1
|
Peixoto L, Salazar LTH, Laska M. Olfactory sensitivity for mold-associated odorants in CD-1 mice and spider monkeys. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2018; 204:821-833. [PMID: 30203157 PMCID: PMC6182676 DOI: 10.1007/s00359-018-1285-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2018] [Revised: 08/24/2018] [Accepted: 09/01/2018] [Indexed: 12/30/2022]
Abstract
Using operant conditioning procedures, we assessed the olfactory sensitivity of six CD-1 mice and three spider monkeys for mold-associated odorants. We found that with all eight stimuli, the mice detected concentrations as low as 0.1 ppm (parts per million), and with two of them individual animals even detected concentrations as low as 1 ppt (parts per trillion). The spider monkeys detected concentrations as low as 4 ppm with all eight stimuli, and with four of them individual animals even detected concentrations as low as 4 ppb (parts per billion). Between-species comparisons showed that with all eight odorants, the mice displayed significantly lower threshold values, that is, a higher sensitivity than the spider monkeys, but not than human subjects tested in previous studies. Analysis of odor structure–activity relationships showed that in both species, the type of oxygen-containing functional group and the presence versus absence of a double bond as well as the length of the carbon backbone of the odor stimuli had a systematic effect on detectability. We conclude that both mice and spider monkeys are clearly able to detect the presence of molds and thus to assess the palatability of potential food using the volatiles produced by molds during putrefaction.
Collapse
Affiliation(s)
- Luis Peixoto
- IFM Biology, Linköping University, 581 83, Linköping, Sweden
| | | | - Matthias Laska
- IFM Biology, Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
2
|
|
3
|
A mammalian blood odor component serves as an approach-avoidance cue across phylum border - from flies to humans. Sci Rep 2017; 7:13635. [PMID: 29057956 PMCID: PMC5651850 DOI: 10.1038/s41598-017-13361-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/21/2017] [Indexed: 11/17/2022] Open
Abstract
Chemosignals are used by predators to localize prey and by prey to avoid predators. These cues vary between species, but the odor of blood seems to be an exception and suggests the presence of an evolutionarily conserved chemosensory cue within the blood odor mixture. A blood odor component, E2D, has been shown to trigger approach responses identical to those triggered by the full blood odor in mammalian carnivores and as such, is a key candidate as a food/alarm cue in blood. Using a multidisciplinary approach, we demonstrate that E2D holds the dual function of affecting both approach and avoidance behavior in a predator-prey predicted manner. E2D evokes approach responses in two taxonomically distant blood-seeking predators, Stable fly and Wolf, while evoking avoidance responses in the prey species Mouse. We extend this by demonstrating that this chemical cue is preserved in humans as well; E2D induces postural avoidance, increases physiological arousal, and enhances visual perception of affective stimuli. This is the first demonstration of a single chemical cue with the dual function of guiding both approach and avoidance in a predator-prey predicted manner across taxonomically distant species, as well as the first known chemosignal that affects both human and non-human animals alike.
Collapse
|
4
|
Abstract
Olfaction enables most mammalian species to detect and discriminate vast numbers of chemical structures called odorants and pheromones. The perception of such chemical compounds is mediated via two major olfactory systems, the main olfactory system and the vomeronasal system, as well as minor systems, such as the septal organ and the Grueneberg ganglion. Distinct differences exist not only among species but also among individuals in terms of their olfactory sensitivity; however, little is known about the mechanisms that determine these differences. In research on the olfactory sensitivity of mammals, scientists thus depend in most cases on behavioral testing. In this article, we reviewed scientific studies performed on various mammalian species using different methodologies and target chemical substances. Human and non-human primates as well as rodents and dogs are the most frequently studied species. Olfactory threshold studies on other species do not exist with the exception of domestic pigs. Olfactory testing performed on seals, elephants, and bats focused more on discriminative abilities than on sensitivity. An overview of olfactory sensitivity studies as well as olfactory detection ability in most studied mammalian species is presented here, focusing on comparable olfactory detection thresholds. The basics of olfactory perception and olfactory sensitivity factors are also described.
Collapse
|
5
|
Chemical recognition of fruit ripeness in spider monkeys (Ateles geoffroyi). Sci Rep 2015; 5:14895. [PMID: 26440380 PMCID: PMC4594300 DOI: 10.1038/srep14895] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022] Open
Abstract
Primates are now known to possess well-developed olfactory sensitivity and discrimination capacities that can play a substantial role in many aspects of their interaction with conspecifics and the environment. Several studies have demonstrated that olfactory cues may be useful in fruit selection. Here, using a conditioning paradigm, we show that captive spider monkeys (Ateles geoffroyi) display high olfactory discrimination performance between synthetic odor mixtures mimicking ripe and unripe fruits of two wild, primate-consumed, Neotropical plant species. Further, we show that spider monkeys are able to discriminate the odor of ripe fruits from odors that simulate unripe fruits that become increasingly similar to that of ripe ones. These results suggest that the ability of spider monkeys to identify ripe fruits may not depend on the presence of any individual compound that mark fruit ripeness. Further, the results demonstrate that spider monkeys are able to identify ripe fruits even when the odor signal is accompanied by a substantial degree of noise.
Collapse
|
6
|
Abstract
Olfaction, the sense of smell, was a latecomer to the systematic investigation of primate sensory ecology after long years in which it was considered to be of minor importance. This view shifted with the growing understanding of its role in social behavior and the accumulation of physiological studies demonstrating that the olfactory abilities of some primates are on a par with those of olfactory-dependent mammals such as dogs and rodents. Recent years have seen a proliferation of physiological, behavioral, anatomical, and genetic investigations of primate olfaction. These investigations have begun to shed light on the importance of olfaction in the process of food acquisition. However, integration of these works has been limited. It is therefore still difficult to pinpoint large-scale evolutionary scenarios, namely the functions that the sense of smell fulfills in primates' feeding ecology and the ecological niches that favor heavier reliance on olfaction. Here, we review available behavioral and physiological studies of primates in the field or captivity and try to elucidate how and when the sense of smell can help them acquire food.
Collapse
|
7
|
Eliasson M, Hernandez Salazar LT, Laska M. Spider monkeys (Ateles geoffroyi) are less sensitive to the odor of aliphatic ketones than to the odor of other classes of aliphatic compounds. Neurosci Res 2015; 99:46-54. [PMID: 26055441 DOI: 10.1016/j.neures.2015.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 05/10/2015] [Accepted: 05/29/2015] [Indexed: 11/25/2022]
Abstract
Aliphatic ketones are widely present in body-borne and food odors of primates. Therefore, we used an operant conditioning paradigm and determined olfactory detection thresholds in four spider monkeys for a homologous series of aliphatic 2-ketones (2-butanone to 2-nonanone) and two of their isomers (3- and 4-heptanone). We found that, with the exception of the two shortest-chained ketones, all animals detected concentrations <1 ppm (parts per million), and with five odorants individual animals even reached threshold values <0.1 ppm. Further, we found a significant correlation between olfactory sensitivity of the spider monkeys and carbon chain length of the 2-ketones which can best be described as a U-shaped function. In contrast, no significant correlation was found between olfactory sensitivity and position of the functional carbonyl group. Across-odorant and across-species comparisons revealed the following: spider monkeys are significantly less sensitive to the odors of aliphatic ketones than to the odor of other classes of aliphatic compounds (1-alcohols, n-aldehydes, n-acetic esters, and n-carboxylic acids) sharing the same carbon length. Spider monkeys do not differ significantly in their olfactory sensitivity for aliphatic ketones from squirrel monkeys and pigtail macaques, but are significantly less sensitive to these odorants compared to human subjects and mice. These findings support the notion that neuroanatomical and genetic properties do not allow for reliable predictions with regard to a species' olfactory sensitivity. Further, we conclude that the frequency of occurrence of a class of odorants in a species' chemical environment does not allow for reliable predictions of the species' olfactory sensitivity.
Collapse
Affiliation(s)
- Moa Eliasson
- IFM Biology, Linköping University, 581 83 Linköping, Sweden
| | | | - Matthias Laska
- IFM Biology, Linköping University, 581 83 Linköping, Sweden.
| |
Collapse
|
8
|
Nilsson S, Sjöberg J, Amundin M, Hartmann C, Buettner A, Laska M. Behavioral responses to mammalian blood odor and a blood odor component in four species of large carnivores. PLoS One 2014; 9:e112694. [PMID: 25383706 PMCID: PMC4226632 DOI: 10.1371/journal.pone.0112694] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Accepted: 10/10/2014] [Indexed: 11/25/2022] Open
Abstract
Only little is known about whether single volatile compounds are as efficient in eliciting behavioral responses in animals as the whole complex mixture of a behaviorally relevant odor. Recent studies analysing the composition of volatiles in mammalian blood, an important prey-associated odor stimulus for predators, found the odorant trans-4,5-epoxy-(E)-2-decenal to evoke a typical “metallic, blood-like” odor quality in humans. We therefore assessed the behavior of captive Asian wild dogs (Cuon alpinus), African wild dogs (Lycaon pictus), South American bush dogs (Speothos venaticus), and Siberian tigers (Panthera tigris altaica) when presented with wooden logs that were impregnated either with mammalian blood or with the blood odor component trans-4,5-epoxy-(E)-2-decenal, and compared it to their behavior towards a fruity odor (iso-pentyl acetate) and a near-odorless solvent (diethyl phthalate) as control. We found that all four species displayed significantly more interactions with the odorized wooden logs such as sniffing, licking, biting, pawing, and toying, when they were impregnated with the two prey-associated odors compared to the two non-prey-associated odors. Most importantly, no significant differences were found in the number of interactions with the wooden logs impregnated with mammalian blood and the blood odor component in any of the four species. Only one of the four species, the South American bush dogs, displayed a significant decrease in the number of interactions with the odorized logs across the five sessions performed per odor stimulus. Taken together, the results demonstrate that a single blood odor component can be as efficient in eliciting behavioral responses in large carnivores as the odor of real blood, suggesting that trans-4,5-epoxy-(E)-2-decenal may be perceived by predators as a “character impact compound” of mammalian blood odor. Further, the results suggest that odorized wooden logs are a suitable manner of environmental enrichment for captive carnivores.
Collapse
Affiliation(s)
- Sara Nilsson
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Johanna Sjöberg
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | | | - Constanze Hartmann
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Andrea Buettner
- Department of Chemistry and Pharmacy, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Matthias Laska
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
9
|
Sarrafchi A, Odhammer AME, Hernandez Salazar LT, Laska M. Olfactory sensitivity for six predator odorants in CD-1 mice, human subjects, and spider monkeys. PLoS One 2013; 8:e80621. [PMID: 24278296 PMCID: PMC3835330 DOI: 10.1371/journal.pone.0080621] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 10/03/2013] [Indexed: 02/05/2023] Open
Abstract
Using a conditioning paradigm, we assessed the olfactory sensitivity of six CD-1 mice (Mus musculus) for six sulfur-containing odorants known to be components of the odors of natural predators of the mouse. With all six odorants, the mice discriminated concentrations <0.1 ppm (parts per million) from the solvent, and with five of the six odorants the best-scoring animals were even able to detect concentrations <1 ppt (parts per trillion). Four female spider monkeys (Ateles geoffroyi) and twelve human subjects (Homo sapiens) tested in parallel were found to detect the same six odorants at concentrations <0.01 ppm, and with four of the six odorants the best-scoring animals and subjects even detected concentrations <10 ppt. With all three species, the threshold values obtained here are generally lower than (or in the lower range of) those reported for other chemical classes tested previously, suggesting that sulfur-containing odorants may play a special role in olfaction. Across-species comparisons showed that the mice were significantly more sensitive than the human subjects and the spider monkeys with four of the six predator odorants. However, the human subjects were significantly more sensitive than the mice with the remaining two odorants. Human subjects and spider monkeys significantly differed in their sensitivity with only two of the six odorants. These comparisons lend further support to the notion that the number of functional olfactory receptor genes or the relative or absolute size of the olfactory bulbs are poor predictors of a species' olfactory sensitivity. Analysis of odor structure-activity relationships showed that in both mice and human subjects the type of alkyl rest attached to a thietane and the type of oxygen moiety attached to a thiol significantly affected olfactory sensitivity.
Collapse
Affiliation(s)
- Amir Sarrafchi
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | - Anna M. E. Odhammer
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
| | | | - Matthias Laska
- Department of Physics, Chemistry and Biology, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
10
|
Olfactory sensitivity for six amino acids: a comparative study in CD-1 mice and spider monkeys. Amino Acids 2011; 42:1475-85. [PMID: 21647661 DOI: 10.1007/s00726-011-0951-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Accepted: 05/21/2011] [Indexed: 10/18/2022]
Abstract
Using a conditioning paradigm, the olfactory sensitivity of five CD-1 mice for the L- and D-forms of cysteine, methionine, and proline was investigated. With all six stimuli, the animals discriminated concentrations ≤ 0.1 ppm (parts per million) from the odorless solvent, and with three of the six stimuli the best-scoring animals were even able to detect concentrations <0.1 ppb (parts per billion). Three spider monkeys tested in parallel were found to detect the same six stimuli at concentrations <1 ppm, and with four of the six stimuli the best-scoring animals detected concentrations ≤ 1 ppb. Both CD-1 mice and spider monkeys displayed a higher olfactory sensitivity with the L- and D-forms of cysteine and methionine than with the prolines, suggesting an important role of the sulfur-containing functional groups for detectability. Accordingly, the across-odorant patterns of detection thresholds obtained with mice and spider monkeys showed a significant positive correlation. A comparison of the detection thresholds between the two species tested here and those obtained in human subjects suggests that neither the number of functional olfactory receptor genes nor the absolute or the relative size of the olfactory bulbs reliably predicts a species' olfactory sensitivity for amino acids.
Collapse
|
11
|
Olfactory sensitivity for sperm-attractant aromatic aldehydes: a comparative study in human subjects and spider monkeys. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2010; 197:15-23. [PMID: 20820786 DOI: 10.1007/s00359-010-0580-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Revised: 07/29/2010] [Accepted: 08/23/2010] [Indexed: 10/19/2022]
Abstract
Using a three-alternative forced-choice ascending staircase procedure, we determined olfactory detection thresholds in 20 human subjects for seven aromatic aldehydes and compared them to those of four spider monkeys tested in parallel using an operant conditioning paradigm. With all seven odorants, both species detected concentrations <1 ppm, and with several odorants single individuals of both species even discriminated concentrations <1 ppb from the solvent. No generalizable species differences in olfactory sensitivity were found despite marked differences in neuroanatomical and genetic features. The across-odorant patterns of sensitivity correlated significantly between humans and spider monkeys, and both species were more sensitive to bourgeonal than to lilial, cyclamal, canthoxal, helional, lyral, and 3-phenylpropanal. No significant correlation between presence/absence of an oxygen-containing moiety attached to the benzene ring or presence/absence of an additional alkyl group next to the functional aldehyde group, and olfactory sensitivity was found in any of the species. However, the presence of a tertiary butyl group in para position (relative to the functional aldehyde group) combined with a lack of an additional alkyl group next to the functional aldehyde group may be responsible for the finding that both species were most sensitive to bourgeonal.
Collapse
|
12
|
Laska M, Persson O, Hernandez Salazar LT. Olfactory sensitivity for alkylpyrazines-a comparative study in CD-1 mice and spider monkeys. ACTA ACUST UNITED AC 2009; 311:278-88. [PMID: 19204998 DOI: 10.1002/jez.527] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Using a conditioning paradigm, the olfactory sensitivity of four CD-1 mice for six alkylpyrazines was investigated. With all six stimuli, the animals discriminated concentrations <or=0.1 ppm (parts per million) from the odorless solvent, and with three of the six stimuli the animals were even able to detect concentrations <or=0.1 ppb (parts per billion). Four spider monkeys tested in parallel were found to detect five of the same six stimuli at concentrations <1 ppm and with one stimulus they were able to discriminate concentrations <1 ppb from the solvent. The results showed CD-1 mice to be more sensitive than spider monkeys with five of the six alkylpyrazines tested. There was a significant positive correlation between sensitivity and the number of alkyl groups attached to the pyrazine (Pyr) ring in both species. A comparison of the detection thresholds obtained here to those obtained in human subjects suggests that neither the number of functional olfactory receptor genes nor the absolute or the relative size of the olfactory bulbs reliably predict a species' olfactory sensitivity. These threshold data may provide useful information for the choice of adequate stimulus concentrations in electrophysiological or imaging studies of the olfactory system or investigations of the discriminative abilities of mice and spider monkeys.
Collapse
|
13
|
Borges RM, Bessière JM, Hossaert-McKey M. The chemical ecology of seed dispersal in monoecious and dioecious figs. Funct Ecol 2008. [DOI: 10.1111/j.1365-2435.2008.01383.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Laska M, Bautista RMR, Höfelmann D, Sterlemann V, Salazar LTH. Olfactory sensitivity for putrefaction-associated thiols and indols in three species of non-human primate. ACTA ACUST UNITED AC 2008; 210:4169-78. [PMID: 18025016 DOI: 10.1242/jeb.012237] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Using a conditioning paradigm, the olfactory sensitivity of four spider monkeys, three squirrel monkeys and three pigtail macaques to four thiols and two indols, substances characteristic of putrefaction processes and faecal odours, was assessed. With all odorants, the animals significantly discriminated concentrations below 1 p.p.m. (part per million) from the odourless solvent, and in several cases individual animals even demonstrated thresholds below 1 p.p.t. (part per trillion). The detection thresholds of 0.03 p.p.t. for indol in Saimiri sciureus and Macaca nemestrina and 0.96 p.p.t. for ethanethiol in Ateles geoffroyi represent the lowest values among the more than 50 odorants tested so far with these species and are in the same order of magnitude as the lowest detection thresholds reported so far in the rat and the mouse. The results showed (a) all three species of non-human primate to have a highly developed olfactory sensitivity for putrefaction-associated odorants, and (b) a significant correlation between perceptibility in terms of olfactory detection threshold and carbon chain length of the thiols, and a marked effect of the presence vs absence of a methyl group on perceptibility of the indols tested in two of the three species. The results support the hypotheses that (a) between-species differences in neuroanatomical or genetic features may not be indicative of olfactory sensitivity, and (b) within-species differences in olfactory sensitivity may reflect differences in the behavioural relevance of odorants.
Collapse
Affiliation(s)
- Matthias Laska
- IFM Biology, Linköping University, 581 83 Linköping, Sweden.
| | | | | | | | | |
Collapse
|