1
|
Dong Y, Yang J, Zhang J, Wei Q, Lv C, Jiang Y, Shi X, Zhou Z, Jia X, Hu Z, Zhang W, Li X. From agricultural waste residue to wealth support: A magnetically N-heterocyclic carbene functionalized corn cob cellulose as a new stabilizer for Pd catalyst in Suzuki reaction. Int J Biol Macromol 2024; 279:135386. [PMID: 39245122 DOI: 10.1016/j.ijbiomac.2024.135386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 08/20/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Because of eco-friendliness, biodegradability and ease of modification, cellulose is deemed as alternative to unrenewable petroleum resources. Nonetheless, it is more indispensable to exploit corn cob cellulose produced from agricultural waste residue as supportive materials in green catalysis. In this study, a new magnetically benzimidazole functionalized cellulose/Fe3O4 derived from corn cob cellulose as a stabilizer agent (Fe3O4@CL-NHC) was prepared, and palladium was immobilized on this stabilizer (Fe3O4@CL-NHC-Pd). The catalyst was fully characterized by different techniques including TEM, SEM, and XPS analyses, etc. The abundant hydroxyl groups of cellulose provided uniform dispersion and high stability of palladium, while Fe3O4 as a support offered simple magnetic separation. High efficiency (up to 99 %) was demonstrated by this biocatalyst under green conditions in relatively short reaction times towards Suzuki reactions. Due to collaborative interactions of N-heterocyclic carbene and hydroxyl groups with palladium, the synthesized complex prevented metal leaching effectively (<1 %). Moreover, the magnetic property of this catalyst (43.0 emu g-1) provides facile recovery of this composite from the reaction mixture with great ease for several times, which overcomes issues of complicated work-up separation. This work offers a promising avenue to enriching the application of biopolymer from agricultural residue in the potential organic transformations.
Collapse
Affiliation(s)
- Yahao Dong
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| | - Jie Yang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Jiaojiao Zhang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Qingcong Wei
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Chunna Lv
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Yuqin Jiang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Xiaofang Shi
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Zhangquan Zhou
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Xianbin Jia
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China
| | - Zhiguo Hu
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| | - Weiwei Zhang
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| | - Xinjuan Li
- Henan Key Laboratory of Green Chemistry, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Engineering Laboratory of Chemical Pharmaceutical and Biomedical Materials, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, PR China.
| |
Collapse
|
2
|
Li Z, Zhou G, Sun Y, Mao Y, Zeng F, Wang Z, Zhang Y, Li B. Eco-Friendly Cellulose-Supported Nickel Complex as an Efficient and Recyclable Heterogeneous Catalyst for Suzuki Cross-Coupling Reaction. Molecules 2024; 29:4525. [PMID: 39407457 PMCID: PMC11477910 DOI: 10.3390/molecules29194525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/20/2024] Open
Abstract
In this work, we applied commercially available 2-pyridinecarboxylic acid to modify cellulose by simple manipulations, and then anchored low-toxicity metal nickel onto the modified cellulose to prepare the heterogeneous catalyst (CL-AcPy-Ni). The obtained catalyst was characterized by FT-IR, TG-DSC, BET, XRD, SEM-EDS, ICP-OES, XPS, and GPC. The catalytic performance of CL-AcPy-Ni in the Suzuki cross-coupling reaction was investigated using 4-methyl iodobenzene and phenylboronic acid as the model substrates reacting in THF under 120 °C for 24 h. The catalytic ability of CL-AcPy-Ni for various halobenzenes and phenylboronic acid derivatives was also further investigated under optimal conditions and demonstrated good catalytic activity, and a series of diaryls were successfully synthesized. Finally, this green nickel-based catalyst could be reused for five successive cycles by simple centrifugation.
Collapse
Affiliation(s)
- Zhanyu Li
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Z.L.); (G.Z.); (Y.M.); (F.Z.); (Z.W.); (Y.Z.)
- Post-Doctoral Mobile Research Station of Forestry Engineering, Northeast Forestry University, Harbin 150040, China
| | - Guohao Zhou
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Z.L.); (G.Z.); (Y.M.); (F.Z.); (Z.W.); (Y.Z.)
| | - Yu Sun
- Heilongjiang Ecological Engineering College, Harbin 150025, China;
| | - Yingning Mao
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Z.L.); (G.Z.); (Y.M.); (F.Z.); (Z.W.); (Y.Z.)
| | - Fanxiang Zeng
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Z.L.); (G.Z.); (Y.M.); (F.Z.); (Z.W.); (Y.Z.)
| | - Zhihui Wang
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Z.L.); (G.Z.); (Y.M.); (F.Z.); (Z.W.); (Y.Z.)
| | - Yuanyuan Zhang
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Z.L.); (G.Z.); (Y.M.); (F.Z.); (Z.W.); (Y.Z.)
| | - Bin Li
- College of Chemistry Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China; (Z.L.); (G.Z.); (Y.M.); (F.Z.); (Z.W.); (Y.Z.)
- Post-Doctoral Mobile Research Station of Forestry Engineering, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
3
|
Banerjee D, Adhikary S, Bhattacharya S, Chakraborty A, Dutta S, Chatterjee S, Ganguly A, Nanda S, Rajak P. Breaking boundaries: Artificial intelligence for pesticide detection and eco-friendly degradation. ENVIRONMENTAL RESEARCH 2024; 241:117601. [PMID: 37977271 DOI: 10.1016/j.envres.2023.117601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/21/2023] [Accepted: 11/03/2023] [Indexed: 11/19/2023]
Abstract
Pesticides are extensively used agrochemicals across the world to control pest populations. However, irrational application of pesticides leads to contamination of various components of the environment, like air, soil, water, and vegetation, all of which build up significant levels of pesticide residues. Further, these environmental contaminants fuel objectionable human toxicity and impose a greater risk to the ecosystem. Therefore, search of methodologies having potential to detect and degrade pesticides in different environmental media is currently receiving profound global attention. Beyond the conventional approaches, Artificial Intelligence (AI) coupled with machine learning and artificial neural networks are rapidly growing branches of science that enable quick data analysis and precise detection of pesticides in various environmental components. Interestingly, nanoparticle (NP)-mediated detection and degradation of pesticides could be linked to AI algorithms to achieve superior performance. NP-based sensors stand out for their operational simplicity as well as their high sensitivity and low detection limits when compared to conventional, time-consuming spectrophotometric assays. NPs coated with fluorophores or conjugated with antibody or enzyme-anchored sensors can be used through Surface-Enhanced Raman Spectrometry, fluorescence, or chemiluminescence methodologies for selective and more precise detection of pesticides. Moreover, NPs assist in the photocatalytic breakdown of various organic and inorganic pesticides. Here, AI models are ideal means to identify, classify, characterize, and even predict the data of pesticides obtained through NP sensors. The present study aims to discuss the environmental contamination and negative impacts of pesticides on the ecosystem. The article also elaborates the AI and NP-assisted approaches for detecting and degrading a wide range of pesticide residues in various environmental and agrecultural sources including fruits and vegetables. Finally, the prevailing limitations and future goals of AI-NP-assisted techniques have also been dissected.
Collapse
Affiliation(s)
- Diyasha Banerjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Satadal Adhikary
- Post Graduate Department of Zoology, A. B. N. Seal College, Cooch Behar, West Bengal, India.
| | | | - Aritra Chakraborty
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sohini Dutta
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sovona Chatterjee
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Abhratanu Ganguly
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Sayantani Nanda
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| | - Prem Rajak
- Department of Animal Science, Kazi Nazrul University, Asansol, West Bengal, India.
| |
Collapse
|
4
|
Stiriba SE, Bahsis L, Benhadria E, Oudghiri K, Taourirte M, Julve M. Cellulose Acetate-Supported Copper as an Efficient Sustainable Heterogenous Catalyst for Azide-Alkyne Cycloaddition Click Reactions in Water. Int J Mol Sci 2023; 24:ijms24119301. [PMID: 37298251 DOI: 10.3390/ijms24119301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/22/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
A new sustainable heterogeneous catalyst for copper-catalyzed azide-alkyne cycloaddition reaction (CuAAC) was investigated. The preparation of the sustainable catalyst was carried out through the complexation reaction between the polysaccharide cellulose acetate backbone (CA) and copper(II) ions. The resulting complex [Cu(II)-CA] was fully characterized by using different spectroscopic methods such as Fourier-transform infrared spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Energy Dispersive X-ray (EDX), Ultraviolet-visible (UV-vis), and Inductively Coupled Plasma (ICP) analyses. The Cu(II)-CA complex exhibits high activity in the CuAAC reaction for substituted alkynes and organic azides, leading to a selective synthesis of the corresponding 1,4-isomer 1,2,3-triazoles in water as a solvent and working at room temperature. It is worth noting that this catalyst has several advantages from the sustainable chemistry point of view including no use of additives, biopolymer support, reactions carried out in water at room temperature, and easy recovery of the catalyst. These characteristics make it a potential candidate not only for the CuAAC reaction but also for other catalytic organic reactions.
Collapse
Affiliation(s)
- Salah-Eddine Stiriba
- Instituto de Ciencia Molecular/ICMol, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
- Laboratoire de Chimie Analytique et Moléculaire (LCAM), Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi 46030, Morocco
| | - Lahoucine Bahsis
- Laboratoire de Chimie Analytique et Moléculaire (LCAM), Faculté Polydisciplinaire de Safi, Université Cadi Ayyad, Safi 46030, Morocco
| | - Elhouceine Benhadria
- Département de Chimie, Faculté des Sciences d'El Jadida, Université Chouaïb Doukkali, El Jadida 24000, Morocco
| | - Khaoula Oudghiri
- Laboratoire de Recherche en Développement Durable et Santé, Faculté des Sciences et Techniques de Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Moha Taourirte
- Laboratoire de Recherche en Développement Durable et Santé, Faculté des Sciences et Techniques de Marrakech, Université Cadi Ayyad, Marrakech 40000, Morocco
| | - Miguel Julve
- Instituto de Ciencia Molecular/ICMol, Universidad de Valencia, C/Catedrático José Beltrán 2, 46980 Paterna, Valencia, Spain
| |
Collapse
|
5
|
Yaduvanshi N, Jaiswal S, Tewari S, Shukla S, Mohammad Wabaidur S, Dwivedi J, Sharma S. Palladium Nanoparticles and their Composites: Green Synthesis and Applications with Special Emphasis to Organic Transformations. INORG CHEM COMMUN 2023. [DOI: 10.1016/j.inoche.2023.110600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
6
|
Dadigala R, Bandi R, Alle M, Park CW, Han SY, Kwon GJ, Lee SH. Effective fabrication of cellulose nanofibrils supported Pd nanoparticles as a novel nanozyme with peroxidase and oxidase-like activities for efficient dye degradation. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129165. [PMID: 35739705 DOI: 10.1016/j.jhazmat.2022.129165] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/13/2022] [Accepted: 05/14/2022] [Indexed: 06/15/2023]
Abstract
Nanozyme-based dye degradation methods are promising for the remediation of water pollution. Though Pd nanoparticles (PdNPs) are known to act as nanozymes, their dye degradation capability has not been investigated. Low nanozyme activities, easy aggregation, difficulties in recovery and reuse are the major challenges in achieving this. For the first time, cellulose nanofibrils-supported PdNPs (PdNPs/PCNF) as a novel nanozyme with good peroxidase and oxidase-mimicking activities and easy recyclability is explored for dye degradation. An efficient and rapid method of PdNPs/PCNF preparation was demonstrated by adjusting the pH and microwave irradiation. Enzyme kinetic studies revealed good kinetic parameters and specific activities of 415 and 277 U/g for peroxidase and oxidase, respectively. PdNPs/PCNF offered 99.64% degradation of methylene blue within 12 min (0.468 min-1) with 0.4 M H2O2 at pH 5.0. Mechanistic studies revealed the involvement of hydroxyl and superoxide radicals. Owing to the network-like structure of PCNF, films and foams were prepared, their dye degradation potentials were compared, and recyclability was tested. Successful degradation of mixed dye solutions and spiked real water samples was achieved and a continuous flow method was demonstrated using a foam-packed column.
Collapse
Affiliation(s)
- Ramakrishna Dadigala
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Rajkumar Bandi
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Madhusudhan Alle
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Chan-Woo Park
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Song-Yi Han
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Gu-Joong Kwon
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Kangwon Institute of Inclusion Technology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Seung-Hwan Lee
- Institute of Forest Science, Kangwon National University, Chuncheon 24341, Republic of Korea; Department of Forest Biomaterials Engineering, College of Forest and Environmental Sciences, Kangwon National University, Chuncheon 24341, Republic of Korea.
| |
Collapse
|
7
|
Sarker MZ, Rahman MM, Minami H, Suzuki T, Rahman MA, Khan A, Hoque SM, Ahmad H. Magnetite incorporated amine-functional SiO2 support for bimetallic Cu-Ni alloy nanoparticles produced highly effective nanocatalyst. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
8
|
Xu Z, Xu J, Zhou Y, Huang Y, Li Y. Pd immobilized on EDTA-modified cellulose: synthesis, characterization, and catalytic application in inter- and intramolecular Heck reactions and Larock reactions. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04766-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
9
|
Alqarni SA. A Review on Conducting Polymers for Colorimetric and Fluorescent Detection of Noble Metal Ions (Ag +, Pd 2+, Pt 2+/4+, and Au 3+). Crit Rev Anal Chem 2022; 54:389-400. [PMID: 35652899 DOI: 10.1080/10408347.2022.2079945] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Conducting polymers (CPs) are conductive materials composed of organic polymers. CPs have excellent properties such as easy synthesis and effortless fabrication, tunable electrical property, high environmental stability, high mechanical and optical properties. These unique properties have attracted researchers to discover a wide variety of uses, such as batteries, solar cells, sensors, supercapacitors, electrochromic devices, and biochemical applications. Although CPs have many limitations in their pristine form, hybridization with other materials overcomes these limitations. Here in this review article, we discuss different CPs based chemosensors for colorimetric and fluorimetric detection and determination of noble metal ions (Ag+, Pd2+, Pt2+/4+, and Au3+) in different environmental, agricultural, and biological samples. Further, the sensing performances of these chemosensors have been compared and discussed. We hope this article will help the readers with the future design of CPs based optical sensor (colorimetric and fluorescent) for detecting noble metal cations.
Collapse
Affiliation(s)
- Sara A Alqarni
- Department of Chemistry, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| |
Collapse
|
10
|
Abstract
Among transition metal nanoparticles, palladium nanoparticles (PdNPs) are recognized for their high catalytic activity in a wide range of organic transformations that are of academic and industrial importance. The increased interest in environmental issues has led to the development of various green approaches for the preparation of efficient, low-cost and environmentally sustainable Pd-nanocatalysts. Environmentally friendly solvents, non-toxic reducing reagents, biodegradable capping and stabilizing agents and energy-efficient synthetic methods are the main aspects that have been taken into account for the production of Pd nanoparticles in a green approach. This review provides an overview of the fundamental approaches used for the green synthesis of PdNPs and their catalytic application in sustainable processes as cross-coupling reactions and reductions with particular attention afforded to the recovery and reuse of the palladium nanocatalyst, from 2015 to the present.
Collapse
|