1
|
Li A, Jin K, Zhang Y, Deng X, Chen Y, Wei X, Hu B, Jiang Y. Root exudates and rhizosphere microbiota in responding to long-term continuous cropping of tobacco. Sci Rep 2024; 14:11274. [PMID: 38760388 PMCID: PMC11101450 DOI: 10.1038/s41598-024-61291-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 05/03/2024] [Indexed: 05/19/2024] Open
Abstract
Soil sickness a severe problem in tobacco production, leading to soil-borne diseases and reduce in tobacco yield. This occurs as a result of the interaction between root exudates and rhizosphere microorganisms, which is however, little studied until now. By combining the field investigation and pot experiment, we found the output yield consistently decreased during the first 10 years of continuous cropping in a tobacco field, but increased at the 15th year (15Y). The root exudate and rhizosphere bacterial community was further analyzed to reveal the underlying mechanism of the suppressive soil formation. Root exudate of 15Y tobacco enriched in amino acids and derivatives, while depleted in the typical autotoxins including phenolic acids and alkaloids. This was correlated to the low microbial diversity in 15Y, but also the changes in community composition and topological properties of the co-occurrence network. Especially, the reduced autotoxins were associated with low Actinobacteria abundance, low network complexity and high network modularity, which significantly correlated with the recovered output yield in 15Y. This study revealed the coevolution of rhizosphere microbiota and root exudate as the soil domesticated by continuous cropping of tobacco, and indicated a potential role of the autotoxins and theirs effect on the microbial community in the formation of suppressive soil.
Collapse
Affiliation(s)
- Abo Li
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
- Horticulture Institute, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, 750002, China
| | - Keke Jin
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China
| | - YuZhen Zhang
- Qingdao Agricultural University, Nanjing, 210095, China
| | - Xiaopeng Deng
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Yi Chen
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China
| | - Xiaomeng Wei
- College of Natural Resources and Environment, Northwest A&F University, Shaanxi, 712100, China
| | - Binbin Hu
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
| | - Yonglei Jiang
- Yunnan Academy of Tobacco Agricultural Sciences, Kunming, 650021, China.
- College of Life Sciences, Northwest A&F University, Yangling, 712100, Shaanxi, China.
| |
Collapse
|
2
|
Xu X, Zhang C, Lai C, Zhang Z, Wu J, Su Q, Gan Y, Zhang Z, Chen Y, Guo R, Lin Y, Lai Z. Genome-Wide Identification and Expression Analysis of Bx Involved in Benzoxazinoids Biosynthesis Revealed the Roles of DIMBOA during Early Somatic Embryogenesis in Dimocarpus longan Lour. PLANTS (BASEL, SWITZERLAND) 2024; 13:1373. [PMID: 38794443 PMCID: PMC11125010 DOI: 10.3390/plants13101373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/04/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Benzoxazinoids (BXs) are tryptophan-derived indole metabolites and play a role in various physiological processes, such as auxin metabolism. Auxin is essential in the process of somatic embryogenesis (SE) in plants. In this study, we used bioinformatics, transcriptome data, exogenous treatment experiments, and qPCR analysis to study the evolutionary pattern of Bx genes in green plants, the regulatory mechanism of DlBx genes during early SE, and the effect of 2,4-dihydroxy-7-methoxy-1,4-benzoxazine-3-one (DIMBOA) on the early SE in Dimocarpus longan Lour. The results showed that 27 putative DlBxs were identified in the longan genome; the Bx genes evolved independently in monocots and dicots, and the main way of gene duplication for the DlBx was tandem duplication (TD) and the DlBx were strongly constrained by purification selection during evolution. The transcriptome data indicated varying expression levels of DlBx during longan early SE, and most DlBxs responded to light, temperature, drought stress, and 2,4-dichlorophenoxyacetic acid (2,4-D) treatment; qRT-PCR results showed DlBx1, DlBx6g and DlBx6h were responsive to auxin, and treatment with 0.1mg/L DIMBOA for 9 days significantly upregulated the expression levels of DlBx1, DlBx3g, DlBx6c, DlBx6f, DlB6h, DlBx7d, DlBx8, and DlBx9b. The correlation analysis showed a significantly negative correlation between the expression level of DlBx1 and the endogenous IAA contents; DIMBOA significantly promoted the early SE and significantly changed the endogenous IAA content, and the IAA content increased significantly at the 9th day and decreased significantly at the 13th day. Therefore, the results suggested that DIMBOA indirectly promote the early SE by changing the endogenous IAA content via affecting the expression level of DlBx1 and hydrogen peroxide (H2O2) content in longan.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (X.X.); (C.Z.); (C.L.); (Z.Z.); (J.W.); (Q.S.); (Y.G.); (Z.Z.); (Y.C.); (R.G.); (Y.L.)
| |
Collapse
|
3
|
Cen Z, Hu B, Yang S, Ma G, Zheng Y, Dong Y. Mechanism of benzoxazinoids affecting the growth and development of Fusarium oxysporum f. sp. fabae. PLANT MOLECULAR BIOLOGY 2024; 114:42. [PMID: 38630198 DOI: 10.1007/s11103-024-01439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/08/2024] [Indexed: 04/19/2024]
Abstract
Continuous cropping of faba bean (Vicia faba L.) has led to a high incidence of wilt disease. The implementation of an intercropping system involving wheat and faba bean can effectively control the propagation of faba bean wilt disease. To investigate the mechanisms of wheat in mitigating faba bean wilt disease in a wheat-faba bean intercropping system. A comprehensive investigation was conducted to assess the temporal variations in Fusarium oxysporum f. sp. fabae (FOF) on the chemotaxis of benzoxazinoids (BXs) and wheat root through indoor culture tests. The effects of BXs on FOF mycelial growth, spore germination, spore production, and electrical conductivity were examined. The influence of BXs on the ultrastructure of FOF was investigated through transmission electron microscopy. Eukaryotic mRNA sequencing was utilized to analyze the differentially expressed genes in FOF upon treatment with BXs. FOF exhibited a significant positive chemotactic effect on BXs in wheat roots and root secretions. BXs possessed the potential to exert significant allelopathic effects on the mycelial growth, spore germination, and sporulation of FOF. In addition, BXs demonstrated a remarkable ability to disrupt the structural integrity and stability of the membrane and cell wall of the FOF mycelia. BXs possessed the capability of posing threats to the integrity and stability of the cell membrane and cell wall. This ultimately resulted in physiological dysfunction, effectively inhibiting the regular growth and developmental processes of the FOF.
Collapse
Affiliation(s)
- Zixuan Cen
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Bijie Hu
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Siyin Yang
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Guanglei Ma
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yiran Zheng
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China
| | - Yan Dong
- College of Resources and Environment, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
4
|
Tabaglio V, Fiorini A, Sterling TM, Schulz M. Abutilon theophrasti's Resilience against Allelochemical-Based Weed Management in Sustainable Agriculture - Due to Collection of Highly Advantageous Microorganisms? PLANTS (BASEL, SWITZERLAND) 2023; 12:700. [PMID: 36840048 PMCID: PMC9961861 DOI: 10.3390/plants12040700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 01/30/2023] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Abutilon theophrasti Medik. (velvetleaf) is a problematic annual weed in field crops which has invaded many temperate parts of the world. Since the loss of crop yields can be extensive, approaches to manage the weed include not only conventional methods, but also biological methods, for instance by microorganisms releasing phytotoxins and plant-derived allelochemicals. Additionally, benzoxazinoid-rich rye mulches effective in managing common weeds like Amaranthus retroflexus L. have been tested for this purpose. However, recent methods for biological control are still unreliable in terms of intensity and duration. Rye mulches were also ineffective in managing velvetleaf. In this review, we present the attempts to reduce velvetleaf infestation by biological methods and discuss possible reasons for the failure. The resilience of velvetleaf may be due to the extraordinary capacity of the plant to collect, for its own survival, the most suitable microorganisms from a given farming site, genetic and epigenetic adaptations, and a high stress memory. Such properties may have developed together with other advantageous abilities during selection by humans when the plant was used as a crop. Rewilding could be responsible for improving the microbiomes of A. theophrasti.
Collapse
Affiliation(s)
- Vincenzo Tabaglio
- Department of Sustainable Crop Production DI.PRO.VE.S., Section Agronomy and Plant Biotechnologies, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Andrea Fiorini
- Department of Sustainable Crop Production DI.PRO.VE.S., Section Agronomy and Plant Biotechnologies, Università Cattolica del Sacro Cuore, Via Emilia Parmense 84, 29122 Piacenza, Italy
| | - Tracy M. Sterling
- Department of Land Resources & Environmental Sciences, Montana State University, Bozeman, MT 59717, USA
| | - Margot Schulz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115 Bonn, Germany
| |
Collapse
|
5
|
Chen Y, Yang L, Zhang L, Li J, Zheng Y, Yang W, Deng L, Gao Q, Mi Q, Li X, Zeng W, Ding X, Xiang H. Autotoxins in continuous tobacco cropping soils and their management. FRONTIERS IN PLANT SCIENCE 2023; 14:1106033. [PMID: 37139103 PMCID: PMC10149998 DOI: 10.3389/fpls.2023.1106033] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 03/29/2023] [Indexed: 05/05/2023]
Abstract
Tobacco belongs to the family Solanaceae, which easily forms continuous cropping obstacles. Continuous cropping exacerbates the accumulation of autotoxins in tobacco rhizospheric soil, affects the normal metabolism and growth of plants, changes soil microecology, and severely reduces the yield and quality of tobacco. In this study, the types and composition of tobacco autotoxins under continuous cropping systems are summarized, and a model is proposed, suggesting that autotoxins can cause toxicity to tobacco plants at the cell level, plant-growth level, and physiological process level, negatively affecting soil microbial life activities, population number, and community structure and disrupting soil microecology. A combined strategy for managing tobacco autotoxicity is proposed based on the breeding of superior varieties, and this approach can be combined with adjustments to cropping systems, the induction of plant immunity, and the optimization of cultivation and biological control measures. Additionally, future research directions are suggested and challenges associated with autotoxicity are provided. This study aims to serve as a reference and provide inspirations needed to develop green and sustainable strategies and alleviate the continuous cropping obstacles of tobacco. It also acts as a reference for resolving continuous cropping challenges in other crops.
Collapse
Affiliation(s)
- Yudong Chen
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- *Correspondence: Long Yang, ; Wanli Zeng, ; Xinhua Ding, ; Haiying Xiang,
| | | | - Jianrong Li
- Yuxi Cigarette Factory, Hongta Tobacco Group Co. Ltd., Yuxi, China
| | - Yalin Zheng
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
| | - Wenwu Yang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Lele Deng
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Qian Gao
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Qili Mi
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Xuemei Li
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
| | - Wanli Zeng
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
- *Correspondence: Long Yang, ; Wanli Zeng, ; Xinhua Ding, ; Haiying Xiang,
| | - Xinhua Ding
- College of Plant Protection, Shandong Agricultural University, Tai’an, China
- *Correspondence: Long Yang, ; Wanli Zeng, ; Xinhua Ding, ; Haiying Xiang,
| | - Haiying Xiang
- Technology Center of China Tobacco Yunnan Industrial Co. Ltd., Kunming, China
- *Correspondence: Long Yang, ; Wanli Zeng, ; Xinhua Ding, ; Haiying Xiang,
| |
Collapse
|
6
|
Laschke L, Schütz V, Schackow O, Sicker D, Hennig L, Hofmann D, Dörmann P, Schulz M. Survival of Plants During Short-Term BOA-OH Exposure: ROS Related Gene Expression and Detoxification Reactions Are Accompanied With Fast Membrane Lipid Repair in Root Tips. J Chem Ecol 2022; 48:219-239. [PMID: 34988771 PMCID: PMC8881443 DOI: 10.1007/s10886-021-01337-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/30/2022]
Abstract
For the characterization of BOA-OH insensitive plants, we studied the time-dependent effects of the benzoxazolinone-4/5/6/7-OH isomers on maize roots. Exposure of Zea mays seedlings to 0.5 mM BOA-OH elicits root zone-specific reactions by the formation of dark rings and spots in the zone of lateral roots, high catalase activity on root hairs, and no visible defense reaction at the root tip. We studied BOA-6-OH- short-term effects on membrane lipids and fatty acids in maize root tips in comparison to the benzoxazinone-free species Abutilon theophrasti Medik. Decreased contents of phosphatidylinositol in A. theophrasti and phosphatidylcholine in maize were found after 10-30 min. In the youngest tissue, α-linoleic acid (18:2), decreased considerably in both species and recovered within one hr. Disturbances in membrane phospholipid contents were balanced in both species within 30-60 min. Triacylglycerols (TAGs) were also affected, but levels of maize diacylglycerols (DAGs) were almost unchanged, suggesting a release of fatty acids for membrane lipid regeneration from TAGs while resulting DAGs are buildings blocks for phospholipid reconstitution, concomitant with BOA-6-OH glucosylation. Expression of superoxide dismutase (SOD2) and of ER-bound oleoyl desaturase (FAD2-2) genes were contemporaneously up regulated in contrast to the catalase CAT1, while CAT3 was arguably involved at a later stage of the detoxification process. Immuno-responses were not elicited in short-terms, since the expression of NPR1, POX12 were barely affected, PR4 after 6 h with BOA-4/7-OH and PR1 after 24 h with BOA-5/6-OH. The rapid membrane recovery, reactive oxygen species, and allelochemical detoxification may be characteristic for BOA-OH insensitive plants.
Collapse
Affiliation(s)
- Laura Laschke
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany
| | - Vadim Schütz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany
| | - Oliver Schackow
- Institute of Organic Chemistry, Institut Für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Dieter Sicker
- Institute of Organic Chemistry, Institut Für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Lothar Hennig
- Institute of Organic Chemistry, Institut Für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103, Leipzig, Germany
| | - Diana Hofmann
- IBG-3: Agrosphäre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Peter Dörmann
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany
| | - Margot Schulz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Karlrobert-Kreiten Str. 13, 53115, Bonn, Germany.
| |
Collapse
|
7
|
Macías FA, Mejías FJ, Molinillo JM. Recent advances in allelopathy for weed control: from knowledge to applications. PEST MANAGEMENT SCIENCE 2019; 75:2413-2436. [PMID: 30684299 DOI: 10.1002/ps.5355] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 01/10/2019] [Accepted: 01/19/2019] [Indexed: 05/27/2023]
Abstract
Allelopathy is the biological phenomenon of chemical interactions between living organisms in the ecosystem, and must be taken into account in addressing pest and weed problems in future sustainable agriculture. Allelopathy is a multidisciplinary science, but in some cases, aspects of its chemistry are overlooked, despite the need for a deep knowledge of the chemical structural characteristics of allelochemicals to facilitate the design of new herbicides. This review is focused on the most important advances in allelopathy, paying particular attention to the design and development of phenolic compounds, terpenoids and alkaloids as herbicides. The isolation of allelochemicals is mainly addressed, but other aspects such as the analysis and activities of derivatives or analogs are also covered. Furthermore, the use of allelopathy in the fight against parasitic plants is included. The past 12 years have been a prolific period for publications on allelopathy. This critical review discusses future research areas in this field and the state of the art is analyzed from the chemist's perspective. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Francisco A Macías
- Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, Cádiz, Spain
| | - Francisco Jr Mejías
- Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, Cádiz, Spain
| | - José Mg Molinillo
- Allelopathy Group, Department of Organic Chemistry, School of Sciences, Institute of Biomolecules (INBIO), University of Cadiz, Cádiz, Spain
| |
Collapse
|
8
|
Plant Protection by Benzoxazinoids—Recent Insights into Biosynthesis and Function. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080143] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Benzoxazinoids (BXs) are secondary metabolites present in many Poaceae including the major crops maize, wheat, and rye. In contrast to other potentially toxic secondary metabolites, BXs have not been targets of counter selection during breeding and the effect of BXs on insects, microbes, and neighbouring plants has been recognised. A broad knowledge about the mode of action and metabolisation in target organisms including herbivorous insects, aphids, and plants has been gathered in the last decades. BX biosynthesis has been elucidated on a molecular level in crop cereals. Recent advances, mainly made by investigations in maize, uncovered a significant diversity in the composition of BXs within one species. The pattern can be specific for single plant lines and dynamic changes triggered by biotic and abiotic stresses were observed. Single BXs might be toxic, repelling, attractive, and even growth-promoting for insects, depending on the particular species. BXs delivered into the soil influence plant and microbial communities. Furthermore, BXs can possibly be used as signalling molecules within the plant. In this review we intend to give an overview of the current data on the biosynthesis, structure, and function of BXs, beyond their characterisation as mere phytotoxins.
Collapse
|
9
|
Schulz M, Sicker D, Schackow O, Hennig L, Yurkov A, Siebers M, Hofmann D, Disko U, Ganimede C, Mondani L, Tabaglio V, Marocco A. Interspecies-cooperations of abutilon theophrasti with root colonizing microorganisms disarm BOA-OH allelochemicals. PLANT SIGNALING & BEHAVIOR 2017; 12:e1358843. [PMID: 28786736 PMCID: PMC5616163 DOI: 10.1080/15592324.2017.1358843] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/18/2017] [Accepted: 07/18/2017] [Indexed: 06/07/2023]
Abstract
A facultative, microbial micro-community colonizing roots of Abutilon theophrasti Medik. supports the plant in detoxifying hydroxylated benzoxazolinones. The root micro-community is composed of several fungi and bacteria with Actinomucor elegans as a dominant species. The yeast Papiliotrema baii and the bacterium Pantoea ananatis are actively involved in the detoxification of hydroxylated benzoxazolinones by generating H2O2. At the root surface, laccases, peroxidases and polyphenol oxidases cooperate for initiating polymerization reactions, whereby enzyme combinations seem to differ depending on the hydroxylation position of BOA-OHs. A glucosyltransferase, able to glucosylate the natural benzoxazolinone detoxification intermediates BOA-5- and BOA-6-OH, is thought to reduce oxidative overshoots by damping BOA-OH induced H2O2 generation. Due to this detoxification network, growth of Abutilon theophrasti seedlings is not suppressed by BOA-OHs. Polymer coats have no negative influence. Alternatively, quickly degradable 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one can be produced by the micro-community member Pantoea ananatis at the root surfaces. The results indicate that Abutilon theophrasti has evolved an efficient strategy by recruiting soil microorganisms with special abilities for different detoxification reactions which are variable and may be triggered by the allelochemical´s structure and by environmental conditions.
Collapse
Affiliation(s)
- Margot Schulz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Dieter Sicker
- Institut für Organische Chemie, Universität Leipzig, Leipzig, Germany
| | - Oliver Schackow
- Institut für Organische Chemie, Universität Leipzig, Leipzig, Germany
| | - Lothar Hennig
- Institut für Organische Chemie, Universität Leipzig, Leipzig, Germany
| | - Andrey Yurkov
- DSMZ Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Braunschweig, Germany
| | - Meike Siebers
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Diana Hofmann
- IBG-3: Agrossphäre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ulrich Disko
- IBG-3: Agrossphäre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Cristina Ganimede
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Letizia Mondani
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Vincenzo Tabaglio
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Adriano Marocco
- Institute of Agronomy, Genetics and Field Crops, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
10
|
Schulz M, Sicker D, Schackow O, Hennig L, Hofmann D, Disko U, Ventura M, Basyuk K. 6-Hydroxy-5-nitrobenzo[ d]oxazol-2(3 H)-one-A degradable derivative of natural 6-Hydroxybenzoxazolin-2(3 H)-one produced by Pantoea ananatis. Commun Integr Biol 2017; 10:e1302633. [PMID: 28702124 PMCID: PMC5501217 DOI: 10.1080/19420889.2017.1302633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 02/28/2017] [Accepted: 02/28/2017] [Indexed: 01/10/2023] Open
Abstract
Pantoea ananatis is a bacterium associated with other microorganisms on Abutilon theophrasti Medik. roots. It converts 6-hydroxybenzoxazolin-2(3H)-one (BOA-6-OH), a hydroxylated derivative of the allelochemical benzoxazolin-2(3H)-one, into 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one. The compound was identified by NMR and mass spectrometric methods. In vitro synthesis succeeded with Pantoea protein, with isolated proteins from the Abutilon root surface or with horseradish peroxidase in the presence of nitrite and H2O2. Nitro-BOA-6-OH is completely degraded further by Pantoea ananatis and Abutilon root surface proteins. Under laboratory conditions, 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one inhibits Lepidium sativum seedling growth whereas Abutilon theophrasti is much less affected. Although biodegradable, an agricultural use of 6-hydroxy-5-nitrobenzo[d]oxazol-2(3H)-one is undesirable because of the high toxicity of nitro aromatic compounds to mammals.
Collapse
Affiliation(s)
- Margot Schulz
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Dieter Sicker
- Institut für Organische Chemie, Universität Leipzig, Leipzig, Germany
| | - Oliver Schackow
- Institut für Organische Chemie, Universität Leipzig, Leipzig, Germany
| | - Lothar Hennig
- Institut für Organische Chemie, Universität Leipzig, Leipzig, Germany
| | - Diana Hofmann
- IBG-3: Agrosphäre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Ulrich Disko
- IBG-3: Agrosphäre, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Marina Ventura
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| | - Kateryna Basyuk
- IMBIO Institute of Molecular Physiology and Biotechnology of Plants, University of Bonn, Bonn, Germany
| |
Collapse
|
11
|
Schulz M, Filary B, Kühn S, Colby T, Harzen A, Schmidt J, Sicker D, Hennig L, Hofmann D, Disko U, Anders N. Benzoxazolinone detoxification by N-Glucosylation: The multi-compartment-network of Zea mays L. PLANT SIGNALING & BEHAVIOR 2016; 11:e1119962. [PMID: 26645909 PMCID: PMC4871689 DOI: 10.1080/15592324.2015.1119962] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The major detoxification product in maize roots after 24 h benzoxazolin-2(3H)-one (BOA) exposure was identified as glucoside carbamate resulting from rearrangement of BOA-N-glucoside, but the pathway of N-glucosylation, enzymes involved and the site of synthesis were previously unknown. Assaying whole cell proteins revealed the necessity of H2O2 and Fe(2+) ions for glucoside carbamate production. Peroxidase produced BOA radicals are apparently formed within the extraplastic space of the young maize root. Radicals seem to be the preferred substrate for N-glucosylation, either by direct reaction with glucose or, more likely, the N-glucoside is released by glucanase/glucosidase catalyzed hydrolysis from cell wall components harboring fixed BOA. The processes are accompanied by alterations of cell wall polymers. Glucoside carbamate accumulation could be suppressed by the oxireductase inhibitor 2-bromo-4´-nitroacetophenone and by peroxidase inhibitor 2,3-butanedione. Alternatively, activated BOA molecules with an open heterocycle may be produced by microorganisms (e.g., endophyte Fusarium verticillioides) and channeled for enzymatic N-glucosylation. Experiments with transgenic Arabidopsis lines indicate a role of maize glucosyltransferase BX9 in BOA-N-glycosylation. Western blots with BX9 antibody demonstrate the presence of BX9 in the extraplastic space. Proteomic analyses verified a high BOA responsiveness of multiple peroxidases in the apoplast/cell wall. BOA incubations led to shifting, altered abundances and identities of the apoplast and cell wall located peroxidases, glucanases, glucosidases and glutathione transferases (GSTs). GSTs could function as glucoside carbamate transporters. The highly complex, compartment spanning and redox-regulated glucoside carbamate pathway seems to be mainly realized in Poaceae. In maize, carbamate production is independent from benzoxazinone synthesis.
Collapse
Affiliation(s)
- Margot Schulz
- IMBIO Institut für Biotechnologie der Pflanzen, Universität Bonn, Karlrobert Kreiten Str. 13, 53115 Bonn, Germany
| | - Barbara Filary
- IMBIO Institut für Biotechnologie der Pflanzen, Universität Bonn, Karlrobert Kreiten Str. 13, 53115 Bonn, Germany
| | - Sabine Kühn
- IMBIO Institut für Biotechnologie der Pflanzen, Universität Bonn, Karlrobert Kreiten Str. 13, 53115 Bonn, Germany
| | - Thomas Colby
- Max-Planck-Institut für Pflanzenzüchtungsforschung, Carl von Linné Weg 10, 50829 Köln, Germany
- Max Planck Institute for Biology of Aging, Joseph-Stelzmann Str. 9b, 50931 Köln, Germany
| | - Anne Harzen
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Jürgen Schmidt
- IMBIO Institut für Biotechnologie der Pflanzen, Universität Bonn, Karlrobert Kreiten Str. 13, 53115 Bonn, Germany
| | - Dieter Sicker
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Lothar Hennig
- Institut für Organische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Diana Hofmann
- IBG-3: Agrossphäre, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Ulrich Disko
- IBG-3: Agrossphäre, Forschungszentrum Jülich GmbH, 52428 Jülich, Germany
| | - Nico Anders
- AVT-Enzyme Process Technology, RWTH Aachen University, Worringer Weg 1, 52074 Aachen, Germany
| |
Collapse
|
12
|
A γ-lactamase from cereal infecting Fusarium spp. catalyses the first step in the degradation of the benzoxazolinone class of phytoalexins. Fungal Genet Biol 2015; 83:1-9. [PMID: 26296598 DOI: 10.1016/j.fgb.2015.08.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/05/2015] [Accepted: 08/17/2015] [Indexed: 11/22/2022]
Abstract
The benzoxazolinone class of phytoalexins are released by wheat, maize, rye and other agriculturally important species in the Poaceae family upon pathogen attack. Benzoxazolinones show antimicrobial effects on plant pathogens, but certain fungi have evolved mechanisms to actively detoxify these compounds which may contribute to the virulence of the pathogens. In many Fusarium spp. a cluster of genes is thought to be involved in the detoxification of benzoxazolinones. However, only one enzyme encoded in the cluster has been unequivocally assigned a role in this process. The first step in the detoxification of benzoxazolinones in Fusarium spp. involves the hydrolysis of a cyclic ester bond. This reaction is encoded by the FDB1 locus in F. verticillioides but the underlying gene is yet to be cloned. We previously proposed that FDB1 encodes a γ-lactamase, and here direct evidence for this is presented. Expression analyses in the important wheat pathogen F. pseudograminearum demonstrated that amongst the three predicted γ-lactamase genes only the one designated as FDB1, part of the proposed benzoxazolinone cluster in F. pseudograminearum, was strongly responsive to exogenous benzoxazolinone application. Analysis of independent F. pseudograminearum and F. graminearum FDB1 gene deletion mutants, as well as biochemical assays, demonstrated that the γ-lactamase enzyme, encoded by FDB1, catalyses the first step in detoxification of benzoxazolinones. Overall, our results support the notion that Fusarium pathogens that cause crown rot and head blight on wheat have adopted strategies to overcome host-derived chemical defences.
Collapse
|
13
|
Kia SH, Schulz M, Ayah E, Schouten A, Müllenborn C, Paetz C, Schneider B, Hofmann D, Disko U, Tabaglio V, Marocco A. Abutilon theophrasti’s Defense Against the Allelochemical Benzoxazolin-2(3H)-One: Support by Actinomucor elegans. J Chem Ecol 2014; 40:1286-98. [DOI: 10.1007/s10886-014-0529-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 11/02/2014] [Accepted: 11/06/2014] [Indexed: 01/06/2023]
|
14
|
Benzoxazinoids in rye allelopathy - from discovery to application in sustainable weed control and organic farming. J Chem Ecol 2013; 39:154-74. [PMID: 23385365 DOI: 10.1007/s10886-013-0235-x] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 12/03/2012] [Accepted: 12/31/2012] [Indexed: 10/27/2022]
Abstract
The allelopathic potency of rye (Secale cereale L.) is due mainly to the presence of phytotoxic benzoxazinones-compounds whose biosynthesis is developmentally regulated, with the highest accumulation in young tissue and a dependency on cultivar and environmental influences. Benzoxazinones can be released from residues of greenhouse-grown rye at levels between 12 and 20 kg/ha, with lower amounts exuded by living plants. In soil, benzoxazinones are subject to a cascade of transformation reactions, and levels in the range 0.5-5 kg/ha have been reported. Starting with the accumulation of less toxic benzoxazolinones, the transformation reactions in soil primarily lead to the production of phenoxazinones, acetamides, and malonamic acids. These reactions are associated with microbial activity in the soil. In addition to benzoxazinones, benzoxazolin-2(3H)-one (BOA) has been investigated for phytotoxic effects in weeds and crops. Exposure to BOA affects transcriptome, proteome, and metabolome patterns of the seedlings, inhibits germination and growth, and can induce death of sensitive species. Differences in the sensitivity of cultivars and ecotypes are due to different species-dependent strategies that have evolved to cope with BOA. These strategies include the rapid activation of detoxification reactions and extrusion of detoxified compounds. In contrast to sensitive ecotypes, tolerant ecotypes are less affected by exposure to BOA. Like the original compounds BOA and MBOA, all exuded detoxification products are converted to phenoxazinones, which can be degraded by several specialized fungi via the Fenton reaction. Because of their selectivity, specific activity, and presumably limited persistence in the soil, benzoxazinoids or rye residues are suitable means for weed control. In fact, rye is one of the best cool season cover crops and widely used because of its excellent weed suppressive potential. Breeding of benzoxazinoid resistant crops and of rye with high benzoxazinoid contents, as well as a better understanding of the soil persistence of phenoxazinones, of the weed resistance against benzoxazinoids, and of how allelopathic interactions are influenced by cultural practices, would provide the means to include allelopathic rye varieties in organic cropping systems for weed control.
Collapse
|