1
|
Shi JY, Gu KH, Yang SM, Wei WH, Dai X. Effects of 6-methoxybenzoxazolinone (6-MBOA) on animals: state of knowledge and open questions. THE SCIENCE OF NATURE - NATURWISSENSCHAFTEN 2024; 111:45. [PMID: 39141101 DOI: 10.1007/s00114-024-01930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
6-methoxybenzoxazolinone (6-MBOA) is a secondary plant metabolite predominantly found in monocotyledonous plants, especially Gramineae. In damaged tissue, 2-β-D-glucopyranosyloxy-4-hydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA-Glc) is hydrolyzed to DIMBOA, which spontaneously decomposes into 6-MBOA. It is commonly detected in plants consumed by voles and livestock and can also be present in cereal-based products. Discovered in 1955, this compound is renowned for its ability to trigger animal reproduction. However, there is a lack of research on its functional and mechanistic properties, leaving much of their potential unexplored. This review aimed to comprehensively summarize the effects of 6-MBOA on animal reproduction and human health, as well as its defensive role against herbivores. Studies have shown that 6-MBOA effectively inhibits the digestion, development, growth, and reproduction of insects. 6-MBOA may act as a partial agonist of melatonin and exert a regulatory role in mammalian reproduction, resulting in either promoting or inhibiting effects. 6-MBOA has been theorized to possess anti-tumor, anti-AIDS, anti-anxiety, and weight-loss effects in humans. However, insufficient attention has been paid to its defense properties against mammalian herbivores, and the mechanisms underlying its effects on mammalian reproduction remain unclear. In addition, research on its impact on human health is still in its preliminary stages. The review emphasizes the need for further systematic and comprehensive research on 6-MBOA to fully understand its diverse functions. Elucidating the effects of 6-MBOA on animal reproduction, adaptation, and human health would advance our understanding of plant-herbivore coevolution and the influence of environmental factors on animal population dynamics. Furthermore, this knowledge could potentially promote its application in human health and animal husbandry.
Collapse
Affiliation(s)
- Jia-Yi Shi
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, China
| | - Ke-Han Gu
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, China
| | - Sheng-Mei Yang
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, China
| | - Wan-Hong Wei
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, China
| | - Xin Dai
- College of Bioscience and Biotechnology, Yangzhou University, 48 East Wenhui Road, Yangzhou, 225009, China.
| |
Collapse
|
2
|
Sawabe Y, Yamano H, Koike S, Kobayashi Y. Isolation and characterization of tannin-degrading bacteria from the rumen of wild Hokkaido sika deer (Cervus nippon yezoensis). Anim Sci J 2024; 95:e13918. [PMID: 38286762 DOI: 10.1111/asj.13918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/05/2023] [Accepted: 01/05/2024] [Indexed: 01/31/2024]
Abstract
We isolated tannin-degrading bacteria from the rumen of wild Hokkaido sika deer and characterized their phylogeny and tannase activity in relation to sample sources. The condensed tannin level was higher in all deer rumen samples (n = 20) than in forage-fed cattle rumen samples (n = 6), whereas no hydrolyzable tannins were detected in any of the rumen samples. Rumen bacteria were enumerated on nonselective brain heart infusion (BHI) agar medium and then transferred onto tannic acid-containing BHI agar plates to screen for bacteria only showing growth (tannin-resistant bacteria) and those showing both growth and a clear zone (tannin-degrading bacteria). Summer samples provided only tannin-resistant bacteria, none of which showed tannin-degrading activity. Although winter samples also provided tannin-resistant bacteria, most isolates exhibited tannin-degrading activity. A total of 70 isolates exhibiting tannin-degrading activity were classified as Streptococcus bovis group based on 16S rRNA gene sequencing and further classified into two groups, either group A or group B. Group A consisted of isolates showing weak tannase activity, whereas group B included a majority of the isolates exhibiting high tannase activity. These results suggest that wild Hokkaido sika deer develop tannin-degrading Streptococcus in the rumen during winter, which allows access to woody food materials rich in tannins.
Collapse
Affiliation(s)
- Yoshihiko Sawabe
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Hidehisa Yamano
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Satoshi Koike
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| | - Yasuo Kobayashi
- Graduate School of Agriculture, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Du Y, Zhang Y, Lou Z, Wang T. Unrecognized diversity, genetic structuring, and phylogeography of the genus Triplophysa (Cypriniformes: Nemacheilidae) sheds light on two opposite colonization routes during Quaternary glaciation that occurred in the Qilian Mountains. Ecol Evol 2023; 13:e10003. [PMID: 37091569 PMCID: PMC10116023 DOI: 10.1002/ece3.10003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 03/21/2023] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
In recent years, the influence of historical geological and climatic events on the evolution of flora and fauna in the Tibetan Plateau has been a hot research topic. The Qilian Mountain region is one of the most important sources of biodiversity on the Qinghai-Tibet Plateau. Many species existed in the region during the Pleistocene glacial oscillation, and the complex geographical environment provided suitable conditions for the survival of local species. The shrinkage, expansion, and transfer of the distribution range and population size of species have significant effects on genetic diversity and intraspecific differentiation. To reveal the effects of geological uplift and climate oscillation on the evolution of fish populations in the Qilian Mountains, we investigated the genetic structure, phylogenetic relationship, and phylogeographical characteristics of genus Triplophysa species in the Qilian Mountains using the mitochondrial DNA gene (COI), three nuclear genes (RAG1, sRH, and Myh6) and 11 pairs of nuclear microsatellite markers. We collected 11 species of genus Triplophysa living in the Qilian Mountains, among which Triplophysa hsutschouensis and Triplophysa papillosolabiata are widely distributed in the rivers on the northern slope of the Qilian Mountains. There was a high degree of lineage differentiation among species, and the genetic diversity of endemic species was low. The different geographical groups of T. papillosolabiata presented some allogeneic adaptation and differentiation, which was closely related to the changes in the river system. Except for the population expansion event of T. hsutschouensis during the last glacial period of the Qinghai-Tibet Plateau (0.025 MYA), the population sizes of other plateau loach species remained stable without significant population expansion. Starting from the east and west sides of the Qilian Mountains, T. hsutschouensis, and T. papillosolabiata showed two species colonization routes in opposite directions. The geological events of the uplift of the Qinghai-Tibet Plateau and the climatic oscillation of the Quaternary glaciation had a great influence on the genetic structure of the plateau loach in the Qilian Mountains, which promoted the genetic differentiation of the plateau loach and formed some unique new species. The results of this study have important guiding significance for fish habitat protection in the Qilian Mountains.
Collapse
Affiliation(s)
- Yan‐yan Du
- Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics BreedingGansu Fisheries Research InstituteLanzhouChina
| | - Yan‐ping Zhang
- Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics BreedingGansu Fisheries Research InstituteLanzhouChina
| | - Zhong‐yu Lou
- Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics BreedingGansu Fisheries Research InstituteLanzhouChina
| | - Tai Wang
- Gansu Key Laboratory of Cold Water Fishes Germplasm Resources and Genetics BreedingGansu Fisheries Research InstituteLanzhouChina
| |
Collapse
|
4
|
Yi X, Guo J, Wang M, Xue C, Ju M. Inter-trophic Interaction of Gut Microbiota in a Tripartite System. MICROBIAL ECOLOGY 2021; 81:1075-1087. [PMID: 33190166 DOI: 10.1007/s00248-020-01640-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/05/2020] [Indexed: 06/11/2023]
Abstract
Gut microbiota can be transmitted either environmentally or socially and vertically at intraspecific level; however, whether gut microbiota interact along trophic levels has been largely overlooked. Here, we characterized the gut bacterial communities of weevil larvae of Curculio arakawai that infest acorns of Mongolian oak (Quercus mongolica) as well as acorn-eating mammals, Siberian chipmunk (Tamias sibiricus), to test whether consumption of seed-borne larvae remodels the gut bacterial communities of T. sibiricus. Ingestion of weevil larvae of C. arakawai significantly altered the gut bacterial communities of T. sibiricus. Consequently, T. sibiricus fed larvae of C. arakawai showed higher capability to counter the negative effects of tannins, in terms of body weight maintenance, acorn consumption, N content in feces, urine pH, and blood ALT activity. Our results may first show that seed-borne insects as hidden players have a potential to alter the gut microbiota of seed predators in the tripartite system.
Collapse
Affiliation(s)
- Xianfeng Yi
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China.
| | - Jiawei Guo
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Minghui Wang
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Chao Xue
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| | - Mengyao Ju
- College of Life Sciences, Qufu Normal University, Qufu, 273165, China
| |
Collapse
|
5
|
Hu S, Sun S, Fu D, Lü J, Wang X, Yu Y, Dong L, Chen S, Ye H. Migration sources and pathways of the pest species Sogatella furcifera in Yunnan, China, and across the border inferred from DNA and wind analyses. Ecol Evol 2020; 10:8235-8250. [PMID: 32788975 PMCID: PMC7417236 DOI: 10.1002/ece3.6531] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/20/2020] [Accepted: 06/03/2020] [Indexed: 01/31/2023] Open
Abstract
The migration sources and pathways of Sogatella furcifera (Horváth) in topologically complex regions like Yunnan, China, and adjacent montane areas have long been a challenging task and a bottleneck in effective pest forecast and control. The present research reinvestigated this issue using a combination of mtDNA and long-term historical wind field data in an attempt to provide new insights. Genetic analyses showed that the 60 populations of S. furcufera collected across Myanmar, Thailand, Laos, Vietnam, Yunnan, Guizhou, and Sichuan lack genetic structure and geographic isolation, while spatial analysis of haplotype and diversity indices discovered geographic relevance between populations. Migration rate analysis combined with high-resolution 10-year wind field analysis detected the following migration sources, pathways, and impacted areas which could explain the outbreak pattern in Yunnan. (a) Dominating stepwise northward migrations originated from northern Indochina, southern Yunnan, and central-eastern Yunnan, impacting their northern areas. (b) Concurring summer-autumn southward (return) migration originated from nearly all latitude belts of Sichuan and Yunnan mainly impacting central and southern Yunnan. (c) Regular eastward and summer-autumn westward migrations across Yunnan. The northward migration reflects the temporal rhythm of gradual outbreaks from the south to the north in a year, while the return migration may explain the repeated or very severe outbreaks in the impacted areas. To form a better pest forecast and control network, attention must also be paid to the northern part of Yunnan to suppress the impact of return migration in summers and autumns.
Collapse
Affiliation(s)
- Shao‐Ji Hu
- Yunnan Key Laboratory of International Rivers and Transboundary Eco‐securityYunnan UniversityKunmingChina
- Institute of International Rivers and Eco‐securityYunnan UniversityKunmingChina
| | - Shan‐Shan Sun
- Department of Atmospheric SciencesSchool of Resource Environment and Earth ScienceYunnan UniversityKunmingChina
| | - Da‐Ying Fu
- School of Life SciencesSouthwest Forest UniversityKunmingChina
| | - Jian‐Ping Lü
- Plant Protection and Quarantine Station of Yunnan ProvinceKunmingChina
| | - Xue‐Ying Wang
- School of Life SciencesYunnan UniversityKunmingChina
| | - Yan‐Ping Yu
- School of Life SciencesYunnan UniversityKunmingChina
| | - Li‐Min Dong
- School of Life SciencesYunnan UniversityKunmingChina
| | - Sui‐Yun Chen
- Biocontrol Engineering Research Centre of Crop Disease and PestYunnan UniversityKunmingChina
- Biocontrol Engineering Research Centre of Plant Disease and PestYunnan UniversityKunmingChina
| | - Hui Ye
- School of AgricultureYunnan UniversityKunmingChina
| |
Collapse
|
6
|
Evidence for different bottom-up mechanisms in wood mouse (Apodemus sylvaticus) and bank vole (Myodes glareolus) population fluctuations in Southern Norway. MAMMAL RES 2020. [DOI: 10.1007/s13364-020-00476-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
AbstractAnimals that feed on forest tree seeds, such as Apodemus mice, increase in number after a mast year. At high latitudes, there is a similar delayed response by Myodes voles to high seed crops of bilberry (Vaccinium myrtillus), but here the mechanism is hypothesised to be increased forage quality, caused by a trade-off between reproduction and defence in the plants. Both Apodemus mice and Myodes voles eat berries, but only the latter feed on bilberry plants. Hence, only Myodes voles are predicted to respond to bilberry peak years. A second prediction is that the effect should last longer than any possible direct impacts of bilberries, because the plants would not be able to rebuild their defence until the succeeding summer. During a 21-year snap-trapping study of small rodents in Southern Norway, the spring population of bank vole (Myodes glareolus) was positively related to a bilberry seed index of the previous year, indicating increased winter survival, whereas the wood mouse (Apodemus sylvaticus) was not affected. Also the succeeding autumn population index of the bank vole was positively related to the bilberry index of the previous year, even when controlling for spring population levels. The wood mouse population responded to mast years of sessile oak (Quercus petraea), whereas seeds of Norway spruce (Picea abies) seemed to have some impact on both species. It is concluded that these rodents are mainly limited from below, but by different mechanisms for the granivorous and the herbivorous species.
Collapse
|
7
|
Boo GH, Qiu YX, Kim JY, Ang PO, Bosch S, De Clerck O, He P, Higa A, Huang B, Kogame K, Liu SL, van Nguyen T, Suda S, Terada R, Miller KA, Boo SM. Contrasting patterns of genetic structure and phylogeography in the marine agarophytes Gelidiophycus divaricatus and G. freshwateri (Gelidiales, Rhodophyta) from East Asia. JOURNAL OF PHYCOLOGY 2019; 55:1319-1334. [PMID: 31390066 DOI: 10.1111/jpy.12910] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2018] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
The evolutionary and population demographic history of marine red algae in East Asia is poorly understood. Here, we reconstructed the phylogeographies of two upper intertidal species endemic to East Asia, Gelidiophycus divaricatus and G. freshwateri. Phylogenetic and phylogeographic inferences of 393 mitochondrial cox1, 128 plastid rbcL, and 342 nuclear ITS2 sequences were complemented with ecological niche models. Gelidiophycus divaricatus, a southern species adapted to warm water, is characterized by a high genetic diversity and a strong geographical population structure, characteristic of stable population sizes and sudden reduction to recent expansion. In contrast, G. freshwateri, a northern species adapted to cold temperate conditions, is genetically relatively homogeneous with a shallow population structure resulting from steady population growth and recent equilibrium. The overlap zone of the two species roughly matches summer and winter isotherms, indicating that surface seawater temperature is a key feature influencing species range. Unidirectional genetic introgression was detected at two sites on Jeju Island where G. divaricatus was rare while G. freshwateri was common, suggesting the occurrence of asymmetric natural hybrids, a rarely reported event for rhodophytes. Our results illustrate that Quaternary climate oscillations have left strong imprints on the current day genetic structure and highlight the importance of seawater temperature and sea level change in driving speciation in upper intertidal seaweed species.
Collapse
Affiliation(s)
- Ga Hun Boo
- University Herbarium, University of California, 1001 Valley Life Sciences Building #2465, Berkeley, California, 94720, USA
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Ying-Xiong Qiu
- Key Laboratory of Conservation Biology for Endangered Wildlife of the Ministry of Education, and College of Life Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Jung Yeon Kim
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| | - Put O Ang
- Marine Science Laboratory, The Chinese University of Hong Kong, Shatin N.T, Hong Kong SAR, China
| | - Samuel Bosch
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281 (S8), 9000, Gent, Belgium
| | - Olivier De Clerck
- Phycology Research Group and Center for Molecular Phylogenetics and Evolution, Ghent University, Krijgslaan 281 (S8), 9000, Gent, Belgium
| | - Peimin He
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, 201306, China
| | - Atsushi Higa
- Okinawa Environmental Analysis Center Co. Ltd, 3-7-24 Maehara, Ginowan, Okinawa, 901-2215, Japan
| | - Bangqin Huang
- Key Laboratory of Coastal Ecology and Environmental Studies, Xiamen University, Fujian, China
| | - Kazuhiro Kogame
- Department of Natural History Sciences, Faculty of Science, Hokkaido University, Sapporo, 060-0810, Japan
| | - Shao-Lun Liu
- Department of Life Science, Tunghai University, Taichung, 40704, Taiwan
| | - Tu van Nguyen
- Department of Ecology, Institute of Tropical Biology, Vietnam Academy of Science and Technology, 85 Tran Quoc Toan, District 3, Ho Chi Minh City, Vietnam
| | - Shoichiro Suda
- Department of Chemistry, Biology & Marine Science, Faculty of Science, University of the Ryukyus, Okinawa, 903-0213, Japan
| | - Ryuta Terada
- United Graduate School of Agricultural Sciences, Kagoshima University, Korimoto 1-21-24, Kagoshima, 890-0065, Japan
| | - Kathy Ann Miller
- University Herbarium, University of California, 1001 Valley Life Sciences Building #2465, Berkeley, California, 94720, USA
| | - Sung Min Boo
- Department of Biology, Chungnam National University, Daejeon, 34134, Korea
| |
Collapse
|
8
|
Windley HR, Shimada T. Cold temperature improves tannin tolerance in a granivorous rodent. J Anim Ecol 2019; 89:471-481. [PMID: 31580494 DOI: 10.1111/1365-2656.13119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 09/18/2019] [Indexed: 11/28/2022]
Abstract
The foraging ecology of mammalian herbivores is regulated in part by their ability to detoxify plant secondary metabolites (PSM). Ambient temperature has been shown to alter liver function in rodents and the toxicity of some PSMs, but little is known about the physiological and nutritional consequences of consuming PSMs at different ambient temperatures. Furthermore, the effect of ambient temperature on the response of mammals to the most ubiquitous class of PSM, tannins, is unknown. We measured the effect of temperature and tannin intake on liver function, and the subsequent effect on the tannin tolerance of wild Japanese wood mice, Apodemus speciosus. The experiment involved acclimation to one of two ambient temperatures (10°C or 20°C) followed by acclimation to a diet of acorns (6.2% tannin DW). Liver function was measured both before and after acclimation to acorns by measuring the clearance time of a hypnotic agent. Finally, the mice were fed only acorns in a 5-day feeding experiment to assess their tolerance to tannin in the diet. Acclimation to acorns had a significant effect on liver function, but the direction of this effect was dependent on ambient temperature. Acorn consumption improved the liver function of wood mice at 10°C, but reduced liver function at 20°C, revealing a complex relationship between ambient temperature and tannin intake on liver function. Furthermore, mice with better liver function, indicated by faster clearance of the hypnotic agent, exhibited higher protein digestibility on an acorn-only diet, indicative of higher tannin tolerance. These results suggest that environmental temperature plays a significant role in the tolerance of A. speciosus to tannins, providing new insight into their seasonal feeding behaviour and winter ecology. We contend that cold-induced tannin tolerance may help to explain the population dynamics of mammalian herbivores with seasonal changes in the tannin content of their diet, and inform predictions about the response of these animals to a changing climate.
Collapse
Affiliation(s)
- Hannah R Windley
- Wildlife Ecology Laboratory, Department of Wildlife Biology, Forestry and Forest Products Research Institute, Tsukuba, Japan
| | - Takuya Shimada
- Wildlife Ecology Laboratory, Department of Wildlife Biology, Forestry and Forest Products Research Institute, Tsukuba, Japan
| |
Collapse
|
9
|
Salgueiro P, Serrano C, Gomes B, Alves J, Sousa CA, Abecasis A, Pinto J. Phylogeography and invasion history of Aedes aegypti, the Dengue and Zika mosquito vector in Cape Verde islands (West Africa). Evol Appl 2019; 12:1797-1811. [PMID: 31548858 PMCID: PMC6752157 DOI: 10.1111/eva.12834] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 05/14/2019] [Accepted: 06/01/2019] [Indexed: 12/25/2022] Open
Abstract
Aedes-borne arboviruses have spread globally with outbreaks of vast impact on human populations and health systems. The West African archipelago of Cape Verde had its first outbreak of Dengue in 2009, at the time the largest recorded in Africa, and was one of the few African countries affected by the Zika virus epidemic. Aedes aegypti was the mosquito vector involved in both outbreaks. We performed a phylogeographic and population genetics study of A. aegypti in Cape Verde in order to infer the geographic origin and evolutionary history of this mosquito. These results are discussed with respect to the implications for vector control and prevention of future outbreaks. Mosquitoes captured before and after the Dengue outbreak on the islands of Santiago, Brava, and Fogo were analyzed with two mitochondrial genes COI and ND4, 14 microsatellite loci and five kdr mutations. Genetic variability was comparable to other African populations. Our results suggest that A. aegypti invaded Cape Verde at the beginning of the Holocene from West Africa. Given the historic importance of Cape Verde in the transatlantic trade of the 16th-17th centuries, a possible contribution to the genetic pool of the founding populations in the New World cannot be fully discarded. However, contemporary gene flow with the Americas is likely to be infrequent. No kdr mutations associated with pyrethroid resistance were detected. The implications for vector control and prevention of future outbreaks are discussed.
Collapse
Affiliation(s)
- Patrícia Salgueiro
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT)Universidade Nova de Lisboa (UNL)LisboaPortugal
| | - Célia Serrano
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT)Universidade Nova de Lisboa (UNL)LisboaPortugal
| | - Bruno Gomes
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT)Universidade Nova de Lisboa (UNL)LisboaPortugal
- Oswaldo Cruz Institute (IOC)Fundação Oswaldo Cruz (FIOCRUZ)Rio de JaneiroBrasil
| | - Joana Alves
- Direção Geral de Saúde/Instituto Nacional de Saúde Pública, Ministério da Saúde de Cabo VerdePraiaCabo Verde
| | - Carla A. Sousa
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT)Universidade Nova de Lisboa (UNL)LisboaPortugal
| | - Ana Abecasis
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT)Universidade Nova de Lisboa (UNL)LisboaPortugal
| | - João Pinto
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT)Universidade Nova de Lisboa (UNL)LisboaPortugal
| |
Collapse
|
10
|
Kołodziej‐Sobocińska M, Stojak J, Kondzior E, Ruczyńska I, Wójcik JM. Genetic diversity of two mitochondrial DNA genes inSpirometra erinaceieuropaei(Cestoda: Diphyllobothridae) from Poland. J ZOOL SYST EVOL RES 2019. [DOI: 10.1111/jzs.12319] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
| | - Joanna Stojak
- Mammal Research Institute Polish Academy of Sciences Białowieża Poland
| | - Eliza Kondzior
- Mammal Research Institute Polish Academy of Sciences Białowieża Poland
| | - Iwona Ruczyńska
- Mammal Research Institute Polish Academy of Sciences Białowieża Poland
| | - Jan M. Wójcik
- Mammal Research Institute Polish Academy of Sciences Białowieża Poland
| |
Collapse
|
11
|
Li J, Jin Q, Zhu G, Jiang C, Zhang A. Phylogeography of Dendrolimus punctatus (Lepidoptera: Lasiocampidae): Population differentiation and last glacial maximum survival. Ecol Evol 2019; 9:7480-7496. [PMID: 31346417 PMCID: PMC6635939 DOI: 10.1002/ece3.5278] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 04/12/2019] [Accepted: 04/15/2019] [Indexed: 11/10/2022] Open
Abstract
Although the Masson pine moth, Dendrolimus punctatus, is one of the most destructive forest pest insects and is an endemic condition in China, we still do not fully understand the patterns of how its distribution range varies in response to Quaternary climatic oscillations. Here, we sequenced one maternally inherited mitochondrial gene (COI) and biparentally inherited nuclear data (ITS1 and ITS2) among 23 natural populations across the entire range of the species in China. A total of 51 mitotypes and 38 ribotypes were separately obtained using mtDNA and ITS1 data. Furthermore, significant phylogeographical structure (N ST > G ST, p < 0.01) were detected. The spatial distribution of mitotypes implied that two distinct groups existed in the species: one in the southwest distribution, including 10 locations, and the other located in the northeast region of China. It is suggested, therefore, that each group was derived from ancestors that occupied different isolated refugia during previous periods, possibly last glacial maximum. Mismatch distribution and Bayesian population dynamics analysis suggested the population size underwent sudden expansion, which is consistent with the results of ecological niche modeling. As a typical phytophagous insect, the history of population expansion was in accordance with the host plants, providing abundant food resources and habitat. Intraspecific success rate of barcoding identification was lower than interspecific ones, indicating a level of difficulty in barcoding individuals from different populations. However, it still provides an early insight into the pattern of genetic diversity within a species. OPEN RESEARCH BADGES This article has been awarded an Open Data and Open Materials. All materials and data are publicly accessible via the Open Science Framework at https://doi.org/10.5061/dryad.2df87g2. Learn more about the Open Practices badges from the Center for Open Science: https://osf.io/tvyxz/wiki.
Collapse
Affiliation(s)
- Jing Li
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Qian Jin
- College of Life SciencesCapital Normal UniversityBeijingChina
- Suqian Institute of Agricultural SciencesJiangsu Academy of Agricultural SciencesSuqianChina
| | - Geng‐ping Zhu
- College of Life SciencesTianjin Normal UniversityTianjinChina
| | - Chong Jiang
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Ai‐bing Zhang
- College of Life SciencesCapital Normal UniversityBeijingChina
| |
Collapse
|
12
|
Honorio Coronado EN, Dexter KG, Hart ML, Phillips OL, Pennington RT. Comparative phylogeography of five widespread tree species: Insights into the history of western Amazonia. Ecol Evol 2019; 9:7333-7345. [PMID: 31380054 PMCID: PMC6662334 DOI: 10.1002/ece3.5306] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 04/20/2019] [Accepted: 05/04/2019] [Indexed: 11/26/2022] Open
Abstract
Various historical processes have been put forth as drivers of patterns in the spatial distribution of Amazonian trees and their population genetic variation. We tested whether five widespread tree species show congruent phylogeographic breaks and similar patterns of demographic expansion, which could be related to proposed Pleistocene refugia or the presence of geological arches in western Amazonia. We sampled Otoba parvifolia/glycycarpa (Myristicaceae), Clarisia biflora, Poulsenia armata, Ficus insipida (all Moraceae), and Jacaratia digitata (Caricaceae) across the western Amazon Basin. Plastid DNA (trnH-psbA; 674 individuals from 34 populations) and nuclear ribosomal internal transcribed spacers (ITS; 214 individuals from 30 populations) were sequenced to assess genetic diversity, genetic differentiation, population genetic structure, and demographic patterns. Overall genetic diversity for both markers varied among species, with higher values in populations of shade-tolerant species than in pioneer species. Spatial analysis of molecular variance (SAMOVA) identified three genetically differentiated groups for the plastid marker for each species, but the areas of genetic differentiation were not concordant among species. Fewer SAMOVA groups were found for ITS, with no detectable genetic differentiation among populations in pioneers. The lack of spatially congruent phylogeographic breaks across species suggests no common biogeographic history of these Amazonian tree species. The idiosyncratic phylogeographic patterns of species could be due instead to species-specific responses to geological and climatic changes. Population genetic patterns were similar among species with similar biological features, indicating that the ecological characteristics of species impact large-scale phylogeography.
Collapse
Affiliation(s)
| | - Kyle G. Dexter
- School of GeoSciencesUniversity of EdinburghEdinburghUK
- Royal Botanic Garden EdinburghEdinburghUK
| | | | | | - R. Toby Pennington
- Royal Botanic Garden EdinburghEdinburghUK
- Department of GeographyUniversity of ExeterExeterUK
| |
Collapse
|
13
|
Sato JJ, Shimada T, Kyogoku D, Komura T, Uemura S, Saitoh T, Isagi Y. Dietary niche partitioning between sympatric wood mouse species (Muridae: Apodemus) revealed by DNA meta-barcoding analysis. J Mammal 2018. [DOI: 10.1093/jmammal/gyy063] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jun J Sato
- Faculty of Life Science and Technology, Fukuyama University, Higashimura-cho, Aza, Sanzo, Fukuyama, Japan
| | - Takuya Shimada
- Tohoku Research Center, Forestry and Forest Products Research Institute, Nabeyashiki, Shimo-Kuriyagawa, Morioka, Japan
| | - Daisuke Kyogoku
- Laboratory of Forest Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Taketo Komura
- Laboratory of Forest Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Shigeru Uemura
- Field Science Center, Hokkaido University, Tokuda, Nayoro, Japan
| | - Takashi Saitoh
- Field Science Center, Hokkaido University, Kita-11, Nishi-10, Sapporo, Japan
| | - Yuji Isagi
- Laboratory of Forest Biology, Division of Forest and Biomaterials Science, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
14
|
Jafari H, Fatahnia F, Khatibjoo A, Taasoli G, Fazaeli H, Varmaghany S. Effect of oak (Quercus persica) acorn level on apparent digestibility, ruminal fermentation, nitrogen balance and urinary purine derivatives in pregnant goats. J Anim Physiol Anim Nutr (Berl) 2018; 102:882-891. [PMID: 29740883 DOI: 10.1111/jpn.12913] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 04/05/2018] [Indexed: 11/29/2022]
Abstract
The aim of this experiment was to investigate the effect of dietary oak (Quercus persica) acorn (OA) level on dry matter intake (DMI), apparent nutrient digestibility, nitrogen (N) utilization, ruminal fermentation, protozoa population and urinary purine derivatives (PD) during the last 60 days of goat pregnancy. Twenty-four multiparous pregnant goats (41.7 ± 2.3 kg BW) were assigned to one of three experimental diets consisted of control diet (C, without OA) and diets containing 20 (OA20 ) or 40 g/100 g of OA (OA40 ) on a DM basis in a completely randomized block design. Goats fed OA40 had lower DMI (p < .01), DM (p < .01), OM (p < .01) and NDF (p < .05) digestibility, ruminal NH3 -N concentration (p < .01), N intake (p < .01) and N retention (p < .01). Crude protein digestibility and ruminal acetate and total volatile fatty acid (VFA) concentration were lower in animals fed OA-contained diets (p < .01), whereas ruminal propionate concentration was higher in goats fed the C diet (p < .01). Animals fed OA40 had higher faecal N excretion and lower urinary N excretion (p < .01). Urinary PD was lower in goats fed diets containing OA in relation to those fed the C diet (p < .01). Total protozoa population decreased linearly with increasing OA level in the diet (p < .05). These results suggest that feeding OA, especially high level, has negative impacts on DMI, nutrient digestibility, VFA concentration, N retention and urinary PD excretion that may have adverse effects on metabolism and performance of pregnant goats.
Collapse
Affiliation(s)
- H Jafari
- Animal Science Research Department, Ilam Agricultural and Natural Resources Research and Education Center, AREEO, Ilam, Iran.,Department of Animal Science, Ilam University, Ilam, Iran
| | - F Fatahnia
- Department of Animal Science, Ilam University, Ilam, Iran
| | - A Khatibjoo
- Department of Animal Science, Ilam University, Ilam, Iran
| | - G Taasoli
- Department of Animal Science, Ilam University, Ilam, Iran
| | - H Fazaeli
- Animal Science Research Institute of Iran, AREEO, Karaj, Iran
| | - S Varmaghany
- Animal Science Research Department, Ilam Agricultural and Natural Resources Research and Education Center, AREEO, Ilam, Iran
| |
Collapse
|
15
|
Effects of tannins on population dynamics of sympatric seed-eating rodents: the potential role of gut tannin-degrading bacteria. Oecologia 2018; 187:667-678. [PMID: 29736862 DOI: 10.1007/s00442-018-4151-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2017] [Accepted: 04/23/2018] [Indexed: 10/17/2022]
Abstract
Chemical compounds in seeds exert negative and even lethal effects on seed-consuming animals. Tannin-degrading bacteria in the guts of small mammals have been associated with the ability to digest seeds high in tannins. At the population level, it is not known if tannins influence rodent species differently according to the composition of their gut microbiota. Here, we test the hypothesis that sympatric tree species with different tannins exert contrasting effects on population fluctuations of seed-eating rodents. We collected a 10-year dataset of seed crops and rodent population sizes and sequenced 16S rRNA of gut microbes. The abundance of Apodemus peninsulae was not correlated with seed crop of either high-tannin Quercus mongolica or low-tannin Corylus mandshurica, but positively correlated with their total seed crops. Abundance of Tamias sibiricus was negatively correlated with seed crop of Q. mongolica but positively correlated with C. mandshurica. Body masses of A. peninsulae and T. sibiricus decreased when given high-tannin food; however, only the survival of T. sibiricus was reduced. The abundance of microbial genus Lactobacillus exhibiting potential tannin-degrading activity was significantly higher in A. peninsulae than in T. sibiricus. Our results suggest that masting tree species with different tannin concentrations may differentially influence population fluctuations of seed predators hosting different gut microbial communities. Although the conclusion is based on just correlational analysis of a short time-series, seeds with different chemical composition may influence rodent populations differently. Future work should examine these questions further to understand the complex interactions among seeds, gut microbes, and animal populations.
Collapse
|
16
|
Suzuki TA. Links between Natural Variation in the Microbiome and Host Fitness in Wild Mammals. Integr Comp Biol 2018; 57:756-769. [PMID: 28992216 DOI: 10.1093/icb/icx104] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Recent studies in model organisms have shown that compositional variation in the microbiome can affect a variety of host phenotypes including those related to digestion, development, immunity, and behavior. Natural variation in the microbiome within and between natural populations and species may also affect host phenotypes and thus fitness in the wild. Here, I review recent evidence that compositional variation in the microbiome may affect host phenotypes and fitness in wild mammals. Studies over the last decade indicate that natural variation in the mammalian microbiome may be important in the assistance of energy uptake from different diet types, detoxification of plant secondary compounds, protection from pathogens, chemical communication, and behavior. I discuss the importance of combining both field observations and manipulative experiments in a single system to fully characterize the functions and fitness effects of the microbiome. Finally, I discuss the evolutionary consequences of mammal-microbiome associations by proposing a framework to test how natural selection on hosts is mediated by the microbiome.
Collapse
Affiliation(s)
- Taichi A Suzuki
- Department of Integrative Biology, Museum of Vertebrate Zoology, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
17
|
Main effects of human saliva on flavour perception and the potential contribution to food consumption. Proc Nutr Soc 2018; 77:423-431. [DOI: 10.1017/s0029665118000113] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Whole saliva is a mixture composed by the secretions of the major and minor salivary glands and the crevicular fluid, bacteria, cells and food debris. Its properties (flow and composition) are highly intra- and inter-individually dependent and reflect the health status of individuals. Saliva plays a key role in the eating process and on the perception of flavour. Flavour corresponds to the combined effect of taste sensations, aromatics and chemical feeling factors evoked by food in the oral cavity. It is a key determinant of food consumption and intake. This review summarises the evidence about the role of saliva in flavour perception and its potential contribution to food intake. All in all, evidence on the relationships between salivary parameters and both food perception and feeding behaviour is presented. This review emphasises that new studies accounting for the effect of salivary constituents on flavour alterations due to diseases (i.e. cancer, obesity and diabetes) are lacking and are expected in the incoming years.
Collapse
|
18
|
Study of human salivary proline-rich proteins interaction with food tannins. Food Chem 2018; 243:175-185. [DOI: 10.1016/j.foodchem.2017.09.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022]
|
19
|
Yoshikawa T, Masaki T, Motooka M, Hino D, Ueda K. Highly toxic seeds of the Japanese star anise
Illicium anisatum
are dispersed by a seed‐caching bird and a rodent. Ecol Res 2018. [DOI: 10.1007/s11284-018-1564-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Tetsuro Yoshikawa
- Department of Forest VegetationForestry and Forest Products Research Institute1 MatsunosatoTsukubaIbaraki305‐8687Japan
- Forest Biology Lab, Graduate School of AgricultureKyoto UniversityKitashirakawa Oiwake‐cho, Sakyo‐kuKyoto606‐8502Japan
| | - Takashi Masaki
- Department of Forest VegetationForestry and Forest Products Research Institute1 MatsunosatoTsukubaIbaraki305‐8687Japan
| | - Makoto Motooka
- Department of Life ScienceRikkyo University3‐34‐1 Nishi‐ikebukuro, Toshima‐kuTokyo171‐8501Japan
| | - Daichi Hino
- Department of Life ScienceRikkyo University3‐34‐1 Nishi‐ikebukuro, Toshima‐kuTokyo171‐8501Japan
| | - Keisuke Ueda
- Department of Life ScienceRikkyo University3‐34‐1 Nishi‐ikebukuro, Toshima‐kuTokyo171‐8501Japan
| |
Collapse
|
20
|
Espinosa-Gómez FC, Serio-Silva JC, Santiago-García JD, Sandoval-Castro CA, Hernández-Salazar LT, Mejía-Varas F, Ojeda-Chávez J, Chapman CA. Salivary tannin-binding proteins are a pervasive strategy used by the folivorous/frugivorous black howler monkey. Am J Primatol 2018; 80. [PMID: 29363818 DOI: 10.1002/ajp.22737] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 12/01/2017] [Accepted: 12/21/2017] [Indexed: 01/15/2023]
Abstract
Dietary tannins can affect protein digestion and absorption, be toxic, and influence food selection by being astringent and bitter tasting. Animals that usually ingest tannins may regularly secrete tannin-binding salivary proteins (TBSPs) to counteract the negative effects of tannins or TBSPs production can be induced by a tannin-rich diet. In the wild, many primates regularly eat a diet that contains tannin-rich leaves and unripe fruit and it has been speculated that they have the physiological ability to cope with dietary tannins; however, details of their strategy remains unclear. Our research details the salivary protein composition of wild and zoo-living black howler monkeys (Alouatta pigra) feeding on natural versus manufactured low-tannin diets, and examines differences in TBSPs, mainly proline-rich proteins (PRPs), to determine whether production of these proteins is dependent on the tannin content of their food. We measured the pH, flow rate, and concentration of total protein and trichloroacetic acid soluble proteins (an index of PRPs) in saliva. Howler monkeys produced slightly alkaline saliva that may aid in the binding interaction between tannin and salivary proteins. We used gel electrophoresis to describe the salivary protein profile and this analysis along with a tannin-binding assay allowed us to detect several TBSPs in all individuals. We found no differences in the characteristics of saliva between wild and zoo-living monkeys. Our results suggest that black howler monkeys always secrete TBSPs even when fed on foods low in tannins. This strategy of constantly using this salivary anti-tannin defense enables them to obtain nutrients from plants that sometimes contain high levels of tannins and may help immediately to overcome the astringent sensation of their food allowing howler monkeys to eat tanniferous plants.
Collapse
Affiliation(s)
- Fabiola Carolina Espinosa-Gómez
- McGill School of Environment and Department of Anthropology, McGill University, Montreal, Quebec, Canada.,Red de Biología y Conservación de Vertebrados, Instituto de Ecología AC, Xalapa, México
| | | | | | | | | | - Fernando Mejía-Varas
- Departamento de Servicios Veterinarios, Zoológico de Zacango, Estado de México, México
| | - Javier Ojeda-Chávez
- Dirección General de Zoológicos y Vida Silvestre, Zoológico de Chapultepec, Ciudad de México, México
| | - Colin Austin Chapman
- McGill School of Environment and Department of Anthropology, McGill University, Montreal, Quebec, Canada.,Wildlife Conservation Society, Bronx, New York.,Section of Social Systems Evolution, Primate Research Institute, Kyoto University, Kyoto, Japan
| |
Collapse
|
21
|
Luo Y, Agnarsson I. Global mtDNA genetic structure and hypothesized invasion history of a major pest of citrus, Diaphorina citri (Hemiptera: Liviidae). Ecol Evol 2017; 8:257-265. [PMID: 29321868 PMCID: PMC5756889 DOI: 10.1002/ece3.3680] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 10/19/2017] [Accepted: 11/08/2017] [Indexed: 11/23/2022] Open
Abstract
The Asian citrus psyllid Diaphorina citri Kuwayama is a key pest of citrus as the vector of the bacterium causing the “huanglongbing” disease (HLB). To assess the global mtDNA population genetic structure, and possible dispersal history of the pest, we investigated genetic variation at the COI gene collating newly collected samples with all previously published data. Our dataset consists of 356 colonies from 106 geographic sites worldwide. High haplotype diversity (H‐mean = 0.702 ± 0.017), low nucleotide diversity (π‐mean = 0.003), and significant positive selection (Ka/Ks = 32.92) were observed. Forty‐four haplotypes (Hap) were identified, clustered into two matrilines: Both occur in southeastern and southern Asia, North and South America, and Africa; lineages A and B also occur in eastern and western Asia, respectively. The most abundant haplotypes were Hap4 in lineage A (35.67%), and Hap9 in lineage B (41.29%). The haplotype network identified them as the ancestral haplotypes within their respective lineages. Analysis of molecular variance showed significant genetic structure (FST = 0.62, p < .0001) between the lineages, and population genetic analysis suggests geographic structuring. We hypothesize a southern and/or southeastern Asia origin, three dispersal routes, and parallel expansions of two lineages. The hypothesized first route involved the expansion of lineage B from southern Asia into North America via West Asia. The second, the expansion of some lineage A individuals from Southeast Asia into East Asia, and the third involved both lineages from Southeast Asia spreading westward into Africa and subsequently into South America. To test these hypotheses and gain a deeper understanding of the global history of D. citri, more data‐rich approaches will be necessary from the ample toolkit of next‐generation sequencing (NGS). However, this study may serve to guide such sampling and in the development of biological control programs against the global pest D. citri.
Collapse
Affiliation(s)
- Yufa Luo
- School of Life and Environmental Sciences Gannan Normal University Ganzhou China
| | - Ingi Agnarsson
- Department of Biology University of Vermont Burlington VT USA.,Department of Entomology National Museum of Natural History Washington DC USA
| |
Collapse
|
22
|
Salas-Leiva DE, Meerow AW, Calonje M, Francisco-Ortega J, Griffith MP, Nakamura K, Sánchez V, Knowles L, Knowles D. Shifting Quaternary migration patterns in the Bahamian archipelago: Evidence from the Zamia pumila complex at the northern limits of the Caribbean island biodiversity hotspot. AMERICAN JOURNAL OF BOTANY 2017; 104:757-771. [PMID: 28515078 DOI: 10.3732/ajb.1700054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 04/10/2017] [Indexed: 06/07/2023]
Abstract
PREMISE OF THE STUDY The Bahamas archipelago is formed by young, tectonically stable carbonate banks that harbor direct geological evidence of global ice-volume changes. We sought to detect signatures of major changes on gene flow patterns and reconstruct the phylogeographic history of the monophyletic Zamia pumila complex across the Bahamas. METHODS Nuclear molecular markers with both high and low mutation rates were used to capture two different time scale signatures and test several gene flow and demographic hypotheses. KEY RESULTS Single-copy nuclear genes unveiled apparent ancestral admixture on Andros, suggesting a significant role of this island as main hub of diversity of the archipelago. We detected demographic and spatial expansion of the Zamia pumila complex on both paleo-provinces around the Piacenzian (Pliocene)/Gelasian (Pleistocene). Populations evidenced signatures of different migration models that have occurred at two different times. Populations on Long Island (Z. lucayana) may either represent a secondary colonization of the Bahamas by Zamia or a rapid and early-divergence event of at least one population on the Bahamas. CONCLUSIONS Despite changes in migration patterns with global climate, expected heterozygosity with both marker systems remains within the range reported for cycads, but with significant levels of increased inbreeding detected by the microsatellites. This finding is likely associated with reduced gene flow between and within paleo-provinces, accompanied by genetic drift, as rising seas enforced isolation. Our study highlights the importance of the maintenance of the predominant direction of genetic exchange and the role of overseas dispersion among the islands during climate oscillations.
Collapse
Affiliation(s)
- Dayana E Salas-Leiva
- International Center for Tropical Botany, Department of Biological Sciences, 11200 S.W. 8th Street, Florida International University, Miami, Florida 33199 USA
- USDA-ARS-SHRS, 13601 Old Cutler Road, Miami, Florida 33158 USA
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, Florida 33156 USA
| | - Alan W Meerow
- USDA-ARS-SHRS, 13601 Old Cutler Road, Miami, Florida 33158 USA
| | - Michael Calonje
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, Florida 33156 USA
| | - Javier Francisco-Ortega
- International Center for Tropical Botany, Department of Biological Sciences, 11200 S.W. 8th Street, Florida International University, Miami, Florida 33199 USA
- Kushlan Tropical Science Institute, 11935 Old Cutler Road, Fairchild Tropical Botanic Garden, Coral Gables, Florida 33156 USA
| | - M Patrick Griffith
- Montgomery Botanical Center, 11901 Old Cutler Road, Coral Gables, Florida 33156 USA
| | - Kyoko Nakamura
- USDA-ARS-SHRS, 13601 Old Cutler Road, Miami, Florida 33158 USA
| | - Vanessa Sánchez
- USDA-ARS-SHRS, 13601 Old Cutler Road, Miami, Florida 33158 USA
| | - Lindy Knowles
- Bahamas National Trust, P. O. Box N-4105, Bay Street Business Centre, Bay Street, Nassau
| | - David Knowles
- The Bahamas, Bahamas National Trust, Abaco National Park, P.O. Box AB-20953, Marsh Harbour, Abaco, The Bahamas
| |
Collapse
|
23
|
Marion ZH, Fordyce JA, Fitzpatrick BM. Pairwise beta diversity resolves an underappreciated source of confusion in calculating species turnover. Ecology 2017; 98:933-939. [DOI: 10.1002/ecy.1753] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 01/11/2017] [Accepted: 01/17/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Zachary H. Marion
- Department of Ecology & Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - James A. Fordyce
- Department of Ecology & Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| | - Benjamin M. Fitzpatrick
- Department of Ecology & Evolutionary Biology University of Tennessee Knoxville Tennessee 37996 USA
| |
Collapse
|
24
|
Different population responses of three sympatric rodent species to acorn masting—the role of tannin tolerance. POPUL ECOL 2017. [DOI: 10.1007/s10144-017-0570-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
25
|
Kierepka EM, Latch EK. High gene flow in the American badger overrides habitat preferences and limits broadscale genetic structure. Mol Ecol 2016; 25:6055-6076. [PMID: 27862522 DOI: 10.1111/mec.13915] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 10/13/2016] [Accepted: 11/01/2016] [Indexed: 01/05/2023]
Abstract
Habitat associations are a function of habitat preferences and dispersal capabilities, both of which can influence how species responded to Quaternary climatic changes and contemporary habitat heterogeneity. Predicting resultant genetic structure is not always straightforward, especially in species where high dispersal potential and habitat preferences yield opposing predictions. The American badger has high dispersal capabilities that predict widespread panmixia, but avoids closed-canopy forests and clay soils, which could restrict gene flow and create ecologically based population genetic structure. We used mitochondrial sequence and microsatellite data sets to characterize how these opposing forces contribute to genetic structure in badgers at a continent-wide scale. Our data revealed an overall lack of ecologically based population genetic structure, suggesting that high dispersal capabilities were sufficiently realized to overcome most habitat-based genetic structure. At a broadscale, badger gene flow is limited only by geographic distance (isolation by distance) and large water barriers (Lake Michigan and the Mississippi River). The absence of genetic structure in a species with strong avoidance of unsuitable habitats advances our understanding of when and how genetic structure emerges in widespread, highly mobile species.
Collapse
Affiliation(s)
- E M Kierepka
- Behavioral and Molecular Ecology Research Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - E K Latch
- Behavioral and Molecular Ecology Research Group, Department of Biological Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| |
Collapse
|
26
|
Wadley JJ, Fordham DA, Thomson VA, Ritchie EG, Austin JJ. Phylogeography of the antilopine wallaroo ( Macropus antilopinus) across tropical northern Australia. Ecol Evol 2016; 6:8050-8061. [PMID: 27878077 PMCID: PMC5108257 DOI: 10.1002/ece3.2381] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 07/13/2016] [Accepted: 07/18/2016] [Indexed: 12/03/2022] Open
Abstract
The distribution of antilopine wallaroo, Macropus antilopinus, is marked by a break in the species’ range between Queensland and the Northern Territory, coinciding with the Carpentarian barrier. Previous work on M. antilopinus revealed limited genetic differentiation between the Northern Territory and Queensland M. antilopinus populations across this barrier. The study also identified a number of divergent lineages in the Northern Territory, but was unable to elucidate any geographic structure. Here, we re‐examine these results to (1) determine phylogeographic patterns across the range of M. antilopinus and (2) infer the biogeographic barriers associated with these patterns. The tropical savannahs of northern Australia: from the Cape York Peninsula in the east, to the Kimberley in the west. We examined phylogeographic patterns in M. antilopinus using a larger number of samples and three mtDNA genes: NADH dehydrogenase subunit 2, cytochrome b, and the control region. Two datasets were generated and analyzed: (1) a subset of samples with all three mtDNA regions concatenated together and (2) all samples for just control region sequences that included samples from the previous study. Analysis included generating phylogenetic trees based on Bayesian analysis and intraspecific median‐joining networks. The contemporary spatial structure of M. antilopinus mtDNA lineages revealed five shallow clades and a sixth, divergent lineage. The genetic differences that we found between Queensland and Northern Territory M. antilopinus samples confirmed the split in the geographic distribution of the species. We also found weak genetic differentiation between Northern Territory samples and those from the Kimberley region of Western Australia, possibly due to the Kimberley Plateau–Arnhem Land barrier. Within the Northern Territory, two clades appear to be parapatric in the west, while another two clades are broadly sympatric across the Northern Territory. MtDNA diversity of M. antilopinus revealed an unexpectedly complex evolutionary history involving multiple sympatric and parapatric mtDNA clades across northern Australia. These phylogeographic patterns highlight the importance of investigating genetic variation across distributions of species and integrating this information into biodiversity conservation.
Collapse
Affiliation(s)
- Jessica J Wadley
- Australian Centre for Ancient DNAUniversity of AdelaideNorth TerraceAdelaideSouth Australia5005Australia; Environment Institute and School of Biological SciencesUniversity of AdelaideNorth TerraceAdelaideSouth Australia5005Australia
| | - Damien A Fordham
- Environment Institute and School of Biological Sciences University of Adelaide North Terrace Adelaide South Australia 5005 Australia
| | - Vicki A Thomson
- Australian Centre for Ancient DNAUniversity of AdelaideNorth TerraceAdelaideSouth Australia5005Australia; Environment Institute and School of Biological SciencesUniversity of AdelaideNorth TerraceAdelaideSouth Australia5005Australia
| | - Euan G Ritchie
- Centre for Integrative Ecology School of Life and Environmental Sciences Deakin University Burwood Victoria 3125 Australia
| | - Jeremy J Austin
- Australian Centre for Ancient DNAUniversity of AdelaideNorth TerraceAdelaideSouth Australia5005Australia; Environment Institute and School of Biological SciencesUniversity of AdelaideNorth TerraceAdelaideSouth Australia5005Australia; Sciences DepartmentMuseum VictoriaCarlton GardensMelbourneVictoria3001Australia
| |
Collapse
|
27
|
Pech-Cervantes A, Ventura-Cordero J, Capetillo-Leal C, Torres-Acosta J, Sandoval-Castro C. Relationship between intake of tannin-containing tropical tree forage, PEG supplementation, and salivary haze development in hair sheep and goats. BIOCHEM SYST ECOL 2016. [DOI: 10.1016/j.bse.2016.07.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
SELÅS V. Seventy-five years of masting and rodent population peaks in Norway: Why do wood mice not follow the rules? Integr Zool 2016; 11:388-402. [DOI: 10.1111/1749-4877.12203] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Vidar SELÅS
- Department of Ecology and Natural Resource Management; Norwegian University of Life Sciences; Ås Norway
| |
Collapse
|
29
|
Kohl KD, Dearing MD. The Woodrat Gut Microbiota as an Experimental System for Understanding Microbial Metabolism of Dietary Toxins. Front Microbiol 2016; 7:1165. [PMID: 27516760 PMCID: PMC4963388 DOI: 10.3389/fmicb.2016.01165] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 07/13/2016] [Indexed: 01/22/2023] Open
Abstract
The microbial communities inhabiting the alimentary tracts of mammals, particularly those of herbivores, are estimated to be one of the densest microbial reservoirs on Earth. The significance of these gut microbes in influencing the physiology, ecology and evolution of their hosts is only beginning to be realized. To understand the microbiome of herbivores with a focus on nutritional ecology, while evaluating the roles of host evolution and environment in sculpting microbial diversity, we have developed an experimental system consisting of the microbial communities of several species of herbivorous woodrats (genus Neotoma) that naturally feed on a variety of dietary toxins. We designed this system to investigate the long-standing, but experimentally neglected hypothesis that ingestion of toxic diets by herbivores is facilitated by the gut microbiota. Like several other rodent species, the woodrat stomach has a sacculated, non-gastric foregut portion. We have documented a dense and diverse community of microbes in the woodrat foregut, with several genera potentially capable of degrading dietary toxins and/or playing a role in stimulating hepatic detoxification enzymes of the host. The biodiversity of these gut microbes appears to be a function of host evolution, ecological experience and diet, such that dietary toxins increase microbial diversity in hosts with experience with these toxins while novel toxins depress microbial diversity. These microbial communities are critical to the ingestion of a toxic diet as reducing the microbial community with antibiotics impairs the host's ability to feed on dietary toxins. Furthermore, the detoxification capacity of gut microbes can be transferred from Neotoma both intra and interspecifically to naïve animals that lack ecological and evolutionary history with these toxins. In addition to advancing our knowledge of complex host-microbes interactions, this system holds promise for identifying microbes that could be useful in the treatment of diseases in humans and domestic animals.
Collapse
Affiliation(s)
- Kevin D. Kohl
- Department of Biological Sciences, Vanderbilt University, NashvilleTN, USA
| | | |
Collapse
|
30
|
Mandák B, Havrdová A, Krak K, Hadincová V, Vít P, Zákravský P, Douda J. Recent similarity in distribution ranges does not mean a similar postglacial history: a phylogeographical study of the boreal tree species Alnus incana based on microsatellite and chloroplast DNA variation. THE NEW PHYTOLOGIST 2016; 210:1395-1407. [PMID: 26831816 DOI: 10.1111/nph.13848] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 12/06/2015] [Indexed: 06/05/2023]
Abstract
We reconstructed the historical pattern of postglacial biogeographic range expansion of the boreal tree species Alnus incana in Europe. To assess population genetic structure and diversity, we performed a combined analysis of nuclear microsatellite loci and chloroplast DNA sequences (65 populations, 1004 individuals). Analysis of haplotype and microsatellite diversity revealed that southeastern refugial populations situated in the Carpathians and the Balkan Peninsula did not spread north and cannot be considered as important source populations for postglacial recolonization of Europe; populations in Eastern Europe did not establish Fennoscandian populations; populations in Fennoscandia and Eastern Europe have no unique genetic cluster, but represent a mix with a predominant cluster typical for Central Europe; and that colonization of Fennoscandia and Eastern Europe took place from Central Europe. Our findings highlight the importance of an effective refugium in Central Europe located outside classical southern refugia confirming the existence of northern refugia for boreal trees in Europe. The postglacial range expansion of A. incana did not follow the model established for Picea abies. Fennoscandian populations are not derived from Eastern European ones, but from Central European ones.
Collapse
Affiliation(s)
- Bohumil Mandák
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Praha 6 - Suchdol, Czech Republic
| | - Alena Havrdová
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Praha 6 - Suchdol, Czech Republic
| | - Karol Krak
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Praha 6 - Suchdol, Czech Republic
| | - Věroslava Hadincová
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Petr Vít
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Praha 6 - Suchdol, Czech Republic
| | - Petr Zákravský
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
| | - Jan Douda
- Institute of Botany, Academy of Sciences of the Czech Republic, Zámek 1, CZ-252 43, Průhonice, Czech Republic
- Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 21, Praha 6 - Suchdol, Czech Republic
| |
Collapse
|
31
|
Shen Y, Kou Q, Chen W, He S, Yang M, Li X, Gan X. Comparative population structure of two dominant species, Shinkaia crosnieri (Munidopsidae: Shinkaia) and Bathymodiolus platifrons (Mytilidae: Bathymodiolus), inhabiting both deep-sea vent and cold seep inferred from mitochondrial multi-genes. Ecol Evol 2016; 6:3571-3582. [PMID: 28725351 PMCID: PMC5513293 DOI: 10.1002/ece3.2132] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 03/15/2016] [Accepted: 03/21/2016] [Indexed: 11/11/2022] Open
Abstract
Deep-sea hydrothermal vents and cold seeps, limited environments without sunlight, are two types of extreme habitat for marine organisms. The differences between vents and cold seeps may facilitate genetic isolation and produce population heterogeneity. However, information on such chemosynthetic fauna taxa is rare, especially regarding the population diversity of species inhabiting both vents and cold seeps. In this study, three mitochondrial DNA fragments (the cytochrome c oxidase submit I (COI), cytochrome b gene (Cytb), and 16S) were concatenated as a mitochondrial concatenated dataset (MCD) to examine the genetic diversity, population structure, and demographic history of Shinkaia crosnieri and Bathymodiolus platifrons. The genetic diversity differences between vent and seep populations were statistically significant for S. crosnieri but not for B. platifrons. S. crosnieri showed less gene flow and higher levels of genetic differentiation between the vent and seep populations than B. platifrons. In addition, the results suggest that all the B. platifrons populations, but only the S. crosnieri vent populations, passed through a recent expansion or bottleneck. Therefore, different population distribution patterns for the two dominant species were detected; a pattern of population differentiation for S. crosnieri and a homogeneity pattern for B. platifrons. These different population distribution patterns were related to both extrinsic restrictive factors and intrinsic factors. Based on the fact that the two species were collected in almost identical or adjacent sampling sites, we speculated that the primary factors underlying the differences in the population distribution patterns were intrinsic. The historical demographics, dispersal ability, and the tolerance level of environmental heterogeneity are most likely responsible for the different distribution patterns.
Collapse
Affiliation(s)
- Yanjun Shen
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of SciencesInstitute of HydrobiologyChinese Academy of SciencesWuhan 430072HubeiChina
- University of the Chinese Academy of SciencesBeijing100039China
| | - Qi Kou
- Institute of OceanologyChinese Academy of SciencesQingdao266071China
| | - Weitao Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of SciencesInstitute of HydrobiologyChinese Academy of SciencesWuhan 430072HubeiChina
- University of the Chinese Academy of SciencesBeijing100039China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of SciencesInstitute of HydrobiologyChinese Academy of SciencesWuhan 430072HubeiChina
| | - Mei Yang
- Institute of OceanologyChinese Academy of SciencesQingdao266071China
| | - Xinzheng Li
- Institute of OceanologyChinese Academy of SciencesQingdao266071China
| | - Xiaoni Gan
- The Key Laboratory of Aquatic Biodiversity and Conservation of the Chinese Academy of SciencesInstitute of HydrobiologyChinese Academy of SciencesWuhan 430072HubeiChina
| |
Collapse
|
32
|
Ying LX, Zhang TT, Chiu CA, Chen TY, Luo SJ, Chen XY, Shen ZH. The phylogeography of Fagus hayatae (Fagaceae): genetic isolation among populations. Ecol Evol 2016; 6:2805-16. [PMID: 27066254 PMCID: PMC4801808 DOI: 10.1002/ece3.2042] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/04/2022] Open
Abstract
The beech species Fagus hayatae is an important relict tree species in subtropical China, whose biogeographical patterns may reflect floral responses to climate change in this region during the Quaternary. Previous studies have revealed phylogeography for three of the four Fagus species in China, but study on F. hayatae, the most sparsely distributed of these species, is still lacking. Here, molecular methods based on eight simple sequence repeat (SSR) loci of nuclear DNA (nDNA) and three chloroplast DNA (cpDNA) sequences were applied for analyses of genetic diversity and structure in 375 samples from 14 F. hayatae populations across its whole range. Both nDNA and cpDNA indicated a high level of genetic diversity in this species. Significant fixation indexes and departures from the Hardy–Weinberg equilibrium, with a genetic differentiation parameter of Rst of 0.233, were detected in nDNA SSR loci among populations, especially those on Taiwan Island, indicating strong geographic partitioning. The populations were classified into two clusters, without a prominent signal of isolation‐by‐distance. For the 15 haplotypes detected in the cpDNA sequence fragments, there was a high genetic differentiation parameter (Gst = 0.712) among populations. A high Gst of 0.829 was also detected outside but not within the Sichuan Basin. Consistent with other Fagus species in China, no recent population expansion was detected from tests of neutrality and mismatch distribution analysis. Overall, genetic isolation with limited gene flow was prominent for this species and significant phylogeographic structures existed across its range except for those inside the Sichuan Basin. Our study suggested long‐term geographic isolation in F. hayatae with limited population admixture and the existence of multiple refugia in the mountainous regions of the Sichuan Basin and southeast China during the Quaternary. These results may provide useful information critical for the conservation of F. hayatae and other Chinese beech species.
Collapse
Affiliation(s)
- Ling-Xiao Ying
- Department of Ecology College of Urban and Environmental Sciences The MOE Key Laboratory of Earth Surface Processes Peking University Beijing 100871 China
| | - Ting-Ting Zhang
- School of Life Sciences Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| | - Ching-An Chiu
- Experimental Forest/Department of Forestry National Chung Hsing University 250 Kuokuang Rd. Taichung 40227
| | - Tze-Ying Chen
- Department of Forestry and Natural Resources National Ilan University 1 Sec. 1 Shen-Lung Road I-Lan 260
| | - Shu-Jin Luo
- School of Life Sciences Peking-Tsinghua Center for Life Sciences Peking University Beijing 100871 China
| | - Xiao-Yong Chen
- College of Natural Resource and Environment East China Normal University Shanghai 200062 China
| | - Ze-Hao Shen
- Department of Ecology College of Urban and Environmental Sciences The MOE Key Laboratory of Earth Surface Processes Peking University Beijing 100871 China
| |
Collapse
|
33
|
Ornelas JF, González C, Hernández-Baños BE, García-Moreno J. Molecular and iridescent feather reflectance data reveal recent genetic diversification and phenotypic differentiation in a cloud forest hummingbird. Ecol Evol 2016; 6:1104-27. [PMID: 26811749 PMCID: PMC4722824 DOI: 10.1002/ece3.1950] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/14/2015] [Accepted: 12/15/2015] [Indexed: 01/31/2023] Open
Abstract
The present day distribution and spatial genetic diversity of Mesoamerican biota reflects a long history of responses to habitat change. The hummingbird Lampornis amethystinus is distributed in northern Mesoamerica, with geographically disjunct populations. Based on sampling across the species range using mitochondrial DNA (mtDNA) sequences and nuclear microsatellites jointly analysed with phenotypic and climatic data, we (1) test whether the fragmented distribution is correlated with main evolutionary lineages, (2) assess body size and plumage color differentiation of populations in geographic isolation, and (3) evaluate a set of divergence scenarios and demographic patterns of the hummingbird populations. Analysis of genetic variation revealed four main groups: blue‐throated populations (Sierra Madre del Sur); two groups of amethyst‐throated populations (Trans‐Mexican Volcanic Belt and Sierra Madre Oriental); and populations east of the Isthmus of Tehuantepec (IT) with males showing an amethyst throat. The most basal split is estimated to have originated in the Pleistocene, 2.39–0.57 million years ago (MYA), and corresponded to groups of populations separated by the IT. However, the estimated recent divergence time between blue‐ and amethyst‐throated populations does not correspond to the 2‐MY needed to be in isolation for substantial plumage divergence, likely because structurally iridescent colors are more malleable than others. Results of species distribution modeling and Approximate Bayesian Computation analysis fit a model of lineage divergence west of the Isthmus after the Last Glacial Maximum (LGM), and that the species’ suitable habitat was disjunct during past and current conditions. These results challenge the generality of the contraction/expansion glacial model to cloud forest‐interior species and urges management of cloud forest, a highly vulnerable ecosystem to climate change and currently facing destruction, to prevent further loss of genetic diversity or extinction.
Collapse
Affiliation(s)
- Juan Francisco Ornelas
- Departamento de Biología Evolutiva Instituto de Ecología AC (INECOL) Xalapa Veracruz 91070 Mexico
| | - Clementina González
- Departamento de Biología Evolutiva Instituto de Ecología AC (INECOL) Xalapa Veracruz 91070 Mexico; Instituto de Investigaciones sobre los Recursos Naturales Universidad Michoacana de San Nicolás de Hidalgo Morelia Michoacán Mexico
| | - Blanca E Hernández-Baños
- Museo de Zoología Departamento de Biología Evolutiva Facultad de Ciencias Universidad Nacional Autónoma de México México DF 04510 Mexico
| | | |
Collapse
|
34
|
Lichti NI, Steele MA, Swihart RK. Seed fate and decision‐making processes in scatter‐hoarding rodents. Biol Rev Camb Philos Soc 2015; 92:474-504. [PMID: 26587693 DOI: 10.1111/brv.12240] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 10/12/2015] [Accepted: 10/21/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Nathanael I. Lichti
- Department of Forestry and Natural Resources Purdue University West Lafayette IN 47907 U.S.A
| | | | - Robert K. Swihart
- Department of Forestry and Natural Resources Purdue University West Lafayette IN 47907 U.S.A
| |
Collapse
|
35
|
Espinosa Gómez F, Santiago García J, Gómez Rosales S, Wallis IR, Chapman CA, Morales Mávil J, Canales Espinosa D, Hernández Salazar L. Howler Monkeys (Alouatta palliata mexicana) Produce Tannin-Binding Salivary Proteins. INT J PRIMATOL 2015. [DOI: 10.1007/s10764-015-9879-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Bonacchi A, Bartolommei P, Gasperini S, Manzo E, Cozzolino R. Acorn choice by small mammals in a Mediterranean deciduous oak forest. ETHOL ECOL EVOL 2015. [DOI: 10.1080/03949370.2015.1089326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- A. Bonacchi
- Fondazione Ethoikos, Convento dell’Osservanza, 53030 Radicondoli, Siena, Italy
| | - P. Bartolommei
- Fondazione Ethoikos, Convento dell’Osservanza, 53030 Radicondoli, Siena, Italy
| | - S. Gasperini
- Fondazione Ethoikos, Convento dell’Osservanza, 53030 Radicondoli, Siena, Italy
- U.R. Ecologia Comportamentale, Etologia e Gestione della Fauna, Dipartimento di Scienze della Vita, Università di Siena, Via P.A. Mattioli 4, 53100 Siena, Italy
| | - E. Manzo
- Fondazione Ethoikos, Convento dell’Osservanza, 53030 Radicondoli, Siena, Italy
| | - R. Cozzolino
- Fondazione Ethoikos, Convento dell’Osservanza, 53030 Radicondoli, Siena, Italy
| |
Collapse
|
37
|
Wei S, Cao L, Gong Y, Shi B, Wang S, Zhang F, Guo X, Wang Y, Chen X. Population genetic structure and approximate
B
ayesian computation analyses reveal the southern origin and northward dispersal of the oriental fruit moth
G
rapholita molesta
(
L
epidoptera:
T
ortricidae) in its native range. Mol Ecol 2015; 24:4094-111. [DOI: 10.1111/mec.13300] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 06/22/2015] [Accepted: 06/29/2015] [Indexed: 11/30/2022]
Affiliation(s)
- Shu‐Jun Wei
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences 9 Shuguanghuayuan Middle Road, Haidian District Beijing 100097 China
| | - Li‐Jun Cao
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences 9 Shuguanghuayuan Middle Road, Haidian District Beijing 100097 China
| | - Ya‐Jun Gong
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences 9 Shuguanghuayuan Middle Road, Haidian District Beijing 100097 China
| | - Bao‐Cai Shi
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences 9 Shuguanghuayuan Middle Road, Haidian District Beijing 100097 China
| | - Su Wang
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences 9 Shuguanghuayuan Middle Road, Haidian District Beijing 100097 China
| | - Fan Zhang
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences 9 Shuguanghuayuan Middle Road, Haidian District Beijing 100097 China
| | - Xiao‐Jun Guo
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences 9 Shuguanghuayuan Middle Road, Haidian District Beijing 100097 China
| | - Yuan‐Min Wang
- Institute of Plant and Environmental Protection Beijing Academy of Agriculture and Forestry Sciences 9 Shuguanghuayuan Middle Road, Haidian District Beijing 100097 China
| | - Xue‐Xin Chen
- Institute of Insect Sciences Zhejiang University 866 Yuhangtang Road Hangzhou 310058 China
| |
Collapse
|
38
|
Mott BM, Gadau J, Anderson KE. Phylogeography of Pogonomyrmex barbatus and P. rugosus harvester ants with genetic and environmental caste determination. Ecol Evol 2015; 5:2798-826. [PMID: 26306168 PMCID: PMC4541987 DOI: 10.1002/ece3.1507] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 04/03/2015] [Accepted: 04/05/2015] [Indexed: 11/11/2022] Open
Abstract
We present a phylogeographic study of at least six reproductively isolated lineages of new world harvester ants within the Pogonomyrmex barbatus and P. rugosus species group. The genetic and geographic relationships within this clade are complex: Four of the identified lineages show genetic caste determination (GCD) and are divided into two pairs. Each pair has evolved under a mutualistic system that necessitates sympatry. These paired lineages are dependent upon one another because their GCD requires interlineage matings for the production of F1 hybrid workers, and intralineage matings are required to produce queens. This GCD system maintains genetic isolation among these interdependent lineages, while simultaneously requiring co-expansion and emigration as their distributions have changed over time. It has also been demonstrated that three of these four GCD lineages have undergone historical hybridization, but the narrower sampling range of previous studies has left questions on the hybrid parentage, breadth, and age of these groups. Thus, reconstructing the phylogenetic and geographic history of this group allows us to evaluate past insights and hypotheses and to plan future inquiries in a more complete historical biogeographic context. Using mitochondrial DNA sequences sampled across most of the morphospecies' ranges in the U.S.A. and Mexico, we conducted a detailed phylogeographic study. Remarkably, our results indicate that one of the GCD lineage pairs has experienced a dramatic range expansion, despite the genetic load and fitness costs of the GCD system. Our analyses also reveal a complex pattern of vicariance and dispersal in Pogonomyrmex harvester ants that is largely concordant with models of late Miocene, Pliocene, and Pleistocene range shifts among various arid-adapted taxa in North America.
Collapse
Affiliation(s)
- Brendon M Mott
- USDA-ARS Carl Hayden Bee Research CenterTucson, Arizona, 85719
- School of Life Sciences, Arizona State UniversityTempe, Arizona, 85287
| | - Jürgen Gadau
- School of Life Sciences, Arizona State UniversityTempe, Arizona, 85287
| | - Kirk E Anderson
- USDA-ARS Carl Hayden Bee Research CenterTucson, Arizona, 85719
- Center for Insect Science, University of ArizonaTucson, Arizona, 85721
| |
Collapse
|
39
|
Sundaram M, Willoughby JR, Lichti NI, Steele MA, Swihart RK. Segregating the Effects of Seed Traits and Common Ancestry of Hardwood Trees on Eastern Gray Squirrel Foraging Decisions. PLoS One 2015; 10:e0130942. [PMID: 26110828 PMCID: PMC4482146 DOI: 10.1371/journal.pone.0130942] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
The evolution of specific seed traits in scatter-hoarded tree species often has been attributed to granivore foraging behavior. However, the degree to which foraging investments and seed traits correlate with phylogenetic relationships among trees remains unexplored. We presented seeds of 23 different hardwood tree species (families Betulaceae, Fagaceae, Juglandaceae) to eastern gray squirrels (Sciurus carolinensis), and measured the time and distance travelled by squirrels that consumed or cached each seed. We estimated 11 physical and chemical seed traits for each species, and the phylogenetic relationships between the 23 hardwood trees. Variance partitioning revealed that considerable variation in foraging investment was attributable to seed traits alone (27–73%), and combined effects of seed traits and phylogeny of hardwood trees (5–55%). A phylogenetic PCA (pPCA) on seed traits and tree phylogeny resulted in 2 “global” axes of traits that were phylogenetically autocorrelated at the family and genus level and a third “local” axis in which traits were not phylogenetically autocorrelated. Collectively, these axes explained 30–76% of the variation in squirrel foraging investments. The first global pPCA axis, which produced large scores for seed species with thin shells, low lipid and high carbohydrate content, was negatively related to time to consume and cache seeds and travel distance to cache. The second global pPCA axis, which produced large scores for seeds with high protein, low tannin and low dormancy levels, was an important predictor of consumption time only. The local pPCA axis primarily reflected kernel mass. Although it explained only 12% of the variation in trait space and was not autocorrelated among phylogenetic clades, the local axis was related to all four squirrel foraging investments. Squirrel foraging behaviors are influenced by a combination of phylogenetically conserved and more evolutionarily labile seed traits that is consistent with a weak or more diffuse coevolutionary relationship between rodents and hardwood trees rather than a direct coevolutionary relationship.
Collapse
Affiliation(s)
- Mekala Sundaram
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| | - Janna R. Willoughby
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| | - Nathanael I. Lichti
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| | - Michael A. Steele
- Department of Biology, Wilkes University, Wilkes-Barre, Pennsylvania, United States of America
| | - Robert K. Swihart
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, Indiana, United States of America
| |
Collapse
|
40
|
Shimada T, Takahashi A, Shibata M, Yagihashi T. Effects of within‐plant variability in seed weight and tannin content on foraging behaviour of seed consumers. Funct Ecol 2015. [DOI: 10.1111/1365-2435.12464] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Takuya Shimada
- Tohoku Research Centre Forestry and Forest Products Research Institute Morioka Japan
| | | | - Mitsue Shibata
- Tohoku Research Centre Forestry and Forest Products Research Institute Morioka Japan
| | - Tsutomu Yagihashi
- Tohoku Research Centre Forestry and Forest Products Research Institute Morioka Japan
| |
Collapse
|
41
|
Kohl KD, Stengel A, Dearing MD. Inoculation of tannin-degrading bacteria into novel hosts increases performance on tannin-rich diets. Environ Microbiol 2015; 18:1720-9. [DOI: 10.1111/1462-2920.12841] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 02/28/2015] [Accepted: 03/03/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Kevin D. Kohl
- Department of Biology; University of Utah; Salt Lake City UT 84112 USA
| | - Ashley Stengel
- Department of Biology; University of Utah; Salt Lake City UT 84112 USA
| | - M. Denise Dearing
- Department of Biology; University of Utah; Salt Lake City UT 84112 USA
| |
Collapse
|
42
|
Acorns were good until tannins were found: Factors affecting seed-selection in the hazel dormouse (Muscardinus avellanarius). Mamm Biol 2015. [DOI: 10.1016/j.mambio.2014.05.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
43
|
Li S, Sun K, Lu G, Lin A, Jiang T, Jin L, Hoyt JR, Feng J. Mitochondrial genetic differentiation and morphological difference of Miniopterus fuliginosus and Miniopterus magnater in China and Vietnam. Ecol Evol 2015; 5:1214-23. [PMID: 25859327 PMCID: PMC4377265 DOI: 10.1002/ece3.1428] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/24/2015] [Accepted: 01/28/2015] [Indexed: 01/09/2023] Open
Abstract
Because of its complicated systematics, the bent-winged bat is one of the most frequently studied bat species groups. In China, two morphologically similar bent-winged bat species, Miniopterus fuliginosus and Miniopterus magnater were identified, but their distribution range and genetic differentiation are largely unexplored. In this study, we applied DNA bar codes and two other mitochondrial DNA genes including morphological parameters to determine the phylogeny, genetic differentiation, spatial distribution, and morphological difference of the M. fuliginosus and M. magnater sampled from China and one site in Vietnam. Mitochondrial DNA gene genealogies revealed two monophyletic lineages throughout the Tropic of Cancer. According to DNA bar code divergences, one is M. fuliginosus corresponding to the Chinese mainland and the other is M. magnater corresponding to tropical regions including Hainan and Guangdong provinces of China and Vietnam. Their most recent common ancestor was dated to the early stage of the Quaternary glacial period (ca. 2.26 million years ago [Ma] on the basis of D-loop data, and ca. 1.69-2.37 Ma according to ND2). A population expansion event was inferred for populations of M. fuliginosus at 0.14 Ma. The two species probably arose in separate Pleistocene refugia under different climate zones. They significantly differed in forearm length, maxillary third molar width, and greatest length of the skull.
Collapse
Affiliation(s)
- Shi Li
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University Changchun, 130024, China ; College of Animal Science and Technology, Jilin Agricultural University Changchun, 130118, China
| | - Keping Sun
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University Changchun, 130024, China
| | - Guanjun Lu
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University Changchun, 130024, China ; College of Urban and Environment Sciences, Changchun Normal University Changchun, 130032, China
| | - Aiqing Lin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University Changchun, 130024, China
| | - Tinglei Jiang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University Changchun, 130024, China
| | - Longru Jin
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University Changchun, 130024, China
| | - Joseph R Hoyt
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, California, 95064, USA
| | - Jiang Feng
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University Changchun, 130024, China
| |
Collapse
|
44
|
Chen W, Du K, He S. Genetic structure and historical demography of Schizothorax nukiangensis (Cyprinidae) in continuous habitat. Ecol Evol 2015; 5:984-95. [PMID: 25750724 PMCID: PMC4338980 DOI: 10.1002/ece3.1413] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 11/24/2022] Open
Abstract
Geographic distance, different living habitats or Pleistocene climatic oscillations have frequently been found to shape population genetic structure in many species. The genetic structure of Schizothorax nukiangensis, a high altitude, valuable fish species, which is distributed throughout the Nujiang River, was investigated by mitochondrial DNA sequence analysis. The cytochrome c oxidase subunit I (COI), cytochrome b (cytb), and the mitochondrial control region (MCR) of S. nukiangensis were concatenated for examination of population structure and demographic history. The concatenated data set (2405 bp) implied a pronounced genetic population structure (overall FST = 0.149) and defined two population units. Strong differentiation was detected between the Sanjiangkou (SJK) population and other populations due to environmental heterogeneity, dispersal ability, and/or glacial cycles. Additional DNA sequencing of the nuclear RAG2 gene also examined significant differentiation between two units and between SJK and the upstream populations (U-unit). Recent expansion events suggest that S. nukiangensis may have undergone a rapid increase during warm interglacial periods. Surprisingly, S. nukiangensis appears to have undergone an obvious expansion during the last glaciations (LG) for cold hardiness and a sharp contraction from 1.5 ka to the present. However, two population units exhibited different reflections during the LG, which might be closely related to their living habitats and cold hardiness. A clear pattern of isolation by distance was detected in S. nukiangensis due to feeding habits, limited dispersal ability, and/or philopatry. It is vitally important that more attention be given to S. nukiangensis due to low genetic diversity, lack of gene flow, and recent population contraction.
Collapse
Affiliation(s)
- Weitao Chen
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences Wuhan, Hubei, 430072, China ; University of Chinese Academy of Sciences Beijing, 100049, People's Republic of China
| | - Kang Du
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences Wuhan, Hubei, 430072, China ; University of Chinese Academy of Sciences Beijing, 100049, People's Republic of China
| | - Shunping He
- The Key Laboratory of Aquatic Biodiversity and Conservation of Chinese Academy of Sciences, Institute of Hydrobiology, Chinese Academy of Sciences Wuhan, Hubei, 430072, China
| |
Collapse
|
45
|
Dierking J, Phelps L, Præbel K, Ramm G, Prigge E, Borcherding J, Brunke M, Eizaguirre C. Anthropogenic hybridization between endangered migratory and commercially harvested stationary whitefish taxa (Coregonus spp.). Evol Appl 2014; 7:1068-83. [PMID: 25553068 PMCID: PMC4231596 DOI: 10.1111/eva.12166] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 03/30/2014] [Indexed: 11/27/2022] Open
Abstract
Natural hybridization plays a key role in the process of speciation. However, anthropogenic (human induced) hybridization of historically isolated taxa raises conservation issues. Due to weak barriers to gene flow and the presence of endangered taxa, the whitefish species complex is an excellent study system to investigate the consequences of hybridization in conservation. We focused on three naturally reproductively isolated whitefish taxa in Germany: the endangered, anadromous North Sea houting (NSH) and Baltic houting (BH), which were reintroduced after local extinction, and the commercially stocked European whitefish (EW). To evaluate the genetic integrity of each taxon, source and reintroduced populations of NSH and BH, and EW populations were characterized based on two mitochondrial and 17 microsatellite loci. Additionally, we investigated gill raker counts as an adaptive phenotypic trait. Even though clear genetic and phenotypic differentiation confirmed the houtings as separate evolutionarily significant units, admixture analyses revealed an extensive hybrid zone. Hybridizations were introgressive, positively correlated with genetic diversity, and were reflected in the gill raker counts. The BH distribution range showed higher heterogeneity and stronger admixture than the NSH range. Erroneous stocking with non-native genotypes best explained these patterns, which pose challenges for the conservation of the endangered NSH and BH.
Collapse
Affiliation(s)
- Jan Dierking
- Research Division Marine Ecology, Research Unit Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| | - Luke Phelps
- Research Division Marine Ecology, Research Unit Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany ; Department of Evolutionary Ecology, Max Planck Institute for Evolutionary Biology Plön, Germany
| | - Kim Præbel
- Department of Arctic and Marine Biology, Faculty of Biosciences Fisheries and Economics, University of Tromsø Tromsø, Norway
| | - Gesine Ramm
- Research Division Marine Ecology, Research Unit Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany ; Faculty of Science, University of Copenhagen Frederiksberg, Denmark
| | - Enno Prigge
- Research Division Marine Ecology, Research Unit Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| | - Jost Borcherding
- General Ecology & Limnology, Ecological Research Station Grietherbusch, Zoological Institute of the University of Cologne Cologne, Germany
| | - Matthias Brunke
- Landesamt für Landwirtschaft, Umwelt und ländliche Räume (LLUR) Flintbek, Germany
| | - Christophe Eizaguirre
- Research Division Marine Ecology, Research Unit Evolutionary Ecology of Marine Fishes, GEOMAR Helmholtz Centre for Ocean Research Kiel, Germany
| |
Collapse
|
46
|
|
47
|
Chuluunbat B, Charruau P, Silbermayr K, Khorloojav T, Burger PA. Genetic diversity and population structure of Mongolian domestic Bactrian camels (Camelus bactrianus). Anim Genet 2014; 45:550-8. [PMID: 24749721 PMCID: PMC4171754 DOI: 10.1111/age.12158] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2014] [Indexed: 01/20/2023]
Abstract
The tradition of animal husbandry in the context of a nomadic lifestyle has been of great significance in the Mongolian society. Both Bactrian camels and horses have been invaluable for the survival and development of human activities in the harsh arid environment of the Mongolian steppe. As camels offer unique and sustainable opportunities for livestock production in marginal agro-ecological zones, we investigated the current genetic diversity of three local Mongolian camel breeds and compared their levels of variation with common native Mongolian camels distributed throughout the country. Based on mitochondrial and nuclear markers, we found levels of genetic diversity in Mongolian populations similar to that reported for Chinese Bactrian camels and for dromedaries. Little differentiation was detected between single breeds, except for a small group originating from the northwestern Mongolian Altai. We found neither high inbreeding levels in the different breeds nor evidence for a population decline. Although the Mongolian camel census size has severely declined over the past 20 years, our analyses suggest that there still exists a stable population with adequate genetic variation for continued sustainable utilization.
Collapse
Affiliation(s)
- B Chuluunbat
- Genetics laboratory of Institute Biology, Mongolian Academy of Sciences, Peace avenue-54b, Ulaanbaatar, 210351, Mongolia
| | | | | | | | | |
Collapse
|
48
|
Sato JJ, Kawakami T, Tasaka Y, Tamenishi M, Yamaguchi Y. A Few Decades of Habitat Fragmentation has Reduced Population Genetic Diversity: A Case Study of Landscape Genetics of the Large Japanese Field Mouse,Apodemus speciosus. MAMMAL STUDY 2014. [DOI: 10.3106/041.039.0102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
49
|
The gastrointestinal tract of the white-throated Woodrat (Neotoma albigula) harbors distinct consortia of oxalate-degrading bacteria. Appl Environ Microbiol 2013; 80:1595-601. [PMID: 24362432 DOI: 10.1128/aem.03742-13] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The microbiota inhabiting the mammalian gut is a functional organ that provides a number of services for the host. One factor that may regulate the composition and function of gut microbial communities is dietary toxins. Oxalate is a toxic plant secondary compound (PSC) produced in all major taxa of vascular plants and is consumed by a variety of animals. The mammalian herbivore Neotoma albigula is capable of consuming and degrading large quantities of dietary oxalate. We isolated and characterized oxalate-degrading bacteria from the gut contents of wild-caught animals and used high-throughput sequencing to determine the distribution of potential oxalate-degrading taxa along the gastrointestinal tract. Isolates spanned three genera: Lactobacillus, Clostridium, and Enterococcus. Over half of the isolates exhibited significant oxalate degradation in vitro, and all Lactobacillus isolates contained the oxc gene, one of the genes responsible for oxalate degradation. Although diverse potential oxalate-degrading genera were distributed throughout the gastrointestinal tract, they were most concentrated in the foregut, where dietary oxalate first enters the gastrointestinal tract. We hypothesize that unique environmental conditions present in each gut region provide diverse niches that select for particular functional taxa and communities.
Collapse
|
50
|
The metabolic and ecological interactions of oxalate-degrading bacteria in the Mammalian gut. Pathogens 2013; 2:636-52. [PMID: 25437337 PMCID: PMC4235702 DOI: 10.3390/pathogens2040636] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 11/26/2013] [Accepted: 11/27/2013] [Indexed: 12/18/2022] Open
Abstract
Oxalate-degrading bacteria comprise a functional group of microorganisms, commonly found in the gastrointestinal tract of mammals. Oxalate is a plant secondary compound (PSC) widely produced by all major taxa of plants and as a terminal metabolite by the mammalian liver. As a toxin, oxalate can have a significant impact on the health of mammals, including humans. Mammals do not have the enzymes required to metabolize oxalate and rely on their gut microbiota for this function. Thus, significant metabolic interactions between the mammalian host and a complex gut microbiota maintain the balance of oxalate in the body. Over a dozen species of gut bacteria are now known to degrade oxalate. This review focuses on the host-microbe and microbe-microbe interactions that regulate the degradation of oxalate by the gut microbiota. We discuss the pathways of oxalate throughout the body and the mammalian gut as a series of differentiated ecosystems that facilitate oxalate degradation. We also explore the mechanisms and functions of microbial oxalate degradation along with the implications for the ecological and evolutionary interactions within the microbiota and for mammalian hosts. Throughout, we consider questions that remain, as well as recent technological advances that can be employed to answer them.
Collapse
|