1
|
Bharose AA, Hajare ST, H. P. G, Soni M, Prajapati KK, Singh SC, Upadhye V. Bacteria-mediated green synthesis of silver nanoparticles and their antifungal potentials against Aspergillus flavus. PLoS One 2024; 19:e0297870. [PMID: 38527060 PMCID: PMC10962810 DOI: 10.1371/journal.pone.0297870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 01/04/2024] [Indexed: 03/27/2024] Open
Abstract
The best biocontroller Bacillus subtilis produced silver nanoparticles (AgNPs) with a spherical form and a 62 nm size through green synthesis. Using UV-vis spectroscopy, PSA, and zeta potential analysis, scanning electron microscopy, and Fourier transform infrared spectroscopy, the properties of synthesized silver nanoparticles were determined. Silver nanoparticles were tested for their antifungicidal efficacy against the most virulent isolate of the Aspergillus flavus fungus, JAM-JKB-BHA-GG20, and among the 10 different treatments, the treatment T6 [PDA + 1 ml of NP (19: 1)] + Pathogen was shown to be extremely significant (82.53%). TG-51 and GG-22 were found to be the most sensitive groundnut varieties after 5 and 10 days of LC-MS QTOF infection when 25 different groundnut varieties were screened using the most toxic Aspergillus flavus isolate JAM- JKB-BHA-GG20, respectively. In this research, the most susceptible groundnut cultivar, designated GG-22, was tested. Because less aflatoxin (1651.15 g.kg-1) was observed, treatment T8 (Seed + Pathogen + 2 ml silver nanoparticles) was determined to be much more effective. The treated samples were examined by Inductively Coupled Plasma Mass Spectrometry for the detection of metal ions and the fungicide carbendazim. Ag particles (0.8 g/g-1) and the fungicide carbendazim (0.025 g/g-1) were found during Inductively Coupled Plasma Mass Spectrometry analysis below detectable levels. To protect plants against the invasion of fungal pathogens, environmentally friendly green silver nanoparticle antagonists with antifungal properties were able to prevent the synthesis of mycotoxin by up to 82.53%.
Collapse
Affiliation(s)
| | | | - Gajera H. P.
- Department of Biotechnology, College of Agriculture, Junagadh Agricultural University, Junagadh, Gujarat, India
| | - Mukesh Soni
- Dr D.Y Patil Vidyapeeth, Pune and Department of CSE, University Centre for Research & Development Chandigarh University, Mohali, Punjab, India
| | | | | | - Vijay Upadhye
- Institute of Applied Sciences, Research & Development Cell, Parul University, Vadodara, Gujarat, India
| |
Collapse
|
2
|
Ullah R, Jan SA, Khan MN, Nazish M, Kamal A, Kaplan A, Yehia HM, Alarjani KM, Alkasir R, Zaman W. Euphorbia royleana Boiss Derived Silver Nanoparticles and Their Applications as a Nanotherapeutic Agent to Control Microbial and Oxidative Stress-Originated Diseases. Pharmaceuticals (Basel) 2023; 16:1413. [PMID: 37895884 PMCID: PMC10609787 DOI: 10.3390/ph16101413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/26/2023] [Accepted: 10/02/2023] [Indexed: 10/29/2023] Open
Abstract
Nanotechnology is one of the most advance and multidisciplinary fields. Recent advances in nanoscience and nanotechnology radically changed the way we diagnose, treat, and prevent various diseases in all aspects of human life. The use of plants and their extracts is one of the most valuable methods towards rapid and single-step protocol preparation for various nanoparticles, keeping intact "the green principles" over the conventional ones and proving their dominance for medicinal importance. A facile and eco-friendly technique for synthesizing silver nanoparticles has been developed by using the latex of Euphorbia royleana as a bio-reductant for reducing Ag+ ions in an aqueous solution. Various characterization techniques were employed to validate the morphology, structure, and size of nanoparticles via UV-Vis spectroscopy, XRD, SEM, and EDS. FTIR spectroscopy validates different functional groups associated with biomolecules stabilizing/capping the silver nanoparticles, while SEM and XRD revealed spherical nanocrystals with FCC geometry. The results revealed that latex extract-mediated silver nanoparticles (LER-AgNPs) exhibited promising antibacterial activity against both gram-positive and -negative bacterial strains (Bacillus pumilus, Staphylococcus aureus, E. coli, Pseudomonas aeruginosa, and Streptococcus viridians). Both latex of E. royleana and LER-AgNPs were found to be potent in scavenging DPPH free radicals with respective EC50s and EC70s as 0.267% and 0.518% and 0.287% and 0.686%. ROSs produced in the body damage tissue and cause inflammation in oxidative stress-originated diseases. H2O2 and OH* scavenging activity increased with increasing concentrations (20-100 μg/mL) of LER-AgNPs. Significant reestablishment of ALT, AST, ALP, and bilirubin serum levels was observed in mice intoxicated with acetaminophen (PCM), revealing promising hepatoprotective efficacy of LER-AgNPs in a dose-dependent manner.
Collapse
Affiliation(s)
- Rehman Ullah
- Pharmacognosy Laboratory, Department of Botany, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan;
| | - Saiqa Afriq Jan
- Pharmacognosy Laboratory, Department of Botany, Faculty of Life and Environmental Sciences, University of Peshawar, Peshawar 25120, Pakistan;
| | - Muhammad Nauman Khan
- Department of Botany, Islamia College Peshawar, Peshawar 25120, Pakistan
- University Public School, University of Peshawar, Peshawar 25120, Pakistan
| | - Moona Nazish
- Department of Botany, Rawalpindi Women University, Rawalpindi 46300, Pakistan;
| | - Asif Kamal
- Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan;
| | - Alevcan Kaplan
- Department of Crop and Animal Production, Sason Vocational School, Batman University, Batman 72060, Turkey;
| | - Hany M. Yehia
- Food Science and Nutrition Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2451, Riyadh 11451, Saudi Arabia;
| | - Khaloud Mohammed Alarjani
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Rashad Alkasir
- CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wajid Zaman
- Department of Life Sciences, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
3
|
Barabadi H, Mobaraki K, Jounaki K, Sadeghian-Abadi S, Vahidi H, Jahani R, Noqani H, Hosseini O, Ashouri F, Amidi S. Exploring the biological application of Penicillium fimorum-derived silver nanoparticles: In vitro physicochemical, antifungal, biofilm inhibitory, antioxidant, anticoagulant, and thrombolytic performance. Heliyon 2023; 9:e16853. [PMID: 37313153 PMCID: PMC10258451 DOI: 10.1016/j.heliyon.2023.e16853] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
This study showed the anti-candida, biofilm inhibitory, antioxidant, anticoagulant, and thrombolytic properties of biogenic silver nanoparticles (AgNPs) fabricated by using the supernatant of Penicillium fimorum (GenBank accession number OQ568180) isolated from soil. The biogenic AgNPs were characterized by using different analytical techniques. A sharp surface plasmon resonance (SPR) peak of the colloidal AgNPs at 429.5 nm in the UV-vis spectrum confirmed the fabrication of nanosized silver particles. The broth microdilution assay confirmed the anti-candida properties of AgNPs with a minimum inhibitory concentration (MIC) of 4 μg mL-1. In the next step, the protein and DNA leakage assays as well as reactive oxygen species (ROS) assay were performed to evaluate the possible anti-candida mechanisms of AgNPs representing an increase in the total protein and DNA of supernatant along with a climb-up in ROS levels in AgNPs-treated samples. Flow cytometry also confirmed a dose-dependent cell death in the AgNPs-treated samples. Further studies also confirmed the biofilm inhibitory performance of AgNPs against Candia albicans. The AgNPs at the concentrations of MIC and 4*MIC inhibited 79.68 ± 14.38% and 83.57 ± 3.41% of biofilm formation in C. albicans, respectively. Moreover, this study showed that the intrinsic pathway may play a significant role in the anticoagulant properties of AgNPs. In addition, the AgNPs at the concentration of 500 μg mL-1, represented 49.27%, and 73.96 ± 2.59% thrombolytic and DPPH radical scavenging potential, respectively. Promising biological performance of AgNPs suggests these nanomaterials as a good candidate for biomedical and pharmaceutical applications.
Collapse
Affiliation(s)
- Hamed Barabadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kiana Mobaraki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kamyar Jounaki
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Sadeghian-Abadi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hossein Vahidi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Jahani
- Department of Toxicology and Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hesam Noqani
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Hosseini
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ashouri
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salimeh Amidi
- Department of Medicinal Chemistry, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
4
|
Nirmala C, Sridevi M, Aishwarya A, Perara R, Sathiyanarayanan Y. Pharmacological Prospects of Morin Conjugated Selenium Nanoparticles-Evaluation of Antimicrobial, Antioxidant, Thrombolytic, and Anticancer Activities. BIONANOSCIENCE 2023; 13:1-14. [PMID: 37361102 PMCID: PMC10169122 DOI: 10.1007/s12668-023-01116-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 06/28/2023]
Abstract
Abstract Selenium nanoparticles (SeNPs) have gained wide importance in the scientific community and have emerged as an optimistic therapeutic carrier agent for targeted drug delivery. In the present study, the effectiveness of nano selenium conjugated with Morin (Ba-SeNp-Mo) produced from endophytic bacteria Bacillus endophyticus reported in our earlier research was tested against various Gram-positive, Gram-negative bacterial pathogens and fungal pathogens that showed good zone of inhibition against all selected pathogens. Antioxidant activities of these NPs were studied by 1, 1-diphenyl-2- picrylhydrazyl (DPPH), 2,2'-Azino-bis-3-ethylbenzothiozoline-6-sulfonic acid (ABTS), hydrogen peroxide (H2O2), superoxide (O2-), and nitric oxide (NO) radical scavenging assays that exhibited dose-dependent free radical scavenging activity with IC50 values 6.92 ± 1.0, 16.85 ± 1.39, 31.60 ± 1.36, 18.87 ± 1.46, and 6.95 ± 1.27 μg/mL. The efficiency of DNA cleavage and thrombolytic activity of Ba-SeNp-Mo were also studied. The antiproliferative effect of Ba-SeNp-Mo was determined by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay in COLON-26 cell lines that resulted in IC50 value of 63.11 μg/mL. Further increased intracellular reactive oxygen species (ROS) levels up to 2.03 and significant early, late and necrotic cells were also observed in AO/EtBr assay. CASPASE 3 expression was upregulated to 1.22 (40 μg/mL) and 1.85 (80 μg/mL) fold. Thus, the current investigation suggested that the Ba-SeNp-Mo has offered remarkable pharmacological activity. Graphical Abstract
Collapse
Affiliation(s)
- C. Nirmala
- Department of Biotechnology, Paavai Engineering College, Paavai Institutions, Namakkal, Tamilnadu India
| | - M. Sridevi
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| | - A. Aishwarya
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| | - Richard Perara
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| | - Y. Sathiyanarayanan
- Department of Biotechnology, Vinayaka Mission’s Kirupananda Variyar Engineering College, Vinayaka Mission’s Research Foundation (Deemed to be University), Salem, Tamilnadu India
| |
Collapse
|
5
|
Nanobiotechnological approaches in anticoagulant therapy: The role of bioengineered silver and gold nanomaterials. Talanta 2023; 256:124279. [PMID: 36709710 DOI: 10.1016/j.talanta.2023.124279] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/25/2023]
Abstract
Nanotechnology is a novel area that has exhibited various remarkable applications, mostly in medicine and industry, due to the unique properties coming with the nanoscale size. One of the notable medical uses of nanomaterials (NMs) that attracted enormous attention recently is their significant anticoagulant activity, preventing or reducing coagulation of blood, decreasing the risk of strokes, heart attacks, and other serious conditions. Despite successful in vitro experiments, in vivo analyses are yet to be confirmed and further research is required to fully prove the safety and efficacy of nanoparticles (NPs) and to introduce them as valid alternatives to conventional ineffective anticoagulants with various shortcomings and side-effects. NMs can be synthesized through two main routes, i.e., the bottom-up route as a more preferable method, and the top-down route. In numerous studies, biological fabrication of NPs, especially metal NPs, is highly suggested given its eco-friendly approach, in which different resources can be employed such as plants, fungi, bacteria, and algae. This review discusses the green synthesis and characterization of silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) as two of the most useful metal NPs, and also their alloys in different studies focussing on their anticoagulant potential. Challenges and alternative approaches to the use of these NPs as anticoagulants have also been highlighted.
Collapse
|
6
|
Enhanced Production of Active Photosynthetic and Biochemical Molecules in Silybum marianum L. Using Biotic and Abiotic Elicitors in Hydroponic Culture. Molecules 2023; 28:molecules28041716. [PMID: 36838704 PMCID: PMC9967248 DOI: 10.3390/molecules28041716] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Elicitors are stressors that activate secondary pathways that lead to the increased production of bioactive molecules in plants. Different elicitors including the fungus Aspergillus niger (0.2 g/L), methyl jasmonate (MeJA, 100 µM/L), and silver nanoparticles (1 µg/L) were added, individually and in combination, in a hydroponic medium. The application of these elicitors in hydroponic culture significantly increased the concentration of photosynthetic pigments and total phenolic contents. The treatment with MeJA (methyl jasmonate) (100 µM/L) and the co-treatment of MeJA and AgNPs (silver nanoparticles) (100 µM/L + 1 µg/L) exhibited the highest chlorophyll a (29 µg g-1 FW) and chlorophyll b (33.6 µg g-1 FW) contents, respectively. The elicitor MeJA (100 µM/L) gave a substantial rise in chlorophyll a and b and total chlorophyll contents. Likewise, a significant rise in carotenoid contents (9 µg/g FW) was also observed when subjected to meJA (100 µM/L). For the phenolic content, the treatment with meJA (100 µM/L) proved to be very effective. Nevertheless, the highest production (431 µg/g FW) was observed when treated with AgNPs (1 µg/L). The treatments with various elicitors in this study had a significant effect on flavonoid and lignin content. The highest concentration of flavonoids and lignin was observed when MeJA (100 mM) was used as an elicitor, following a 72-h treatment period. Hence, for different plant metabolites, the treatment with meJA (100 µM/L) and a co-treatment of MeJA and AgNPs (100 µM/L + 1 µg/L) under prolonged exposure times of 120-144 h proved to be the most promising in the accretion of valuable bioactive molecules. The study opens new insights into the use of these elicitors, individually or in combination, by using different concentrations and compositions.
Collapse
|
7
|
Guo W, Li Y, An D, Zhou M, Xiong J, Jiang Z, Ding Y, Huang R, Miao W. Sodium ferulate-functionalized silver nanopyramides with synergistic antithrombotic activity for thromboprophylaxis. Colloids Surf B Biointerfaces 2022; 220:112925. [DOI: 10.1016/j.colsurfb.2022.112925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/28/2022] [Accepted: 10/10/2022] [Indexed: 11/27/2022]
|
8
|
Dalavi PA, V. AJ, Thomas S, Prabhu A, Anil S, Seong GH, Venkatesan J. Microwave-Assisted Biosynthesized Gold Nanoparticles Using Saussurea obvallata: Biocompatibility and Antioxidant Activity Assessment. BIONANOSCIENCE 2022; 12:741-751. [DOI: 10.1007/s12668-022-00994-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2022] [Indexed: 10/18/2022]
|
9
|
Kumar B, Smita K, Awasthi SK, Debut A, Cumbal L. Capsicum baccatum (Andean Chilli)-assisted phytosynthesis of silver nanoparticles and their H 2O 2 sensing ability. PARTICULATE SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1080/02726351.2021.2006381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Brajesh Kumar
- Department of Chemistry, TATA College, Kolhan University, Chaibasa, Jharkhand, India
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| | - Kumari Smita
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| | - Satish Kumar Awasthi
- Department of Chemistry, Chemical Biology Laboratory, University of Delhi, Delhi, India
| | - Alexis Debut
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| | - Luis Cumbal
- Centro de Nanociencia y Nanotecnologia, Universidad de las Fuerzas Armadas -ESPE, Sangolqui, Ecuador
| |
Collapse
|
10
|
Samanta S, Banerjee J, Das B, Mandal J, Chatterjee S, Ali KM, Sinha S, Giri B, Ghosh T, Dash SK. Antibacterial potency of cytocompatible chitosan-decorated biogenic silver nanoparticles and molecular insights towards cell-particle interaction. Int J Biol Macromol 2022; 219:919-939. [PMID: 35961557 DOI: 10.1016/j.ijbiomac.2022.08.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/23/2022] [Accepted: 08/07/2022] [Indexed: 02/06/2023]
Abstract
In the study, leaf extract of Carica papaya was utilized for the biogenic fabrication process of chitosan functionalized silver nanoparticles (Ag-Chito NPs). HRTEM analysis revealed that the fabricated Ag-Chito NPs was spherical in shape, with an average particle size of 13.31 (±0.07) nm. FTIR, UV-Vis, DLS, and other characterizations were also performed to analyze the diverse physicochemical properties of the particles. The antibacterial potency of the synthesized Ag-Chito NPs was tested against the two clinically isolated multidrug resistant uropathogenic bacterial strains, i.e. MLD 2 (Escherichia coli) and MLD 4 (Staphylococcus aureus) through MIC, MBC, time and concentration dependent killing kinetic assay, inhibition of biofilm formation assay, fluorescence and SEM imaging. Significantly, Ag-Chito NPs showed the highest sensitivity against the MLD 2 (MIC value of 12.5 μg/mL) strain, as compared to the MLD 4 (MIC value of 15 μg/mL) strain. From the hemolysis assay, it was revealed that Ag-Chito NPs exerted no significant toxicity up to 50 μg/mL against healthy human blood cells. Additionally, in silico analysis of chitosan (functionalized on the surface of AgNPs) and bacterial cell membrane protein also evidently suggested a strong interaction between Ag-Chito NPs and bacterial cells, which might be responsible for bacterial cell death.
Collapse
Affiliation(s)
- Sovan Samanta
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Jhimli Banerjee
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Balaram Das
- Department of Physiology, Belda College, Paschim Medinipur 721424, West Bengal, India
| | - Jayanta Mandal
- Department of Botany, Vivekananda Mahavidyalaya, Haripal, Hooghly 712405, West Bengal, India
| | | | - Kazi Monjur Ali
- Department of Nutrition, M.U.C Women's College, Purba Bardhaman 713104, West Bengal, India
| | - Sangram Sinha
- Department of Botany, Vivekananda Mahavidyalaya, Haripal, Hooghly 712405, West Bengal, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Totan Ghosh
- Department of Applied Chemistry, Maulana Abul Kalam Azad University of Technology, 741249, West Bengal, India
| | - Sandeep Kumar Dash
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India.
| |
Collapse
|
11
|
Phytofabrication of titanium-silver alloy nanoparticles (Ti-AgNPs) by Cola nitida for biomedical and catalytic applications. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.109357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
12
|
Alam MW, Al Qahtani HS, Aamir M, Abuzir A, Khan MS, Albuhulayqah M, Mushtaq S, Zaidi N, Ramya A. Phyto Synthesis of Manganese-Doped Zinc Nanoparticles Using Carica papaya Leaves: Structural Properties and Its Evaluation for Catalytic, Antibacterial and Antioxidant Activities. Polymers (Basel) 2022; 14:polym14091827. [PMID: 35566995 PMCID: PMC9103023 DOI: 10.3390/polym14091827] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/23/2022] [Accepted: 04/27/2022] [Indexed: 02/04/2023] Open
Abstract
The current study aims to synthesize bimetal oxide nanoparticles (zinc and manganese ions) using the carica papaya leaf extract. The crystallite size of the nanoparticle from X-ray diffraction method was found to be 19.23 nm. The nanosheet morphology was established from Scanning Electron Microscopy. Energy-dispersive X-ray diffraction was used to determine the elemental content of the synthesized material. The atomic percentage of Mn and Zn was found to be 15.13 and 26.63. The weight percentage of Mn and Zn was found to be 7.08 and 10.40. From dynamic light scattering analysis, the hydrodynamic diameter and zeta potential was found to be 135.1 nm and −33.36 eV. The 1,1-diphenyl-2-picryl hydroxyl radical, hydroxyl radical, FRAP, and hydrogen peroxide scavenging tests were used to investigate the antioxidant activity of Mn-Zn NPs. Mn-Zn NPs have substantial antioxidant properties. The photocatalytic activity of the Mn-Zn NPs was assessed by their ability to degrade Erichrome black T (87.67%), methyl red dye (78.54%), and methyl orange dye (69.79%). Additionally, it had significant antimicrobial action S. typhi showed a higher zone of inhibition 14.3 ± 0.64 mm. Mn-Zn nanoparticles were utilized as a catalyst for p-nitrophenol reduction. The bimetal oxide Mn-Zn NPs synthesized using C. papaya leaf extract exhibited promising dye degradation activity in wastewater treatment. Thus, the aforementioned approach will be a novel, low cost and ecofriendly approach.
Collapse
Affiliation(s)
- Mir Waqas Alam
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.); (A.A.); (M.A.); (N.Z.)
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
- Correspondence:
| | | | - Muhammad Aamir
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.); (A.A.); (M.A.); (N.Z.)
- Department of Basic Science, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Alaaedeen Abuzir
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.); (A.A.); (M.A.); (N.Z.)
- Department of Physics, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Muhammad Shuaib Khan
- International Research Center for Renewable Energy (IRCRE), State Key Laboratory of Multiphase Flow in Power Engineering (MPFE), Xi’an Jiaotong University, 28 West Xianning Road, Xi’an 710049, China;
| | - Maryam Albuhulayqah
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.); (A.A.); (M.A.); (N.Z.)
- Department of Biomedical Engineering, College of Engineering, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Shehla Mushtaq
- School of Natural Sciences, National University of Sciences & Technology, Islamabad 44000, Pakistan;
| | - Noushi Zaidi
- Al Bilad Bank Scholarly Chair for Food Security in Saudi Arabia, The Deanship of Scientific Research, The Vice Presidency for Graduate Studies and Scientific Research, King Faisal University, Al-Ahsa 31982, Saudi Arabia; (M.A.); (A.A.); (M.A.); (N.Z.)
- Department of Basic Science, Preparatory Year Deanship, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Ambikapathi Ramya
- Department of Agriculture Engineering, Rathinam Technical Campus, Coimbatore 641021, Tamilnadu, India;
| |
Collapse
|
13
|
SALEM FE, YEHIA HM, KORANY SM, ALARJANI KM, AL-MASOUD AH, ELKHADRAGY MF. Neurotherapeutic effects of prodigiosin conjugated with silver-nanoparticles in rats exposed to cadmium chloride-induced neurotoxicity. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.97322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Tran HDN, Moonshi SS, Xu ZP, Ta HT. Influence of nanoparticles on the haemostatic balance: between thrombosis and haemorrhage. Biomater Sci 2021; 10:10-50. [PMID: 34775503 DOI: 10.1039/d1bm01351c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Maintenance of a delicate haemostatic balance or a balance between clotting and bleeding is critical to human health. Irrespective of administration route, nanoparticles can reach the bloodstream and might interrupt the haemostatic balance by interfering with one or more components of the coagulation, anticoagulation, and fibrinolytic systems, which potentially lead to thrombosis or haemorrhage. However, inadequate understanding of their effects on the haemostatic balance, along with the fact that most studies mainly focus on the functionality of nanoparticles while forgetting or leaving behind their risk to the body's haemostatic balance, is a major concern. Hence, our review aims to provide a comprehensive depiction of nanoparticle-haemostatic balance interactions, which has not yet been covered. The synergistic roles of cells and plasma factors participating in haemostatic balance are presented. Possible interactions and interference of each type of nanoparticle with the haemostatic balance are comprehensively discussed, particularly focusing on the underlying mechanisms. Interactions of nanoparticles with innate immunity potentially linked to haemostasis are mentioned. Various physicochemical characteristics that influence the nanoparticle-haemostatic balance are detailed. Challenges and future directions are also proposed. This insight would be valuable for the establishment of nanoparticles that can either avoid unintended interference with the haemostatic balance or purposely downregulate/upregulate its key components in a controlled manner.
Collapse
Affiliation(s)
- Huong D N Tran
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | | | - Zhi Ping Xu
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia
| | - Hang Thu Ta
- Queensland Micro- and Nanotechnology, Griffith University, Nathan, Queensland 4111, Australia. .,Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland 4072, Australia.,School of Environment and Science, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
15
|
Wang D, Xue B, Wang L, Zhang Y, Liu L, Zhou Y. Fungus-mediated green synthesis of nano-silver using Aspergillus sydowii and its antifungal/antiproliferative activities. Sci Rep 2021; 11:10356. [PMID: 33990673 PMCID: PMC8121924 DOI: 10.1038/s41598-021-89854-5] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 04/28/2021] [Indexed: 02/04/2023] Open
Abstract
Due to the increasing demand for eco-friendly, cost-effective and safe technologies, biosynthetic metal nanoparticles have attracted worldwide attention. In this study, silver nanoparticles (AgNPs) were extracellularly biosynthesized using the culture supernatants of Aspergillus sydowii. During synthesis, color change was preliminarily judge of the generation of AgNPs, and the UV absorption peak at 420 nm further confirms the production of AgNPs. Transmission electron microscopy and X-ray diffraction were also used to identify the AgNPs. The results shows that AgNPs has crystalline cubic feature and is a polydisperse spherical particle with size between 1 and 24 nm. Three main synthesis factors (temperature, pH and substrate concentration) were optimized, the best synthesis conditions were as follows 50 °C, 8.0 and 1.5 mM. In the biological application of AgNPs, it shows effective antifungal activity against many clinical pathogenic fungi and antiproliferative activity to HeLa cells and MCF-7 cells in vitro. Our research finds a new path to biosynthesis of AgNPs in an eco-friendly manner, and bring opportunity for biomedical applications in clinic.
Collapse
Affiliation(s)
- Dongyang Wang
- grid.64924.3d0000 0004 1760 5735Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Baiji Xue
- School of Basic Medical Sciences, Baicheng Medical College, Baicheng, 137000 China
| | - Lin Wang
- grid.64924.3d0000 0004 1760 5735Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Yidi Zhang
- grid.64924.3d0000 0004 1760 5735Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Lijun Liu
- grid.64924.3d0000 0004 1760 5735Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| | - Yanmin Zhou
- grid.64924.3d0000 0004 1760 5735Department of Oral Implantology, Hospital of Stomatology, Jilin University, Changchun, 130021 China
| |
Collapse
|
16
|
Bhardwaj D, Singh R. Green biomimetic synthesis of Ag-TiO 2 nanocomposite using Origanum majorana leaf extract under sonication and their biological activities. BIORESOUR BIOPROCESS 2021; 8:1. [PMID: 38650216 PMCID: PMC10973754 DOI: 10.1186/s40643-020-00357-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 12/21/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Studies of plant extract-mediated synthesis of nanoparticles is extensively explored and studied in recent time due to eco-friendly, cost-effectiveness and minimal use of toxic chemicals for synthesis. In this study, the synthesis of Ag-TiO2 nanocomposites (NCs) was carried out using Origanum majorana leaf extract under ultrasound irradiation. Origanum majorana leaf extract plays an important role as reducing and capping agent in synthesis of Ag-TiO2 nanocomposites (NCs). The antimicrobial activities of synthesised Ag-TiO2 NCs have been studied against Gram-positive and Gram-negative bacteria. In addition to this, the antioxidant activity of green Ag-TiO2 NCs was also evaluated on the basis of free radical scavenging activity against 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid (ABTS), and hydrogen peroxide free radicals. RESULTS Green-synthesised Ag-TiO2 NCs were successfully characterised on the basis of UV-Vis spectrophotometer, Fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction analysis (XRD), scanning electron microscopy energy-dispersive X-ray spectroscopy (SEM-EDS) and transmission electron microscopy (TEM). The results revealed the spherical shape of nanocomposite with an average size 25-50 nm. The synthesised Ag-TiO2 NCs have showed significant antimicrobial activity against Escherichia coli, Bacillus subtilis and Aspergillus niger in comparison to TiO2 nanoparticles (NPs). The antioxidant evaluation of biomimetic synthesised Ag-TiO2 NCs also exhibited strong activity than TiO2 NPs and comparable to standard. CONCLUSION Green-synthesized Ag-TiO2 NCs provide a promising approach that can satisfy the requirement of large-scale industrial production bearing the advantage of low cost, eco-friendly and reproducible.
Collapse
Affiliation(s)
- Diksha Bhardwaj
- Department of Chemistry, School of Basic Sciences, Jaipur National University, 302017, Jaipur, Rajasthan, India
| | - Ruby Singh
- Department of Chemistry, School of Basic Sciences, Jaipur National University, 302017, Jaipur, Rajasthan, India.
| |
Collapse
|
17
|
Peneda Pacheco D, Suárez Vargas N, Visentin S, Petrini P. From tissue engineering to engineering tissues: the role and application of in vitro models. Biomater Sci 2021; 9:70-83. [DOI: 10.1039/d0bm01097a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review defines and explores the engineering process and the multifaceted potential and limitations of models within the biomedical field.
Collapse
Affiliation(s)
- Daniela Peneda Pacheco
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta” – Politecnico di Milano
- Italy
| | - Natalia Suárez Vargas
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta” – Politecnico di Milano
- Italy
| | - Sonja Visentin
- Molecular Biotechnology and Health Sciences Department
- University of Torino
- Torino
- Italy
| | - Paola Petrini
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta” – Politecnico di Milano
- Italy
- Inter-University Center for the Promotion of the 3Rs Principles in Teaching & Research (Centro 3R)
- Politecnico di Milano Unit
| |
Collapse
|
18
|
Jaffri SB, Ahmad KS, Thebo KH, Rehman F. Sustainability consolidation via employment of biomimetic ecomaterials with an accentuated photo-catalytic potential: emerging progressions. REV INORG CHEM 2020. [DOI: 10.1515/revic-2020-0018] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
Environmental pollution produced due to direct and untreated release of toxic organic pollutants such as dyes from the textile industries is not only effect the human life but also contaminates the ecosystem through different transferal modes. Green nanomaterials synthesized by using biological reducing agents offer sustainable, economically viable, facile, rapid and eco-friendly approach with photocatalytic degradation efficiencies >90% for organic dyes over the other traditional technologies. Current review has for the first time comprehensively abridged the suitability of green nanoparticles over chemogenic nanoparticles, the remediative role of these biogenic nanoparticles with major emphasis on the recent progressions in the photocatalysis of different toxic dyes and pollutants. Unlike physicochemically processed nanoparticles, biogenic nanoparticles has profound contribution to the sustainable development goals due to their cleaner and economical synthesis in addition to their detoxifying role. Meticulous review of the publications are strongly suggestive of the adoptability of biogenic nanoparticles at an implementation scale for their auspicious remediative role in addition to facile fabrication, natural reducing agents based synthetic mode, toxicity free and sustainable nature. However, the studies are also indicative of the need for utilization of biogenic synthesis at practical scale to derive maximum sustainability and ecological benefits.
Collapse
Affiliation(s)
- Shaan Bibi Jaffri
- Department of Environmental Sciences, Fatima Jinnah Women University , Rawalpindi , Pakistan
| | - Khuram Shahzad Ahmad
- Department of Environmental Sciences, Fatima Jinnah Women University , Rawalpindi , Pakistan
| | - Khalid Hussain Thebo
- University of Chinese Academy of Sciences (UCAS) , Beijing , People’s Republic of China
- Dr. M. Kazi Institute of Chemistry, University of Sindh , Jamshoro , Pakistan
| | - Faisal Rehman
- Department of Electrical Engineering , The Sukkur IBA University , Sukkur , Sindh , Pakistan
| |
Collapse
|
19
|
Hybrid Spider Silk with Inorganic Nanomaterials. NANOMATERIALS 2020; 10:nano10091853. [PMID: 32947954 PMCID: PMC7559941 DOI: 10.3390/nano10091853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/09/2020] [Accepted: 09/14/2020] [Indexed: 11/17/2022]
Abstract
High-performance functional biomaterials are becoming increasingly requested. Numerous natural and artificial polymers have already demonstrated their ability to serve as a basis for bio-composites. Spider silk offers a unique combination of desirable aspects such as biocompatibility, extraordinary mechanical properties, and tunable biodegradability, which are superior to those of most natural and engineered materials. Modifying spider silk with various inorganic nanomaterials with specific properties has led to the development of the hybrid materials with improved functionality. The purpose of using these inorganic nanomaterials is primarily due to their chemical nature, enhanced by large surface areas and quantum size phenomena. Functional properties of nanoparticles can be implemented to macro-scale components to produce silk-based hybrid materials, while spider silk fibers can serve as a matrix to combine the benefits of the functional components. Therefore, it is not surprising that hybrid materials based on spider silk and inorganic nanomaterials are considered extremely promising for potentially attractive applications in various fields, from optics and photonics to tissue regeneration. This review summarizes and discusses evidence of the use of various kinds of inorganic compounds in spider silk modification intended for a multitude of applications. It also provides an insight into approaches for obtaining hybrid silk-based materials via 3D printing.
Collapse
|
20
|
Multifunctional titanium dioxide nanoparticles biofabricated via phytosynthetic route using extracts of Cola nitida: antimicrobial, dye degradation, antioxidant and anticoagulant activities. Heliyon 2020; 6:e04610. [PMID: 32775756 PMCID: PMC7404533 DOI: 10.1016/j.heliyon.2020.e04610] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 12/01/2022] Open
Abstract
First study of phytosynthesis of TiO2 NPs using the leaf (KL), pod (KP), seed (KS) and seed shell (KSS) extracts of kola nut tree (Cola nitida) is herein reported. The TiO2 NPs were characterized and evaluated for their antimicrobial, dye degradation, antioxidant and anticoagulant activities. The nearly spherical-shaped particles had λmax of 272.5–275.0 nm with size range of 25.00–191.41 nm. FTIR analysis displayed prominent peaks at 3446.79, 1639.49 and 1382.96 cm−1, indicating the involvement of phenolic compounds and proteins in the phytosynthesis of TiO2 NPs. Both SAED and XRD showed bioformation of crystalline anatase TiO2 NPs which inhibited multidrug-drug resistant bacteria and toxigenic fungi. The catalytic activities of the particles were profound, with degradation of malachite green by 83.48–86.28 % without exposure to UV-irradiation, scavenging of DPPH and H2O2by 51.19–60.08 %, and 78.45–99.23 % respectively. The particles as well prevented the coagulation of human blood. In addition to the antimicrobial and dye-degrading activities, we report for the first time the H2O2 scavenging and anticoagulant activities of TiO2 NPs, showing that the particles can be useful for catalytic and biomedical applications.
Collapse
|
21
|
Ahsan A, Farooq MA, Ahsan Bajwa A, Parveen A. Green Synthesis of Silver Nanoparticles Using Parthenium Hysterophorus: Optimization, Characterization and In Vitro Therapeutic Evaluation. Molecules 2020; 25:molecules25153324. [PMID: 32707950 PMCID: PMC7435648 DOI: 10.3390/molecules25153324] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/09/2020] [Accepted: 07/17/2020] [Indexed: 01/31/2023] Open
Abstract
Traditional synthetic techniques for silver nanoparticles synthesis involve toxic chemicals that are harmful to humans as well as the environment. The green chemistry method for nanoparticle synthesis is rapid, eco-friendly, and less toxic as compared to the traditional methods. In the present research, we synthesized silver nanoparticles employing a green chemistry approach from Parthenium hysterophorus leaf extract. The optimized parthenium silver nanoparticles (PrSNPs) had a mean particle size of 187.87 ± 4.89 nm with a narrow size distribution of 0.226 ± 0.009 and surface charge −34 ± 3.12 mV, respectively. The physicochemical characterization of optimized SNPs was done by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Moreover, the transmission electron microscopy (TEM) analysis indicates the spherical shape of NPs with an average diameter of 20–25 nm. PrSNPs were investigated for in vitro antibacterial, antifungal, anti-inflammatory, and antioxidant properties, and showed excellent profiles. The cytotoxic activity was analyzed against two cancer cell lines, i.e., B16F10 and HepG2 for 24 h and 48 h. PrSNPs proved to be an excellent anticancer agent. These PrSNPs were also employed for the treatment of wastewater by monitoring the E. coli count, and it turned out to be reduced by 58%; hence these NPs could be used for disinfecting water. Hence, we can propose that PrSNPs could be a suitable candidate as an antimicrobial, antioxidant, anti-inflammatory, and antitumor agent for the treatment of several ailments.
Collapse
Affiliation(s)
- Anam Ahsan
- College of Animal Science & Veterinary Medicine, Shanxi Agricultural University, Taigu 030801, China;
| | - Muhammad Asim Farooq
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, 211100 Nanjing, China;
| | - Ali Ahsan Bajwa
- Weeds Research Unit, New South Wales Department of Primary Industries, Wagga Wagga, NSW 2650, Australia;
| | - Amna Parveen
- College of Pharmacy, Gachon University, Hambakmoero, Yeonsu-gu Incheon 406–799, Korea
- Correspondence: ; Tel.: +82-10-5925-2733
| |
Collapse
|
22
|
Kiseleva AP, Krivoshapkin PV, Krivoshapkina EF. Recent Advances in Development of Functional Spider Silk-Based Hybrid Materials. Front Chem 2020; 8:554. [PMID: 32695749 PMCID: PMC7338834 DOI: 10.3389/fchem.2020.00554] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Accepted: 05/29/2020] [Indexed: 01/10/2023] Open
Abstract
Silkworm silk is mainly known as a luxurious textile. Spider silk is an alternative to silkworm silk fibers and has much more outstanding properties. Silk diversity ensures variation in its application in nature and industry. This review aims to provide a critical summary of up-to-date fabrication methods of spider silk-based organic-inorganic hybrid materials. This paper focuses on the relationship between the molecular structure of spider silk and its mechanical properties. Such knowledge is essential for understanding the innate properties of spider silk as it provides insight into the sophisticated assembly processes of silk proteins into the distinct polymers as a basis for novel products. In this context, we describe the development of spider silk-based hybrids using both natural and bioengineered spider silk proteins blended with inorganic nanoparticles. The following topics are also covered: the diversity of spider silk, its composition and architecture, the differences between silkworm silk and spider silk, and the biosynthesis of natural silk. Referencing biochemical data and processes, this paper outlines the existing challenges and future outcomes.
Collapse
Affiliation(s)
| | | | - Elena F. Krivoshapkina
- Laboratory of Solution Chemistry of Advanced Materials and Technologies, ITMO University, St. Petersburg, Russia
| |
Collapse
|
23
|
Lateef A, Oladejo SM, Akinola PO, Aina DA, Beukes LS, Folarin BI, Gueguim-Kana EB. Facile synthesis of silver nanoparticles using leaf extract of Hyptis suaveolens (L.) Poit for environmental and biomedical applications. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/805/1/012042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
24
|
Oladipo IC, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Ogunsona SB, Irshad HM, Abbas SH. Characterization and biomedical application of phytosynthesized gold nanoparticles from Datura stramonium seed extract. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/805/1/012021] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Akintayo GO, Lateef A, Azeez MA, Asafa TB, Oladipo IC, Badmus JA, Ojo SA, Elegbede JA, Gueguim-Kana EB, Beukes LS, Yekeen TA. Synthesis, bioactivities and cytogenotoxicity of animal fur-mediated silver nanoparticles. ACTA ACUST UNITED AC 2020. [DOI: 10.1088/1757-899x/805/1/012041] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
26
|
Asghar MA, Yousuf RI, Shoaib MH, Asghar MA. Antibacterial, anticoagulant and cytotoxic evaluation of biocompatible nanocomposite of chitosan loaded green synthesized bioinspired silver nanoparticles. Int J Biol Macromol 2020; 160:934-943. [PMID: 32470586 DOI: 10.1016/j.ijbiomac.2020.05.197] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 05/16/2020] [Accepted: 05/22/2020] [Indexed: 11/17/2022]
Abstract
Present work reports the green synthesis of chitosan functionalized silver nanoparticles (CS-AgNPs) using ethanolic buds extract of Sygyzium aromaticum. CS-AgNPs were characterized physically, evaluated for antibacterial, anticoagulant and antiplatelet activities, and toxicity profile. The physical characterization of CS-AgNPs was done by UV/vis, SEM, TEM, FTIR and EDX. The sphericity was found uniform. FTIR and EXD showed noninterfering few impurities. The antibacterial activity against VRSA (ZI, 23.2 ± 0.51 mm) and MRSA (ZI, 25.8 ± 0.32 mm) were determined. The rise in bleeding and thromboplastin was observed highly significant while increased in prothrombin and activated partial prothrombin time in significant manner at both the doses of CS-AgNPs (0.025 mg/kg and 0.05 mg/kg). Reduction in the levels of fibrinogen was also highly significant. Platelet aggregation decreased at high dose of CS-AgNPs i.e. 55.14 ± 8.25% (arachidonic acid) and 13.06 ± 2.17% (collagen). Thrombin antithrombin (TAT) complex activity was found highest for CS-AgNPs. Cytotoxicity was assessed using HeLa cell lines (LC50; 125 μg/ml) and brine shrimp lethality tests (LC50; 518 μg/ml). The work suggests that green synthesized chitosan functionalized silver nanoparticles may be utilized as an effective antibacterial agent and anticoagulant with low toxicity. The current findings will open a new window for nanomedicine development and future clinical application.
Collapse
Affiliation(s)
- Muhammad Arif Asghar
- Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan
| | - Rabia Ismail Yousuf
- Department of Pharmaceutics and Bioavailability and Bioequivalence Research Facility, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad Harris Shoaib
- Department of Pharmaceutics and Bioavailability and Bioequivalence Research Facility, Faculty of Pharmacy and Pharmaceutical Sciences, University of Karachi, Karachi 75270, Pakistan.
| | - Muhammad Asif Asghar
- Food and Feed Safety Laboratory, Food and Marine Resources Research Centre, PCSIR Laboratories Complex, Shahrah-e-Salimuzzaman Siddiqui, Off University Road, 75280, Karachi, Sindh 74200, Pakistan
| |
Collapse
|
27
|
Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Adebayo EA, Beukes LS, Gueguim-Kana EB. Fungal xylanases-mediated synthesis of silver nanoparticles for catalytic and biomedical applications. IET Nanobiotechnol 2019; 12:857-863. [PMID: 30104463 DOI: 10.1049/iet-nbt.2017.0299] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Green synthesis of nanoparticles has fuelled the use of biomaterials to synthesise a variety of metallic nanoparticles. The current study investigates the use of xylanases of Aspergillus niger L3 (NEA) and Trichoderma longibrachiatum L2 (TEA) to synthesise silver nanoparticles (AgNPs). Characterisation of AgNPs was carried out using UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy, while their effectiveness as antimicrobial, antioxidant, catalytic, anticoagulant, and thrombolytic agents were determined. The colloidal AgNPs was brownish with surface plasmon resonance at 402.5 and 410 nm for NEA-AgNPs and TEA-AgNPs, respectively; while FTIR indicated that protein molecules were responsible for the capping and stabilisation of the nanoparticles. The spherical nanoparticles had size of 15.21-77.49 nm. The nanoparticles significantly inhibited the growth of tested bacteria (63.20-88.10%) and fungi (82.20-86.10%), and also scavenged DPPH (37.48-79.42%) and hydrogen peroxide (20.50-96.50%). In addition, the AgNPs degraded malachite green (78.97%) and methylene blue (25.30%). Furthermore, the AgNPs displayed excellent anticoagulant and thrombolytic activities using human blood. This study has demonstrated the potential of xylanases to synthesise AgNPs which is to the best of our knowledge the first record of such. The present study underscores the relevance of xylanases in nanobiotechnology.
Collapse
Affiliation(s)
- Joseph Adetunji Elegbede
- Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso Nigeria
| | - Agbaje Lateef
- Nanotechnology Research Group (NANO), Ladoke Akintola University of Technology, PMB 4000, Ogbomoso Nigeria.
| | - Musibau Adewuyi Azeez
- Nanotechnology Research Group (NANO), Ladoke Akintola University of Technology, PMB 4000, Ogbomoso Nigeria
| | - Tesleem Babatunde Asafa
- Department of Mechanical Engineering, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso Nigeria
| | - Taofeek Akangbe Yekeen
- Nanotechnology Research Group (NANO), Ladoke Akintola University of Technology, PMB 4000, Ogbomoso Nigeria
| | - Iyabo Christianah Oladipo
- Department of Science Laboratory Technology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Elijah Adegoke Adebayo
- Nanotechnology Research Group (NANO), Ladoke Akintola University of Technology, PMB 4000, Ogbomoso Nigeria
| | - Lorika Selomi Beukes
- Microscopy and Microanalysis Unit, University of KwaZulu-Natal School of Life Sciences, Pietermaritzburg, South Africa
| | - Evariste Bosco Gueguim-Kana
- Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, PieterMaritzburg 3209, South Africa
| |
Collapse
|
28
|
Azeez L, Adejumo AL, Lateef A, Adebisi SA, Adetoro RO, Adewuyi SO, Tijani KO, Olaoye S. Zero-valent silver nanoparticles attenuate Cd and Pb toxicities on Moringa oleifera via immobilization and induction of phytochemicals. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 139:283-292. [PMID: 30925438 DOI: 10.1016/j.plaphy.2019.03.030] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 06/09/2023]
Abstract
Potentials of zero-valent extract of cocoa pod mediated silver nanoparticles (AgNPs) for heavy metals (cadmium and lead) immobilization, attenuation of induced toxicities and influence on phytochemical contents in Moringa oleifera were investigated. M. oleifera seeds were planted in soil spiked and watered with water (control), 0.2 mg AgNPs, 0.5 mg CdCl2, 0.5 mg PbCl2, 0.2 mg AgNPs + 0.5 mg CdCl2, 0.2 mg AgNPs + 0.5 mg PbCl2, 0.2 mg AgNPs + 0.75 mg CdCl2 and 0.2 mg AgNPs + 0.75 mg PbCl2 per g soil designated as groups A, B, C, D, E, F, G and H respectively. Significant (p < 0.05) repression in shoot and root lengths, percentage germination, number of leaves, vigour and growth tolerance indices, relative water contents with attendant inhibition of photosynthetic pigments, total carotenoid contents, total flavonoid contents and total phenolic contents were obtained for M. oleifera planted on Cd and Pb spiked soil. There were marked decrease in ferric reducing, hydrogen peroxide scavenging and free radical scavenging activities with resultant significant increase in lipid peroxidation (MDA) levels for M. oleifera grown on Cd and Pb treated soil compared to control with Pb having more deleterious effects. Conversely, AgNPs significantly enhanced both physiological and biochemical parameters in M. oleifera over control and considerably attenuated suppressions of these parameters in M. oleifera induced by Cd and Pb. Results in this study have shown AgNPs as excellent immobilizing agents and outstanding modulators of heavy metal induced toxicities.
Collapse
Affiliation(s)
- Luqmon Azeez
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria.
| | - Ayoade L Adejumo
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| | - Agbaje Lateef
- Nanotechnology Research Group (NANO(+)), Laboratory of Industrial Microbiology and Nanobiotechnology, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB, 4000, Ogbomoso, Nigeria
| | - Segun A Adebisi
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| | - Rasheed O Adetoro
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| | | | - Kazeem O Tijani
- Department of Chemical Sciences, Fountain University, Osogbo, Nigeria
| | - Samuel Olaoye
- Department of Pure and Applied Chemistry, Osun State University, Osogbo, Nigeria
| |
Collapse
|
29
|
S.S. D, M.B. M, M.N. SK, Golla R, P. RK, S. D, Hosamani R. Antimicrobial, anticoagulant and antiplatelet activities of green synthesized silver nanoparticles using Selaginella (Sanjeevini) plant extract. Int J Biol Macromol 2019; 131:787-797. [DOI: 10.1016/j.ijbiomac.2019.01.222] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/16/2019] [Accepted: 01/16/2019] [Indexed: 12/27/2022]
|
30
|
Elegbede JA, Lateef A, Azeez MA, Asafa TB, Yekeen TA, Oladipo IC, Hakeem AS, Beukes LS, Gueguim‐Kana EB. Silver‐gold alloy nanoparticles biofabricated by fungal xylanases exhibited potent biomedical and catalytic activities. Biotechnol Prog 2019; 35:e2829. [DOI: 10.1002/btpr.2829] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/17/2019] [Accepted: 04/24/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Joseph A. Elegbede
- Laboratory of Industrial Microbiology and NanobiotechnologyLadoke Akintola University of Technology Ogbomoso Nigeria
- Department of Pure and Applied BiologyLadoke Akintola University of Technology Ogbomoso Nigeria
| | - Agbaje Lateef
- Laboratory of Industrial Microbiology and NanobiotechnologyLadoke Akintola University of Technology Ogbomoso Nigeria
- Department of Pure and Applied BiologyLadoke Akintola University of Technology Ogbomoso Nigeria
- Nanotechnology Research Group (NANO +)Ladoke Akintola University of Technology Ogbomoso Nigeria
| | - Musibau A. Azeez
- Department of Pure and Applied BiologyLadoke Akintola University of Technology Ogbomoso Nigeria
- Nanotechnology Research Group (NANO +)Ladoke Akintola University of Technology Ogbomoso Nigeria
| | - Tesleem B. Asafa
- Nanotechnology Research Group (NANO +)Ladoke Akintola University of Technology Ogbomoso Nigeria
- Department of Mechanical EngineeringLadoke Akintola University of Technology Ogbomoso Nigeria
| | - Taofeek A. Yekeen
- Department of Pure and Applied BiologyLadoke Akintola University of Technology Ogbomoso Nigeria
- Nanotechnology Research Group (NANO +)Ladoke Akintola University of Technology Ogbomoso Nigeria
| | - Iyabo C. Oladipo
- Nanotechnology Research Group (NANO +)Ladoke Akintola University of Technology Ogbomoso Nigeria
- Department of Science Laboratory TechnologyLadoke Akintola University of Technology Ogbomoso Nigeria
| | - Abbas S. Hakeem
- Center of Excellence in Nanotechnology (CENT)King Fahd University of Petroleum and Minerals Dhahran Saudi Arabia
| | - Lorika S. Beukes
- Microscopy and Microanalysis UnitUniversity of KwaZulu‐Natal PieterMaritzburg South Africa
| | - Evariste B. Gueguim‐Kana
- Department of Microbiology, School of Life SciencesUniversity of KwaZulu‐Natal PieterMaritzburg South Africa
| |
Collapse
|
31
|
Yekeen TA, Azeez MA, Akinboro A, Lateef A, Asafa TB, Oladipo IC, Oladokun SO, Ajibola AA. Safety evaluation of green synthesized Cola nitida pod, seed and seed shell extract-mediated silver nanoparticles (AgNPs) using an Allium cepa assay. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2018. [DOI: 10.1016/j.jtusci.2017.06.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Taofeek A. Yekeen
- Environmental Biology Unit, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Musibau A. Azeez
- Environmental Biology Unit, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Akeem Akinboro
- Environmental Biology Unit, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Agbaje Lateef
- Laboratory of Industrial Microbiology and Nanobiotechnology, Microbiology Unit, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Tesleem B. Asafa
- Department of Mechanical Engineering, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Iyabo C. Oladipo
- Department of Science Laboratory Technology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Samuel O. Oladokun
- Environmental Biology Unit, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| | - Adewumi A. Ajibola
- Environmental Biology Unit, Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000, Ogbomoso, Nigeria
| |
Collapse
|
32
|
Daphedar A, Taranath TC. Characterization and cytotoxic effect of biogenic silver nanoparticles on mitotic chromosomes of Drimia polyantha (Blatt. & McCann) Stearn. Toxicol Rep 2018; 5:910-918. [PMID: 30211013 PMCID: PMC6129697 DOI: 10.1016/j.toxrep.2018.08.018] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/07/2018] [Accepted: 08/29/2018] [Indexed: 11/02/2022] Open
Abstract
Noble metal nanoparticles afford a tool for investigation and its application in biological systems has had the greatest impact in biology and biomedicine. The present work reports an ecofriendly approach for the synthesis of silver nanoparticles (AgNPs) using an aqueous leaf extract of Getonia floribunda. The silver nanoparticles were characterized by using following instruments viz. UV-vis spectrophotometer, FTIR, XRD AFM and HR-TEM. The UV-vis spectrum showed a characteristic absorption peak at 404 nm. FTIR data reveals the possible involvement of various functional groups for reduction and biocapping of AgNPs. XRD data confirmed the crystalline nature of silver nanoparticles. Morphology, size and distribution of the AgNPs were determined by using AFM and HR-TEM. The average size of AgNPs ranges between 10 and 25 nm and are spherical in shape. The silver nanoparticles were evaluated for their cytotoxic effect on mitotic chromosomes of root meristematic cells of D. polyantha using different concentrations viz. 4, 8, 12 and 16 μg/ml at the time interval of 6, 12, 18 and 24 h. It is evident from the results that the higher concentration of AgNPs found to inhibit mitotic index and caused chromosomal abnormalities such as chromosomal bridge, sticky chromosomes, laggard anaphase, diagonal anaphase, c-metaphase and chromosomal breaks. Therefore, it can be concluded that higher concentrations of silver nanoparticles may induce significant inhibition of root meristem activity and causing DNA damage.
Collapse
Affiliation(s)
- Azharuddin Daphedar
- Environmental Biology Laboratory, P. G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| | - Tarikere C Taranath
- Environmental Biology Laboratory, P. G. Department of Studies in Botany, Karnatak University, Dharwad 580003, Karnataka, India
| |
Collapse
|
33
|
Lateef A, Folarin BI, Oladejo SM, Akinola PO, Beukes LS, Gueguim-Kana EB. Characterization, antimicrobial, antioxidant, and anticoagulant activities of silver nanoparticles synthesized from Petiveria alliacea L. leaf extract. Prep Biochem Biotechnol 2018; 48:646-652. [PMID: 29958093 DOI: 10.1080/10826068.2018.1479864] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Phytosynthesis of silver nanoparticles (AgNPs) using leaf extract of Petiveria alliacea (PA) was the focus of this research work. The PA-AgNPs were characterized by UV-Vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), transmission electron microscopy (TEM), and selected area electron diffraction (SAED) study. Studies were made on the AgNPs for antibacterial, antifungal, anticoagulant, free-radical scavenging, and hydrogen peroxide scavenging activities. The crystalline PA-AgNPs were monodispersed, with a size range of 16.70-33.74 nm and maximum absorption at 410 nm. FTIR analysis displayed prominent peaks at 3430.6, 1711.8, and 1165.9/cm, which showed the existence of phenolic compounds and proteins in the synthesis of AgNPs. PA-AgNPs was active against Escherichia coli, Klebsiella pneumoniae, and Staphylococcus aureus, with 100% inhibition. The PA-AgNPs also displayed good antifungal properties, as the concentrations of 100 and 150 µg/mL had 100% inhibition toward Aspergillus fumigatus and Aspergillus flavus. However, there was 66.67% inhibition of Aspergillus niger. It scavenged both DPPH and H2O2 by 70.69 and 89.02%, respectively. PA-AgNPs also prevented the coagulation of human blood. This study, being the first of its kind to use the leaf extract of PA for the synthesis of AgNPs has shown that PA-AgNPs can find biomedical applications.
Collapse
Affiliation(s)
- Agbaje Lateef
- a Department of Pure and Applied Biology , Ladoke Akintola University of Technology , Ogbomoso , Nigeria
| | - Bolaji I Folarin
- a Department of Pure and Applied Biology , Ladoke Akintola University of Technology , Ogbomoso , Nigeria
| | - Suliat M Oladejo
- a Department of Pure and Applied Biology , Ladoke Akintola University of Technology , Ogbomoso , Nigeria
| | - Paul O Akinola
- a Department of Pure and Applied Biology , Ladoke Akintola University of Technology , Ogbomoso , Nigeria
| | - Lorika S Beukes
- b Microscopy and Microanalysis Unit, School of Life Sciences, University of KwaZulu-Natal , Pietermaritzburg , South Africa
| | - Evariste B Gueguim-Kana
- c Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal , Pietermaritzburg , South Africa
| |
Collapse
|
34
|
Henam PS, Heikham FD, Henam SD. Sustainable Synthesis of Ultrasmall Biogenic Platinum Nanoparticles for Selective Aqueous Phase Conversion of Glucose and Effective Hydrogen Peroxide Decomposition. Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.7b05347] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
| | - Farida Devi Heikham
- Department of Chemistry, National Institute of Technology, Imphal-795001, India
| | - Sylvia Devi Henam
- Department of Physics, National Institute of Technology, Srinagar-190006, India
| |
Collapse
|
35
|
Lateef A, Ojo SA, Elegbede JA, Akinola PO, Akanni EO. Nanomedical Applications of Nanoparticles for Blood Coagulation Disorders. ENVIRONMENTAL NANOTECHNOLOGY 2018. [DOI: 10.1007/978-3-319-76090-2_8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
36
|
Adesanwo JK, Ogundele SB, Akinpelu DA, McDonald AG. Chemical Analyses, Antimicrobial and Antioxidant Activities of Extracts from Cola nitida Seed. JOURNAL OF EXPLORATORY RESEARCH IN PHARMACOLOGY 2017; 2:67-77. [DOI: 10.14218/jerp.2017.00015] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
37
|
Oladipo IC, Lateef A, Elegbede JA, Azeez MA, Asafa TB, Yekeen TA, Akinboro A, Gueguim-Kana EB, Beukes LS, Oluyide TO, Atanda OR. Enterococcus species for the one-pot biofabrication of gold nanoparticles: Characterization and nanobiotechnological applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 173:250-257. [PMID: 28601037 DOI: 10.1016/j.jphotobiol.2017.06.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 05/19/2017] [Accepted: 06/02/2017] [Indexed: 11/28/2022]
Abstract
In the current work, cell-free extracts of four strains of non-pathogenic Enterococcus species of food origin, were studied for the green synthesis of gold nanoparticles (AuNPs), and characterized by UV-Vis absorption spectroscopy, Fourier transform infrared spectroscopy (FTIR), and transmission electron microscopy (TEM). The AuNPs were evaluated for their Anopheles gambiae larvicidal, dye degradation, antioxidant and thrombolytic activities. The blue-black colloidal AuNPs which absorbed maximally at 549-552nm were nearly spherical in shape, and crystalline in nature with size of 8-50nm. The EDX spectra showed formation of AuNPs to the tune of 89-94%. The prominent FTIR peaks obtained at 3251-3410, 2088 and 1641-1643cm-1 alluded to the fact that proteins were involved in the biofabrication and capping of AuNPs. AuNPs degraded methylene blue and malachite green by 24.3-57.6%, and 88.85-97.36% respectively in 24h, whereas at 12h, larvicidal activities with LC50 of 21.28-42.33μg/ml were obtained. DPPH scavenging activities of 33.24-51.47% were obtained for the biosynthesized AuNPs. The AuNPs prevented coagulation of blood and also achieved 9.4-94.6% lysis of blood clot showing potential nanomedical applications. This study has presented an eco-friendly and economical synthesis of AuNPs by non-pathogenic strains of Enterococcus species for various nanobiotechnological applications.
Collapse
Affiliation(s)
- Iyabo Christianah Oladipo
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Science Laboratory Technology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Agbaje Lateef
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Laboratory of Industrial Microbiology and Nanobiotechnology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria.
| | - Joseph Adetunji Elegbede
- Laboratory of Industrial Microbiology and Nanobiotechnology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Musibau Adewuyi Azeez
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Tesleem Babatunde Asafa
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Mechanical Engineering, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Taofeek Akangbe Yekeen
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Akeem Akinboro
- Nanotechnology Research Group (NANO(+)), Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria; Department of Pure and Applied Biology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Evariste Bosco Gueguim-Kana
- Department of Microbiology, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, PieterMaritzburg 3209, South Africa
| | - Lorika Selomi Beukes
- Microscopy and Microanalysis Unit, School of Life Sciences, University of KwaZulu-Natal, Private Bag X01, Scottsville, PieterMaritzburg 3209, South Africa
| | - Tolulope Oluyomi Oluyide
- Department of Science Laboratory Technology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| | - Oluwatoyin Rebecca Atanda
- Department of Science Laboratory Technology, Ladoke Akintola University of Technology, PMB 4000 Ogbomoso, Nigeria
| |
Collapse
|
38
|
Azeez L, Lateef A, Adebisi SA. Silver nanoparticles (AgNPs) biosynthesized using pod extract of Cola nitida enhances antioxidant activity and phytochemical composition of Amaranthus caudatus Linn. APPLIED NANOSCIENCE 2017. [DOI: 10.1007/s13204-017-0546-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|