1
|
Derby CD, Mesape KM, Ngo-Vu H, Gentit LC, Fluech BA. Developing and field testing sustainable synthetic baits for the blue crab (Callinectes sapidus) fishery. FISHERIES RESEARCH 2024; 276:107042. [DOI: 10.1016/j.fishres.2024.107042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
2
|
Aartsma Y, Leroy B, van der Werf W, Dicke M, Poelman EH, Bianchi FJJA. Intraspecific variation in herbivore-induced plant volatiles influences the spatial range of plant-parasitoid interactions. OIKOS 2018. [DOI: 10.1111/oik.05151] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yavanna Aartsma
- Farming Systems Ecology, Wageningen Univ; Wageningen the Netherlands
- Laboratory of Entomology, Wageningen Univ; Wageningen the Netherlands
- Centre for Crop Systems Analysis, Wageningen Univ; Wageningen the Netherlands
| | - Benjamin Leroy
- Farming Systems Ecology, Wageningen Univ; Wageningen the Netherlands
- Dept of Agroecology and Environment, ISARA Lyon; Lyon France
| | - Wopke van der Werf
- Centre for Crop Systems Analysis, Wageningen Univ; Wageningen the Netherlands
| | - Marcel Dicke
- Laboratory of Entomology, Wageningen Univ; Wageningen the Netherlands
| | - Erik H. Poelman
- Laboratory of Entomology, Wageningen Univ; Wageningen the Netherlands
| | | |
Collapse
|
3
|
Martínez-González CL, Balankin A, López T, Manjarrez-Marmolejo J, Martínez-Ortiz EJ. Evaluation of dynamic scaling of growing interfaces in EEG fluctuations of seizures in animal model of temporal lobe epilepsy. Comput Biol Med 2017; 88:41-49. [PMID: 28692930 DOI: 10.1016/j.compbiomed.2017.07.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Revised: 06/26/2017] [Accepted: 07/02/2017] [Indexed: 11/28/2022]
Abstract
Epileptic seizures, as a dynamic phenomenon in brain behavior, obey a scale-free behavior, frequently analyzed by electrical activity recording. This recording can be seen as a surface that roughens with time. Dynamic scaling studies roughening processes or growing interfaces. In this theory, a set of exponents -obtained from scale invariance properties- characterize rough interfaces growth. The aim of the present study was to investigate scaling behavior in EEG time series fluctuations of a chemical animal model of temporal lobe epilepsy, with dynamic scaling to detect changes on seizure onset. We analyzed local variables in different sampling intervals and estimated rough, scaling and dynamic exponents. Results exhibited long-range correlations in interictal activity. Results of renormalization and data collapsing confirmed that each epoch of EEG fluctuations for interictal, preictal and postictal collapse in a curve in different scales, each segment independently; remarkably, we found non-scaling behavior in seizures epochs. Data for the different sampling intervals for ictal period do not collapse in one curve, which implies that ictal activity does not exhibit the same scaling behavior than the other epochs. Statistical significant differences of growth exponent were found between interictal and ictal segment, while for scaling exponent, significant differences were found between interictal and postictal segment. These results confirm the potential of scaling exponents as characteristic parameters to detect changes on seizure onset, which suggests their use as inputs for analysis methods for seizure detection in long-term recordings, while changes in growth exponent are potentially useful for prediction purposes.
Collapse
Affiliation(s)
| | - Alexander Balankin
- Instituto Politécnico Nacional, SEPI ESIME-Z, Av. IPN S/N, C.P. 07738, Mexico
| | - Tessy López
- Universidad Autónoma Metropolitana, C.P. 14387, Mexico
| | | | | |
Collapse
|
4
|
Kamio M, Derby CD. Finding food: how marine invertebrates use chemical cues to track and select food. Nat Prod Rep 2017; 34:514-528. [DOI: 10.1039/c6np00121a] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review covers recent research on how marine invertebrates use chemical cues to find and select food.
Collapse
Affiliation(s)
- Michiya Kamio
- Tokyo University of Marine Science and Technology
- Tokyo 108-8477
- Japan
| | | |
Collapse
|
5
|
Ferrier GA, Zimmer CA, Zimmer RK. Chemical Ecology of Wave-Swept Shores: the Primacy of Contact Cues in Predation by Whelks. THE BIOLOGICAL BULLETIN 2016; 231:207-215. [PMID: 28048962 DOI: 10.1086/691068] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Wave-swept shores are valuable for developing and testing key ecological principles. A synthesis of research is nonetheless missing a critical component: the chemosensory basis for behavioral interactions that determine population- and community-wide attributes. Chemical signaling environments on wave-swept shores, given their intense, turbulent mixing and complex topographies, would be difficult or impossible to simulate in a laboratory setting. For this reason, appropriately scaled field studies are needed to advance understanding of chemical stimuli and their biotic effects. Here, we performed a field investigation to establish the relative roles of dissolved and contact cues in predation by whelks (Acanthinucella spirata) on barnacles (Balanus glandula), their preferred prey. Experiments tested responses of whelks to seawater drawn above dense prey patches (10,240-12,180 barnacles m-2) and also over adjacent sand flats (no prey present). There was no evidence of waterborne stimuli associated with prey, even when sea states were nearly tranquil. Field trials also tested faux prey, which were constructed from cleaned barnacle shells and flavored gels. Prospective contact cues were presented to whelks at concentrations typical of epidermal tissue and cuticle in live, intact barnacles. These compounds were highly effective inducers of attack behavior and feeding. Selective enzyme degradations showed that the bioactive material was proteinaceous. Moreover, whelks did not distinguish faux barnacles with a single, purified glycoprotein (named "MULTIFUNCin") from live counterparts. Combined field results thus demonstrate the importance of contact cues, and indicate little, if any, effect of waterborne cues on predation by whelks under native conditions. Our findings underscore the need for appropriately scaled field experiments, and highlight surface chemistry as a critical factor that drives trophic interactions on rocky, wave-swept shores.
Collapse
|
6
|
Ellrich JA, Scrosati RA. Water motion modulates predator nonconsumptive limitation of prey recruitment. Ecosphere 2016. [DOI: 10.1002/ecs2.1402] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Affiliation(s)
- Julius A. Ellrich
- Department of BiologySt. Francis Xavier University 2320 Notre Dame Avenue Antigonish Nova Scotia B2G 2W5 Canada
| | - Ricardo A. Scrosati
- Department of BiologySt. Francis Xavier University 2320 Notre Dame Avenue Antigonish Nova Scotia B2G 2W5 Canada
| |
Collapse
|
7
|
Riffell JA, Shlizerman E, Sanders E, Abrell L, Medina B, Hinterwirth AJ, Kutz JN. Sensory biology. Flower discrimination by pollinators in a dynamic chemical environment. Science 2014; 344:1515-8. [PMID: 24970087 DOI: 10.1126/science.1251041] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Pollinators use their sense of smell to locate flowers from long distances, but little is known about how they are able to discriminate their target odor from a mélange of other natural and anthropogenic odors. Here, we measured the plume from Datura wrightii flowers, a nectar resource for Manduca sexta moths, and show that the scent was dynamic and rapidly embedded among background odors. The moth's ability to track the odor was dependent on the background and odor frequency. By influencing the balance of excitation and inhibition in the antennal lobe, background odors altered the neuronal representation of the target odor and the ability of the moth to track the plume. These results show that the mix of odors present in the environment influences the pollinator's olfactory ability.
Collapse
Affiliation(s)
- Jeffrey A Riffell
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA.
| | - Eli Shlizerman
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195-3925, USA
| | - Elischa Sanders
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Leif Abrell
- Department of Chemistry and Biochemistry and Department of Soil, Water, and Environmental Science, University of Arizona, AZ 85721-0077, USA
| | - Billie Medina
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - Armin J Hinterwirth
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
| | - J Nathan Kutz
- Department of Applied Mathematics, University of Washington, Seattle, WA 98195-3925, USA
| |
Collapse
|
8
|
Derby CD. Cephalopod ink: production, chemistry, functions and applications. Mar Drugs 2014; 12:2700-30. [PMID: 24824020 PMCID: PMC4052311 DOI: 10.3390/md12052700] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 04/10/2014] [Accepted: 04/14/2014] [Indexed: 01/17/2023] Open
Abstract
One of the most distinctive and defining features of coleoid cephalopods—squid, cuttlefish and octopus—is their inking behavior. Their ink, which is blackened by melanin, but also contains other constituents, has been used by humans in various ways for millennia. This review summarizes our current knowledge of cephalopod ink. Topics include: (1) the production of ink, including the functional organization of the ink sac and funnel organ that produce it; (2) the chemical components of ink, with a focus on the best known of these—melanin and the biochemical pathways involved in its production; (3) the neuroecology of the use of ink in predator-prey interactions by cephalopods in their natural environment; and (4) the use of cephalopod ink by humans, including in the development of drugs for biomedical applications and other chemicals for industrial and other commercial applications. As is hopefully evident from this review, much is known about cephalopod ink and inking, yet more striking is how little we know. Towards closing that gap, future directions in research on cephalopod inking are suggested.
Collapse
Affiliation(s)
- Charles D Derby
- Neuroscience Institute and Department of Biology, Georgia State University, P.O. Box 5030, Atlanta, GA 30302-5030, USA.
| |
Collapse
|
9
|
Evans-Illidge EA, Logan M, Doyle J, Fromont J, Battershill CN, Ericson G, Wolff CW, Muirhead A, Kearns P, Abdo D, Kininmonth S, Llewellyn L. Phylogeny drives large scale patterns in Australian marine bioactivity and provides a new chemical ecology rationale for future biodiscovery. PLoS One 2013; 8:e73800. [PMID: 24040076 PMCID: PMC3763996 DOI: 10.1371/journal.pone.0073800] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/23/2013] [Indexed: 12/27/2022] Open
Abstract
Twenty-five years of Australian marine bioresources collecting and research by the Australian Institute of Marine Science (AIMS) has explored the breadth of latitudinally and longitudinally diverse marine habitats that comprise Australia's ocean territory. The resulting AIMS Bioresources Library and associated relational database integrate biodiversity with bioactivity data, and these resources were mined to retrospectively assess biogeographic, taxonomic and phylogenetic patterns in cytotoxic, antimicrobial, and central nervous system (CNS)-protective bioactivity. While the bioassays used were originally chosen to be indicative of pharmaceutically relevant bioactivity, the results have qualified ecological relevance regarding secondary metabolism. In general, metazoan phyla along the deuterostome phylogenetic pathway (eg to Chordata) and their ancestors (eg Porifera and Cnidaria) had higher percentages of bioactive samples in the assays examined. While taxonomy at the phylum level and higher-order phylogeny groupings helped account for observed trends, taxonomy to genus did not resolve the trends any further. In addition, the results did not identify any biogeographic bioactivity hotspots that correlated with biodiversity hotspots. We conclude with a hypothesis that high-level phylogeny, and therefore the metabolic machinery available to an organism, is a major determinant of bioactivity, while habitat diversity and ecological circumstance are possible drivers in the activation of this machinery and bioactive secondary metabolism. This study supports the strategy of targeting phyla from the deuterostome lineage (including ancestral phyla) from biodiverse marine habitats and ecological niches, in future biodiscovery, at least that which is focused on vertebrate (including human) health.
Collapse
Affiliation(s)
| | - Murray Logan
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Jason Doyle
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Jane Fromont
- Western Australian Museum, Welshpool, Western Australia, Australia
| | | | - Gavin Ericson
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Carsten W. Wolff
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Andrew Muirhead
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Phillip Kearns
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - David Abdo
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Stuart Kininmonth
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| | - Lyndon Llewellyn
- Australian Institute of Marine Science, Townsville, Queensland, Australia
| |
Collapse
|
10
|
Apps PJ. Are mammal olfactory signals hiding right under our noses? Naturwissenschaften 2013; 100:487-506. [DOI: 10.1007/s00114-013-1054-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2013] [Revised: 04/22/2013] [Accepted: 04/25/2013] [Indexed: 01/23/2023]
|
11
|
Predator biomass determines the magnitude of non-consumptive effects (NCEs) in both laboratory and field environments. Oecologia 2012; 172:79-91. [PMID: 23250631 DOI: 10.1007/s00442-012-2488-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2011] [Accepted: 09/26/2012] [Indexed: 10/27/2022]
Abstract
Predator body size often indicates predation risk, but its significance in non-consumptive effects (NCEs) and predator risk assessment has been largely understudied. Although studies often recognize that predator body size can cause differing cascading effects, few directly examine prey foraging behavior in response to individual predator sizes or investigate how predator size is discerned. These mechanisms are important since perception of the risk imposed by predators dictates behavioral responses to predators and subsequent NCEs. Here, we evaluate the role of predator body size and biomass on risk assessment and the magnitude of NCEs by investigating mud crab foraging behavior and oyster survival in response to differing biomasses of blue crab predators using both laboratory and field methods. Cues from high predator biomass treatments including large blue crab predators and multiple small blue crab predators decreased mud crab foraging and increased oyster survival, whereas mud crab foraging in response to a single small blue crab did not differ from controls. Mud crabs also increased refuge use in the presence of large and multiple small, but not single small, blue crab predators. Thus, both predator biomass and aggregation patterns may affect the expression of NCEs. Understanding the impact of predator biomass may therefore be necessary to successfully predict the role of NCEs in shaping community dynamics. Further, the results of our laboratory experiments were consistent with observed NCEs in the field, suggesting that data from mesocosm environments can provide insight into field situations where flow and turbulence levels are moderate.
Collapse
|
12
|
Leclaire S, Merkling T, Raynaud C, Giacinti G, Bessière JM, Hatch SA, Danchin E. An individual and a sex odor signature in kittiwakes?: study of the semiochemical composition of preen secretion and preen down feathers. Naturwissenschaften 2011; 98:615-24. [PMID: 21656004 DOI: 10.1007/s00114-011-0809-9] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2011] [Revised: 05/25/2011] [Accepted: 05/25/2011] [Indexed: 11/27/2022]
Abstract
The importance of olfaction in birds' social behavior has long been denied. Avian chemical signaling has thus been relatively unexplored. The black-legged kittiwake provides a particularly appropriate model for investigating this topic. Kittiwakes preferentially mate with genetically dissimilar individuals, but the cues used to assess genetic characteristics remain unknown. As in other vertebrates, their body odors may carry individual and sexual signatures thus potentially reliably signaling individual genetic makeup. Here, we test whether body odors in preen gland secretion and preen down feathers in kittiwakes may provide a sex and an individual signature. Using gas chromatography and mass spectrometry, we found that male and female odors differ quantitatively, suggesting that scent may be one of the multiple cues used by birds to discriminate between sexes. We further detected an individual signature in the volatile and nonvolatile fractions of preen secretion and preen down feathers. These results suggest that kittiwake body odor may function as a signal associated with mate recognition. It further suggests that preen odor might broadcast the genetic makeup of individuals, and could be used in mate choice to assess the genetic compatibility of potential mates.
Collapse
Affiliation(s)
- Sarah Leclaire
- Université Paul Sabatier, (Laboratoire Évolution et Diversité Biologique), Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
13
|
Paul VJ, Ritson-Williams R, Sharp K. Marine chemical ecology in benthic environments. Nat Prod Rep 2010; 28:345-87. [PMID: 21125086 DOI: 10.1039/c0np00040j] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Valerie J Paul
- Smithsonian Marine Station, Smithsonian Institution, Fort Pierce, Florida, USA.
| | | | | |
Collapse
|
14
|
Smee DL, Ferner MC, Weissburg MJ. Hydrodynamic sensory stressors produce nonlinear predation patterns. Ecology 2010; 91:1391-400. [PMID: 20503871 DOI: 10.1890/09-0017.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Predators often have large effects on community structure, but these effects can be minimized in habitats subjected to intense physical stress. For example, predators exert large effects on rocky intertidal communities on wave-protected shores but are usually absent from wave-swept shores where hydrodynamic forces prevent them from foraging effectively. The physical environment also can affect predation levels when stressors are not severe enough to be physically risky. In these situations, environmental conditions may constrain a predator's ability to locate prey and alleviate predation pressure. Yet, stress models of community structure have rarely considered the implications of such sensory or behavioral stressors, particularly when the sensory abilities of both predators and prey are affected by the same types of environmental conditions. Ecologists may classify certain environmental conditions as refuges if they impede predator foraging, but these conditions may not actually decrease predation levels if they simultaneously increase prey vulnerability to consumers. Using blue crabs (Callinectes sapidus) and hard clams (Mercenaria mercenaria) as a model system, we investigated the relationship between predation intensity and environmental stress in the form of hydrodynamics (i.e., flow velocity and turbulence). Blue crabs and hard clams are less responsive to each other in faster, more turbulent flows, but studies exploring how flow modulates the outcomes of crab-clam interactions in the field are lacking. We manipulated turbulence within field sites and compared predation levels within and between sites that differed in flow velocity and turbulence. Our results suggest that blue crabs are most effective foragers in flows with intermediate velocities and turbulence levels. Although these conditions are not ideal for blue crabs, lab studies indicate that they also compromise the ability of clams to detect and react to approaching crabs and, thereby, increase clam vulnerability to predators. Our results suggest that environmental stresses on perception (sensory stressors) may not cause a steady decay in predation rates when they simultaneously affect the behaviors of both predators and prey. Moreover, the relative contribution of lethal vs. nonlethal predator effects in communities also may be influenced by environmental forces that enhance the predator-avoidance abilities of prey or the foraging efficiency of predators.
Collapse
Affiliation(s)
- Delbert L Smee
- Texas A&M University, Department of Life Sciences, 6300 Ocean Drive, Unit 5800, Corpus Christi, Texas 78412, USA.
| | | | | |
Collapse
|
15
|
Boyd RS. Heavy Metal Pollutants and Chemical Ecology: Exploring New Frontiers. J Chem Ecol 2010; 36:46-58. [DOI: 10.1007/s10886-009-9730-5] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2009] [Revised: 11/20/2009] [Accepted: 12/14/2009] [Indexed: 12/29/2022]
|
16
|
Abstract
Chemical neuroecology examines the relationships between chemosensory physiology, behavior, and population and community dynamics. A keystone species, for example, is one whose impact on communities is far greater than would be predicted from its relative abundance and biomass. Neurotoxins, then, could function in keystone roles. Rare within natural habitats, they exert strong effects on species interactions at multiple trophic levels. Effects of two guanidine alkaloids, tetrodotoxin (TTX) and saxitoxin (STX), coalesce neurobiological and ecological perspectives. These potent neurotoxins function as chemical defenses by binding to voltage-gated sodium channels on nerve and muscle cells. When borrowed by resistant consumer species, however, they are used in chemical defense against higher-order predators or as chemosensory excitants in mediating critical behavioral interactions. Through a combination of diverse physiological traits, TTX and STX exert profound impacts reverberating across multiple trophic levels and determining a wide range of community-wide attributes. Such traits ultimately render TTX and STX fully functional as keystone molecules, with vast ecological consequences for species assemblages and rates of material exchange.
Collapse
Affiliation(s)
- Ryan P Ferrer
- Department of Biology, Seattle Pacific University, Seattle, Washington 98119, USA.
| | | |
Collapse
|
17
|
Affiliation(s)
- Kelsey L Poulson
- School of Biology and School of Chemistry & Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0230, USA
| | | | | |
Collapse
|
18
|
Riffell JA, Abrell L, Hildebrand JG. Physical processes and real-time chemical measurement of the insect olfactory environment. J Chem Ecol 2008; 34:837-53. [PMID: 18548311 PMCID: PMC2778261 DOI: 10.1007/s10886-008-9490-7] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2008] [Revised: 04/10/2008] [Accepted: 04/28/2008] [Indexed: 10/22/2022]
Abstract
Odor-mediated insect navigation in airborne chemical plumes is vital to many ecological interactions, including mate finding, flower nectaring, and host locating (where disease transmission or herbivory may begin). After emission, volatile chemicals become rapidly mixed and diluted through physical processes that create a dynamic olfactory environment. This review examines those physical processes and some of the analytical technologies available to characterize those behavior-inducing chemical signals at temporal scales equivalent to the olfactory processing in insects. In particular, we focus on two areas of research that together may further our understanding of olfactory signal dynamics and its processing and perception by insects. First, measurement of physical atmospheric processes in the field can provide insight into the spatiotemporal dynamics of the odor signal available to insects. Field measurements in turn permit aspects of the physical environment to be simulated in the laboratory, thereby allowing careful investigation into the links between odor signal dynamics and insect behavior. Second, emerging analytical technologies with high recording frequencies and field-friendly inlet systems may offer new opportunities to characterize natural odors at spatiotemporal scales relevant to insect perception and behavior. Characterization of the chemical signal environment allows the determination of when and where olfactory-mediated behaviors may control ecological interactions. Finally, we argue that coupling of these two research areas will foster increased understanding of the physicochemical environment and enable researchers to determine how olfactory environments shape insect behaviors and sensory systems.
Collapse
Affiliation(s)
- Jeffrey A Riffell
- ARL Division of Neurobiology, University of Arizona, Tucson, AZ 857210-0077, USA.
| | | | | |
Collapse
|
19
|
Derby CD, Sorensen PW. Neural processing, perception, and behavioral responses to natural chemical stimuli by fish and crustaceans. J Chem Ecol 2008; 34:898-914. [PMID: 18521679 DOI: 10.1007/s10886-008-9489-0] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 04/22/2008] [Accepted: 04/28/2008] [Indexed: 12/19/2022]
Abstract
This manuscript reviews the chemical ecology of two of the major aquatic animal models, fish and crustaceans, in the study of chemoreception. By necessity, it is restricted in scope, with most emphasis placed on teleost fish and decapod crustaceans. First, we describe the nature of the chemical world perceived by fish and crustaceans, giving examples of the abilities of these animals to analyze complex natural odors. Fish and crustaceans share the same environments and have evolved some similar chemosensory features: the ability to detect and discern mixtures of small metabolites in highly variable backgrounds and to use this information to identify food, mates, predators, and habitat. Next, we give examples of the molecular nature of some of these natural products, including a description of methodologies used to identify them. Both fish and crustaceans use their olfactory and gustatory systems to detect amino acids, amines, and nucleotides, among many other compounds, while fish olfactory systems also detect mixtures of sex steroids and prostaglandins with high specificity and sensitivity. Third, we discuss the importance of plasticity in chemical sensing by fish and crustaceans. Finally, we conclude with a description of how natural chemical stimuli are processed by chemosensory systems. In both fishes and crustaceans, the olfactory system is especially adept at mixture discrimination, while gustation is well suited to facilitate precise localization and ingestion of food. The behaviors of both fish and crustaceans can be defined by the chemical worlds in which they live and the abilities of their nervous systems to detect and identify specific features in their domains. An understanding of these worlds and the sensory systems that provide the animals with information about them provides insight into the chemical ecology of these species.
Collapse
Affiliation(s)
- Charles D Derby
- Center for Behavioral Neuroscience, Department of Biology, Georgia State University, Atlanta, GA, USA.
| | | |
Collapse
|