biol Macromol 2024; 275:133633. [PMID: 38964695 DOI: 10.1016/j.ijbiomac.2024.133633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/28/2024] [Accepted: 07/01/2024] [Indexed: 07/06/2024]
Abstract
Conversion of toxic nitroarenes into less toxic aryl amines, which are the most suitable precursors for different types of compounds, is done with various materials which are costly or take more time for this conversion. In this regards, a silica@poly(chitosan-N-isopropylacrylamide-methacrylic acid) Si@P(CS-NIPAM-MAA) Si@P(CNM) core-shell microgel system was synthesized through free radical precipitation polymerization (FRPP) and then fabricated with palladium nanoparticles (Pd NPs) by in situ-reduction method to form Si@Pd-P(CNM) and characterized with XRD, TEM, FTIR, SEM, and EDX. The catalytic efficiency of Si@Pd-P(CNM) hybrid microgels was studied for reduction of 4-nitroaniline (4NiA) under diverse conditions. Different nitroarenes were successfully transformed into their corresponding aryl amines with high yields using the Si@Pd-P(CNM) system as catalyst and NaBH4 as reductant. The Si@Pd-P(CNM) catalyst exhibited remarkable catalytic efficiency and recyclability as well as maintaining its catalytic effectiveness over multiple cycles.
Collapse
Affiliation(s)
- Muhammad Arif
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan.
| | - Abdul Rauf
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Hamid Raza
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | - Sana Ben Moussa
- Department of Chemistry, Faculty of Science and Arts, Mohail Asser, King Khalid University, Abha 61413, Saudi Arabia
| | - Shah M Haroon
- Department of Chemistry, School of Science, University of Management and Technology, Lahore 54770, Pakistan
| | | | - Toheed Akhter
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Republic of Korea.
| |
Collapse
|
5
|
Mahmoud ME, Amira MF, Daniele S, Abouelanwar ME, Morcos BM. Synthesis of ferrofluid DAA-Glu COF@Aminated alginate/Psyllium hydrogel nanocomposite for effective removal of polymethyl methacrylate nanoparticles and silver quantum dots pollutants. J Taiwan Inst Chem Eng 2023. [DOI: 10.1016/j.jtice.2023.104793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
6
|
Zeng YJ, Wu XL, Yang HR, Zong MH, Lou WY. 1,4-α-Glucosidase from Fusarium solani for Controllable Biosynthesis of Silver Nanoparticles and Their Multifunctional Applications. Int J Mol Sci 2023; 24:ijms24065865. [PMID: 36982937 PMCID: PMC10057468 DOI: 10.3390/ijms24065865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/01/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
In the study, monodispersed silver nanoparticles (AgNPs) with an average diameter of 9.57 nm were efficiently and controllably biosynthesized by a reductase from Fusarium solani DO7 only in the presence of β-NADPH and polyvinyl pyrrolidone (PVP). The reductase responsible for AgNP formation in F. solani DO7 was further confirmed as 1,4-α-glucosidase. Meanwhile, based on the debate on the antibacterial mechanism of AgNPs, this study elucidated in further depth that antibacterial action of AgNPs was achieved by absorbing to the cell membrane and destabilizing the membrane, leading to cell death. Moreover, AgNPs could accelerate the catalytic reaction of 4-nitroaniline, and 86.9% of 4-nitroaniline was converted to p-phenylene diamine in only 20 min by AgNPs of controllable size and morphology. Our study highlights a simple, green, and cost-effective process for biosynthesizing AgNPs with uniform sizes and excellent antibacterial activity and catalytic reduction of 4-nitroaniline.
Collapse
Affiliation(s)
- Ying-Jie Zeng
- College of Food Science & Technology, Southwest Minzu University, Chengdu 610041, China
| | - Xiao-Ling Wu
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Hui-Rong Yang
- College of Food Science & Technology, Southwest Minzu University, Chengdu 610041, China
| | - Min-Hua Zong
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| | - Wen-Yong Lou
- Laboratory of Applied Biocatalysis, School of Food Science and Engineering, South China University of Technology, No. 381 Wushan Road, Guangzhou 510640, China
| |
Collapse
|
7
|
Rajasekar R, Thanasamy R, Samuel M, Edison TNJI, Raman N. Ecofriendly synthesis of silver nanoparticles using Heterotheca subaxillaris flower and its catalytic performance on reduction of methyl orange. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Goel A, Tomar S. Green synthesis and characterization of Murraya koenigii leaf extract mediated IrO 2, SnO 2, and Ir-SnO 2 nanoparticles. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2022.2034016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Anjali Goel
- Department of Chemistry, KGC, Gurukul Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| | - Sudha Tomar
- Department of Chemistry, KGC, Gurukul Kangri (Deemed to be University), Haridwar, Uttarakhand, India
| |
Collapse
|
9
|
Khan MR, Hoque SM, Hossain KFB, Siddique MAB, Uddin MK, Rahman MM. Green synthesis of silver nanoparticles using Hibiscus sabdariffa leaf extract and its cytotoxicity assay. INORG NANO-MET CHEM 2022. [DOI: 10.1080/24701556.2021.2025091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Md. Rokonujaman Khan
- Department of Environmental Sciences, Jahangirnagar University, Savar, Bangladesh
- Instructor Class “B”, Army Medical Corps Centre and School, Ghatail, Bangladesh
| | | | | | - Md. Abu Bakar Siddique
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhanmondi, Bangladesh
| | - Md. Khabir Uddin
- Department of Environmental Sciences, Jahangirnagar University, Savar, Bangladesh
| | | |
Collapse
|
10
|
Trak D, Arslan Y. Synthesis of silver nanoparticles using dried black mulberry ( Morus nigra L.) fruit extract and their antibacterial and effective dye degradation activities. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2021.1980038] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Diğdem Trak
- Chemistry Department, Faculty of Arts & Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
| | - Yasin Arslan
- Nanoscience and Nanotechnology Department, Faculty of Arts & Sciences, Burdur Mehmet Akif Ersoy University, Burdur, Turkey
- Faculty of Science, Karabük University, Karabük, Turkey
| |
Collapse
|
11
|
Mureed S, Naz S, Haider A, Raza A, Ul-Hamid A, Haider J, Ikram M, Ghaffar R, Irshad M, Ghaffar A, Saeed A. Development of Multi-concentration Cu:Ag Bimetallic Nanoparticles as a Promising Bactericidal for Antibiotic-Resistant Bacteria as Evaluated with Molecular Docking Study. NANOSCALE RESEARCH LETTERS 2021; 16:91. [PMID: 34021844 PMCID: PMC8141091 DOI: 10.1186/s11671-021-03547-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Accepted: 05/13/2021] [Indexed: 06/12/2023]
Abstract
The present study is concerned with evaluating the influence of various concentrations of Ag within Cu:Ag bimetallic nanoparticles developed for use as a promising anti-bacterial agent against antibiotic-resistant bacteria. Here, Cu:Ag bimetallic nanoparticles with various concentration ratios (2.5, 5.0, 7.5, and 10 wt%) of Ag in fixed amount of Cu labeled as 1:0.025, 1:0.050, 1:0.075, and 1:0.1 were synthesized using co-precipitation method with ammonium hydroxide and deionized water as solvent, polyvinyl pyrrolidone as a capping agent, and sodium borohydride and ascorbic acid as reducing agents. These formulated products were characterized through a variety of techniques. XRD confirmed phase purity and detected the presence of distinct fcc structures belonging to Cu and Ag phases. FTIR spectroscopy confirmed the presence of vibrational modes corresponding to various functional groups and recorded characteristic peak emanating from the bimetallic. UV-visible spectroscopy revealed reduction in band gap with increasing Ag content. SEM and HR-TEM micrographs revealed spherical morphology of Ag-doped Cu bimetallic with small and large scale agglomerations. The samples exhibited varying dimensions and interlayer spacing. Bactericidal action of synthesized Cu:Ag bimetallic NPs depicted statistically significant (P < 0.05) inhibition zones recorded for various concentrations of Ag dopant against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Acinetobacter baumannii (A. baumannii) ranging from (0.85-2.8 mm), (0.55-1.95 mm) and (0.65-1.85 mm), respectively. Broadly, Cu:Ag bimetallic NPs were found to be more potent against gram-positive compared with gram-negative. Molecular docking study of Ag-Cu bimetallic NPs was performed against β-lactamase which is a key enzyme of cell wall biosynthetic pathway from both S. aureus (Binding score: - 4.981 kcal/mol) and A. bauminnii (Binding score: - 4.013 kcal/mol). Similarly, binding interaction analysis against FabI belonging to fatty acid biosynthetic pathway from A. bauminnii (Binding score: - 3.385 kcal/mol) and S. aureus (Binding score: - 3.012 kcal/mol) along with FabH from E. coli (Binding score: - 4.372 kcal/mol) was undertaken. These theoretical computations indicate Cu-Ag bimetallic NPs as possible inhibitor of selected enzymes. It is suggested that exploring in vitro inhibition potential of these materials may open new avenues for antibiotic discovery.
Collapse
Affiliation(s)
- Shumaila Mureed
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan
- Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan
| | - Sadia Naz
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ali Haider
- Department of Clinical Medicine and Surgery, University of Veterinary and Animal Sciences, Lahore, 54000, Punjab, Pakistan
| | - Ali Raza
- Department of Physics, Riphah Institute of Computing and Applied Sciences (RICAS), Riphah International University, 14 Ali Road, Lahore, Pakistan
| | - Anwar Ul-Hamid
- Core Research Facilities, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia.
| | - Junaid Haider
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan.
| | - Rabia Ghaffar
- Division of Science and Technology, Department of Botany, University of Education, Lahore, 54000, Pakistan
| | - Muneeb Irshad
- Department of Physics, University of Engineering and Technology, Lahore, 54890, Pakistan
| | - Abdul Ghaffar
- Department of Physics, Government College University Lahore, Lahore, 54000, Punjab, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-I-Azam University, Islamabad, 45320, Pakistan
| |
Collapse
|
12
|
Liu J, Yu D, Yang Y, You H, Sun M, Wang Y, Shen X, Liu ZQ. Free-Radical-Promoted Dehydrogenative Coupling of Polyfluorinated Alcohol with Quinone, Chromone, and Coumarin. Org Lett 2020; 22:4844-4847. [PMID: 32500708 DOI: 10.1021/acs.orglett.0c01671] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A free-radical-mediated dehydrogenative cross-coupling reaction of polyfluorinated alcohol with quinone, coumarin, and chromone was developed. It provides a sustainable and practical strategy for installation of fluorine atom into organic molecules by using polyfluorinated alcohols.
Collapse
Affiliation(s)
- Jingping Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Dan Yu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yong Yang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Huichao You
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Minzhi Sun
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yaxin Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Xu Shen
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Zhong-Quan Liu
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
13
|
Din MI, Khalid R, Hussain Z, Najeeb J, Sahrif A, Intisar A, Ahmed E. Critical review on the chemical reduction of nitroaniline. RSC Adv 2020; 10:19041-19058. [PMID: 35518289 PMCID: PMC9054049 DOI: 10.1039/d0ra01745k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 04/23/2020] [Indexed: 12/12/2022] Open
Abstract
Conversion of nitroaniline (NA), a highly toxic pollutant that has been released into aquatic systems due to unmanaged industrial development in recent years, into the less harmful or a useful counterpart is the need of the hour. Various methods for its conversion and removal have been explored. Owing to its nominal features of advanced effectiveness, the chemical reduction of 4-NA using various different nanocatalytic systems is one such approach that has attracted tremendous interest over the past few years. The academic literature has been confined to case studies involving silver (Ag) and gold (Au) nanoparticles, as these are the two most widely used materials for the synthesis of nanocatalytic assemblies. Focus has also been given to sodium borohydride (NaBH4), which is used as a reductant during the chemical reduction of NA. This systematic review summarizes the fundamentals associated with the catalytic degradation of 4-NA, and presents a comprehensive and critical study of the latest modifications used in the synthesis of these catalytic systems. In addition, the kinetics, mechanisms, thermodynamics, as well as the future directions required for understanding this model reaction, have been provided in this particular study. Schematic illustration of catalytic reduction of 4-NA in the presence of nanocatalysts and a reducing agent.![]()
Collapse
Affiliation(s)
- Muhammad Imran Din
- Institute of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-99231269 +92-33-19743520
| | - Rida Khalid
- Institute of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-99231269 +92-33-19743520
| | - Zaib Hussain
- Institute of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-99231269 +92-33-19743520
| | - Jawayria Najeeb
- Department of Chemistry, University of Gujrat Gujarat 50700 Pakistan
| | - Ahsan Sahrif
- Institute of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-99231269 +92-33-19743520
| | - Azeem Intisar
- Institute of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-99231269 +92-33-19743520
| | - Ejaz Ahmed
- Institute of Chemistry, University of the Punjab New Campus Lahore 54590 Pakistan +92-42-99231269 +92-33-19743520
| |
Collapse
|
14
|
Garza-Cervantes JA, Mendiola-Garza G, de Melo EM, Dugmore TIJ, Matharu AS, Morones-Ramirez JR. Antimicrobial activity of a silver-microfibrillated cellulose biocomposite against susceptible and resistant bacteria. Sci Rep 2020; 10:7281. [PMID: 32350328 PMCID: PMC7190717 DOI: 10.1038/s41598-020-64127-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Accepted: 03/26/2020] [Indexed: 12/14/2022] Open
Abstract
Antibiotic Microbial Resistance (AMR) is a major global challenge as it constitutes a severe threat to global public health if not addressed. To fight against AMR bacteria, new antimicrobial agents are continually needed, and their efficacy must be tested. Historically, many transition metals have been employed, but their cytotoxicity is an issue and hence must be reduced, typically by combination with organic polymers. Cellulose of natural origin, especially those derived from unavoidable residues in the food supply chain, appears to be a good capping agent for the green synthesis of silver nanoparticles. Herein, we describe a green synthesis method to produce a novel biocomposite, using ascorbic acid as reducing agent and microfibrillated cellulose as a capping agent and demonstrate this material to be an efficient antimicrobial agent. Silver nanoparticles were obtained in the cellulose matrix with an average size of 140 nm and with antimicrobial activity against both sensitive and resistant Gram positive (using 1500 ppm) as well as sensitive and resistant Gram negative (using 125 ppm) bacteria. Also, an inverted disk-diffusion methodology was applied to overcome the low-solubility of cellulose compounds. This novel silver nanoparticle-cellulose biocomposite synthesized by a green methodology shows the potential to be applied in the future development of biomedical instruments and therapeutics.
Collapse
Affiliation(s)
- Javier Alberto Garza-Cervantes
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas. Av. Universidad s/n. CD. Universitaria, 66455, San Nicolás de los Garza, NL, México
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, México
| | - Gricelda Mendiola-Garza
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas. Av. Universidad s/n. CD. Universitaria, 66455, San Nicolás de los Garza, NL, México
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, México
| | - Eduardo Macedo de Melo
- Institute of Bio- and Geosciences 1 (IBG-1): Biotechnology, Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Tom I J Dugmore
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, YO10 5DD, York, England, United Kingdom
| | - Avtar S Matharu
- Green Chemistry Centre of Excellence, Department of Chemistry, University of York, YO10 5DD, York, England, United Kingdom.
| | - Jose Ruben Morones-Ramirez
- Universidad Autónoma de Nuevo León, UANL. Facultad de Ciencias Químicas. Av. Universidad s/n. CD. Universitaria, 66455, San Nicolás de los Garza, NL, México.
- Centro de Investigación en Biotecnología y Nanotecnología, Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León. Parque de Investigación e Innovación Tecnológica, Km. 10 autopista al Aeropuerto Internacional Mariano Escobedo, 66629, Apodaca, Nuevo León, México.
| |
Collapse
|
15
|
Gowthaman NSK, Ngee Lim H, Balakumar V, Shankar S. Ultrasonic synthesis of CeO 2@organic dye nanohybrid: Environmentally benign rabid electrochemical sensing platform for carcinogenic pollutant in water samples. ULTRASONICS SONOCHEMISTRY 2020; 61:104828. [PMID: 31670250 DOI: 10.1016/j.ultsonch.2019.104828] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
A novel organic-inorganic nile-blue - CeO2 (CeO2/NB) nanohybrid has been synthesized by environmentally benign ultrasonic irradiation method for the selective determination of the environmental pollutant, carcinogenic hydrazine (HZ) in environmental water samples. Hydrophobic dyes have generally been as redox mediators in electrochemical sensors fabrication due to strong electron transfer capacity and they would allow the oxidation and reduction of the analytes at lower potentials. The CeO2 nanoparticles were initially synthesized by the ultrasonic irradiation of Ce(NO3)2, NH4OH and ethylene glycol mixture for 6 h using probe sonicator (20 kHz, 100 W) followed by calcination. The organic-dye NB was then added and ultrasonicated further 30 min for the formation of CeO2/NB nanohybrid material. Various spectroscopic and microscopic tools such as UV-vis and FT-IR spectroscopy, XRD, SEM and high-solution TEM and surface analysis tool Brunauer-Emmett-Teller (BET) confirm the formation of the nanohybrid. HR-TEM images showed the well-covered CeO2 on NB molecules and the average size of the nanohybrid is ~35 nm. For the fabrication of environmental pollutant electrochemical sensor, the prepared CeO2/NB nanohybrid was drop-casted on the electrode surface and utilized for the determination of HZ. The nanohybrid modified electrode exhibits higher electrocatalytic activity by showing enhanced oxidation current and less positive potential shift towards HZ oxidation than the bare and individual CeO2 and NB modified electrodes. The fabricated sensor with excellent reproducibility, repeatability, long-term storage stability and cyclic stability exhibited the sensational sensitivity (484.86 µA mM-1 cm-2) and specificity in the presence of 50-fold possible interfering agents with the lowest limit of detection of 57 nM (S/N = 3) against HZ. Utilization of the present sensor in environmental samples with excellent recovery proves it practicability in the determination of HZ in real-time application.
Collapse
Affiliation(s)
- N S K Gowthaman
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - Hong Ngee Lim
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia.
| | - Vellaichamy Balakumar
- Department of Advanced Organic Materials Engineering, Chungnam National University, Yuseong-gu, Daejeon 305-764, South Korea
| | - Sekar Shankar
- Department of Chemistry, Sri Akilandeswari Women's College, Wandiwash 604408, Tamilnadu, India
| |
Collapse
|
16
|
Hwa KY, Karuppaiah P, Gowthaman NSK, Balakumar V, Shankar S, Lim HN. Ultrasonic synthesis of CuO nanoflakes: A robust electrochemical scaffold for the sensitive detection of phenolic hazard in water and pharmaceutical samples. ULTRASONICS SONOCHEMISTRY 2019; 58:104649. [PMID: 31450344 DOI: 10.1016/j.ultsonch.2019.104649] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Hydroquinone (HQ), a phenolic compound is expansively used in many industrial applications and due to the utilization of HQ, water pollution tragedies frequently found by the improper handling and accidental outflows. When HQ is adsorbed directly through the skin that create toxic effects to human by affecting kidney, liver, lungs, and urinary tract and hence, a highly selective and sensitive technique is required for its quantification. Herein, we have developed the ultrasonic synthesis of copper oxide nanoflakes (CuO-NFs) using ultrasonic bath (20 kHz, 100 W) and successfully employed for the sensitive detection of the environmental hazardous pollutant HQ. The formed CuO-NFs were confirmed by X-ray diffraction, field emission scanning electron microscopy (FE-SEM), FT-IR spectroscopy and UV-visible spectroscopy and fabricated with the screen-printed carbon electrode (SPCE). The SEM images exhibited the uniform CuO-NFs with an average width of 85 nm. The linker-free CuO-NFs fabricated electrode showed the appropriate wide range of concentrations from 0.1 to 1400 µM and the limit of detection was found to be 10.4 nM towards HQ. The fabricated sensor having long term stability and sensitivity was successfully applied for the environmental and commercial real sample analysis and exhibited good recovery percentage, implying that the SPCE/CuO-NFs is an economically viable and benign robust scaffold for the determination of HQ.
Collapse
Affiliation(s)
- KuO Yuan Hwa
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan 106, People's Republic of China.
| | - Palpandi Karuppaiah
- Graduate Institute of Organic and Polymeric Materials, National Taipei University of Technology, Taipei, Taiwan 106, People's Republic of China
| | - N S K Gowthaman
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Vellaichamy Balakumar
- Department of Advanced Organic Materials Engineering, Chungnam National University, Yuseong-gu, Daejeon 305-764, South Korea
| | - Sekar Shankar
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute - Deemed to be University, Gandhigram 624302, India
| | - Hong Ngee Lim
- Materials Synthesis and Characterization Laboratory, Institute of Advanced Technology, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| |
Collapse
|
17
|
Nano-conjugates of Cefadroxil as Efficient Antibacterial Agent Against Staphylococcus aureus ATCC 11632. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01688-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
18
|
Electrochemical Glucose Detection Using PdAg Nanoparticles Anchored on rGO/MWCNT Nanohybrids. J CLUST SCI 2019. [DOI: 10.1007/s10876-019-01641-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Farooqi ZH, Khalid R, Begum R, Farooq U, Wu Q, Wu W, Ajmal M, Irfan A, Naseem K. Facile synthesis of silver nanoparticles in a crosslinked polymeric system by in situ reduction method for catalytic reduction of 4-nitroaniline. ENVIRONMENTAL TECHNOLOGY 2019; 40:2027-2036. [PMID: 29384040 DOI: 10.1080/09593330.2018.1435737] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/29/2018] [Indexed: 05/27/2023]
Abstract
In this study, poly(N-isopropylmethacrylamide-co-methacrylic acid) microgels prepared by free radical precipitation polymerization were used as micro-reactors for the synthesis and stabilization of silver nanoparticles. UV-Visible spectroscopy, Transmission Electron Microscopy and Fourier-transform infrared spectroscopy were used to characterize both pure and hybrid microgels. The catalytic reduction of 4-nitroaniline was carried out in the presence of hybrid microgels to test their catalytic activity, and the catalysis mechanism was explored by varying the concentrations of reacting species like 4-nitroaniline and NaBH4, as well as the dose of the catalyst. The kinetic data indicates that this reaction follows pseudo-first order. The variation in apparent rate constant (kapp) with respect to NaBH4 concentration also discloses it to be the following Langmuir-Hinshelwood mechanism. The relationship between catalyst concentration and apparent rate constant was found to be increasing in a linear manner. The data obtained also confirmed that silver nanoparticles loaded microgels have the potential to be used as an excellent micro-reactor for selective reduction of 4-nitroaniline to p-phenylenediamine.
Collapse
Affiliation(s)
- Zahoor H Farooqi
- a Institute of Chemistry, University of the Punjab , Lahore , Pakistan
| | - Rida Khalid
- a Institute of Chemistry, University of the Punjab , Lahore , Pakistan
| | - Robina Begum
- b Center of Undergraduate studies, University of the Punjab , Lahore , Pakistan
| | - Umar Farooq
- a Institute of Chemistry, University of the Punjab , Lahore , Pakistan
| | - Qingshi Wu
- c State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University , Xiamen , People's Republic of China
- d Department of Chemistry , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , People's Republic of China
| | - Weitai Wu
- c State Key Laboratory for Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University , Xiamen , People's Republic of China
- d Department of Chemistry , College of Chemistry and Chemical Engineering, Xiamen University , Xiamen , People's Republic of China
| | - Muhammad Ajmal
- e Department of Chemistry , University of Wah , Wah Cantt , Pakistan
| | - Ahmad Irfan
- f Research Center for Advanced Material Science (RCAMS), King Khalid University , Abha , Saudi Arabia
- g Department of Chemistry, Faculty of Science , King Khalid University , Abha , Saudi Arabia
| | - Khalida Naseem
- a Institute of Chemistry, University of the Punjab , Lahore , Pakistan
| |
Collapse
|
20
|
Rapid mediated biosynthesis and quantification of AuNPs using persimmon (Diospyros Kaki L.f) fruit extract. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.10.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Areca catechu Assisted Synthesis of Silver Nanoparticles and its Electrocatalytic Activity on Glucose Oxidation. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1284-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
22
|
Huo C, Yuan CG, Li YK, Liu PL, Liu JF. Characterization and Quantification of Biosynthesized Gold Nanoparticles Using Chenopodium aristatum L. Stem Extract. J CLUST SCI 2017. [DOI: 10.1007/s10876-017-1266-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
|
24
|
Yuan CG, Huo C, Gui B, Liu P, Zhang C. Green Synthesis of Silver Nanoparticles Using Chenopodium aristatum L. Stem Extract and Their Catalytic/Antibacterial Activities. J CLUST SCI 2016. [DOI: 10.1007/s10876-016-1147-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
25
|
Edison TNJI, Atchudan R, Sethuraman MG, Lee YR. Supercapacitor performance of carbon supported Co 3 O 4 nanoparticles synthesized using Terminalia chebula fruit. J Taiwan Inst Chem Eng 2016. [DOI: 10.1016/j.jtice.2016.09.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Edison TNJI, Atchudan R, Sethuraman MG, Lee YR. Reductive-degradation of carcinogenic azo dyes using Anacardium occidentale testa derived silver nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 162:604-610. [PMID: 27479841 DOI: 10.1016/j.jphotobiol.2016.07.040] [Citation(s) in RCA: 74] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2016] [Revised: 07/25/2016] [Accepted: 07/27/2016] [Indexed: 01/06/2023]
Abstract
In the present work, reductive-degradation of azo dyes such as congo red (CR) and methyl orange (MO) was manifested using Anacardium occidentale testa derived silver nanoparticles (AgNPs) as a catalyst. The formation of highly stable AgNPs were visually confirmed by the appearance of yellow color and further substantiated by the existence of surface plasmon resonance (SPR) peak around 425nm. The effect of A. occidentale concentration, reaction time and pH in the formations of AgNPs was corroborated by UV-visible (UV-Vis) spectroscopy. The Fourier transform infrared (FT-IR) spectroscopic results proved that phytoconstituents of A. occidentale testa acts as a capping agent and thereby protects the AgNPs from aggregation. The crystalline nature of the AgNPs was validated from the XRD patterns. The average size of synthesized AgNPs was 25nm, with distorted spherical shape was ascribed from the high resolution transmission electron microscopic (HR-TEM) images. Due to the high stability of the as-synthesized AgNPs, they were utilized for the degradation of carcinogenic azo dyes such as CR and MO using NaBH4 and its catalytic activity was studied via UV-Vis spectroscopy. The results proved that extraordinary catalytic activity of synthesized AgNPs towards the reductive-degradation of both CR and MO.
Collapse
Affiliation(s)
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Mathur Gopalakrishnan Sethuraman
- Department of Chemistry, Gandhigram Rural Institute - Deemed University, Gandhigram - 624 302, Dindigul District, Tamil Nadu, India.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712-749, Republic of Korea.
| |
Collapse
|
27
|
Edison TNJI, Atchudan R, Kamal C, Lee YR. Caulerpa racemosa: a marine green alga for eco-friendly synthesis of silver nanoparticles and its catalytic degradation of methylene blue. Bioprocess Biosyst Eng 2016; 39:1401-8. [PMID: 27129459 DOI: 10.1007/s00449-016-1616-7] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 04/19/2016] [Indexed: 11/30/2022]
Abstract
In this study, a simple and green method has been demonstrated for the synthesis of highly stable silver nanoparticles (AgNPs) using aqueous extract of Caulerpa racemosa (C. racemosa) as a reducing and capping agent. The formation and stability of AgNPs were studied using visual observation and UV-Visible (UV-Vis) spectroscopy. The stable AgNPs were further characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and high resolution transmission electron microscopy (HR-TEM) with energy dispersive spectroscopic (EDS) methods. The biosynthesized AgNPs showed a sharp surface plasmon resonance peak at 441 nm in the visible region and they have extended stability which has been confirmed by the UV-Vis spectroscopic results. XRD result revealed the crystalline nature of synthesized AgNPs and they are mainly oriented in (111) plane. FT-IR studies proved that the phytoconstituents of C. racemosa protect the AgNPs from aggregation and also which are responsible for the high stability. The size of synthesized AgNPs was approximately 25 nm with distorted spherical shape, identified from the HR-TEM images. The synthesized AgNPs showed excellent catalytic activity towards degradation of methylene blue.
Collapse
Affiliation(s)
| | - Raji Atchudan
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Chennappan Kamal
- Department of Chemistry, VSA Group of Institutions, Salem, 636010, Tamil Nadu, India.
| | - Yong Rok Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 712-749, Republic of Korea.
| |
Collapse
|
28
|
Current scenario of biomedical aspect of metal-based nanoparticles on gel dosimetry. Appl Microbiol Biotechnol 2016; 100:4803-16. [DOI: 10.1007/s00253-016-7489-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 03/17/2016] [Accepted: 03/18/2016] [Indexed: 12/12/2022]
|