1
|
PBP genes regulated by the development of the ovaries, sex pheromone release, mating and oviposition behavior in Conogethes punctiferalis (Guenée). CHEMOECOLOGY 2020. [DOI: 10.1007/s00049-020-00323-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
2
|
Wanner KW, Moore K, Wei J, Herdlicka BC, Linn CE, Baker TC. Pheromone Odorant Receptor Responses Reveal the Presence of a Cryptic, Redundant Sex Pheromone Component in the European Corn Borer, Ostrinia nubilalis. J Chem Ecol 2020; 46:567-580. [PMID: 32676764 DOI: 10.1007/s10886-020-01196-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 06/01/2020] [Accepted: 06/17/2020] [Indexed: 11/30/2022]
Abstract
Two odorant receptors (ORs), OnubOR3 and OnubOR6, in the sex pheromone communication systems of E- and Z-strain European corn borers, Ostrinia nubilalis, were broadly receptive to analogs of their pheromone components. In addition to responding to their natural 14-carbon pheromone components, (Z)-11- and (E)-11-tetradecenyl acetates (Z11- and E11-14:OAc), these pheromone ORs responded to the longer-chain compounds, (Z)-11- and (E)-11-hexadecenyl acetate (Z11- and E11-16:OAc). Z11-16:OAc is a pheromone gland constituent of E-strain O. nubilalis females in Europe but has not previously been shown to have behavioral activity to males. Here, we demonstrate that Z11-16:OAc evokes high levels of upwind flight and source location in E-strain males when substituted for Z11-14:OAc (minor component) in the E-strain blend. Since Z11-16:OAc is found in the gland and has behavioral activity when Z11-14:OAc is missing, then it should be classified as a cryptic, redundant minor pheromone component in E-strain O. nubilalis. The opposite geometric isomer, E11-16:OAc, also functions in Z-strain O. nubilalis, substituting behaviorally for the E11-14:OAc minor component, but has not been found in Z-strain female glands. Single-sensillum recordings showed that sensory neurons of E- and Z-strain male antennae expressing OnubOR3 and OnubOR6 produced responses to these hexadecenyl acetates similar to those evoked by the natural (tetradecenyl acetate) pheromone components. We postulate that the wide responsiveness of these two ORs to the 16-carbon acetates could be a preadaptation for O. nubilalis to use these compounds as minor components in lieu of the respective 14-carbon acetates. Alternatively, the responsiveness of OnubOR3 to E11-16:OAc and OnubOR6 to Z11-16:OAc could represent a vestigial state of these receptors, with the 16-carbon acetates having previously acted as functional minor components in an ancestral blend.
Collapse
Affiliation(s)
- Kevin W Wanner
- Department of Plant Science, Montana State University, 119 Plant BioSciences, Bozeman, MT, 59717, USA.
| | - Kevin Moore
- Department of Biology, Hobart and William Smith Colleges, Geneva, NY, 14456, USA
| | - Jianrong Wei
- Department of Entomology, Penn State University, University Park, PA, 16802, USA.,College of Life Science, Hebei University, City, Baoding, China
| | - Brent C Herdlicka
- Department of Plant Science, Montana State University, 119 Plant BioSciences, Bozeman, MT, 59717, USA
| | - Charles E Linn
- Department of Entomology, Cornell University, Geneva, NY, 14456, USA
| | - Thomas C Baker
- Department of Entomology, Penn State University, University Park, PA, 16802, USA
| |
Collapse
|
3
|
Wolfin MS, Chilson RR, Thrall J, Liu Y, Volo S, Cha DH, Loeb GM, Linn CE. Proximate Mechanisms of Host Plant Location by a Specialist Phytophagous Insect, the Grape Berry Moth, Paralobesia Viteana. J Chem Ecol 2019; 45:946-958. [PMID: 31755018 DOI: 10.1007/s10886-019-01112-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 09/12/2019] [Accepted: 10/03/2019] [Indexed: 12/01/2022]
Abstract
There are contrasting hypotheses regarding the role of plant volatiles in host plant location. We used the grape berry moth (GBM; Paralobesia viteana)-grape plant (Vitis spp.) complex as a model for studying the proximate mechanisms of long distance olfactory-mediated, host-plant location and selection by a specialist phytophagous insect. We used flight tunnel assays to observe GBM female in-flight responses to host (V. riparia) and non-host (apple, Malus domestica; and gray dogwood, Cornus racimosa,) odor sources in the form of plant shoots, extracts of shoots, and synthetic blends. Gas chromatography-electroantennographic detection and gas chromatography/mass spectrometry analyses were used to identify antennal-active volatile compounds. All antennal-active compounds found in grape shoots were also present in dogwood and apple shoots. Female GBM flew upwind to host and non-host extracts and synthetic blends at similar levels, suggesting discrimination is not occurring at long distance from the plant. Further, females did not land on sources releasing plant extracts and synthetic blends, suggesting not all landing cues were present. Additionally, mated and unmated moths displayed similar levels of upwind flight responses to all odor sources, supporting the idea that plant volatiles are not functioning solely as ovipositional cues. The results of this study support a hypothesis that GBM females are using volatile blends to locate a favorable habitat rather than a specific host plant, and that discrimination is occurring within the habitat, or even post-landing.
Collapse
Affiliation(s)
- Michael S Wolfin
- Department of Entomology, Cornell AgriTech at the New York Agricultural Experiment Station, Cornell University, Geneva, NY, USA. .,Department of Entomology, Pennsylvania State University, State College, PA, USA.
| | - Ronald R Chilson
- Department of Entomology, Cornell AgriTech at the New York Agricultural Experiment Station, Cornell University, Geneva, NY, USA
| | - Jonathan Thrall
- Biology Department, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Yuxi Liu
- Biology Department, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Sara Volo
- Biology Department, Hobart and William Smith Colleges, Geneva, NY, USA
| | - Dong H Cha
- USDA-ARS, Daniel K. Inouye US Pacific Basin Agricultural Research Center, Hilo, HI, USA
| | - Gregory M Loeb
- Department of Entomology, Cornell AgriTech at the New York Agricultural Experiment Station, Cornell University, Geneva, NY, USA
| | - Charles E Linn
- Department of Entomology, Cornell AgriTech at the New York Agricultural Experiment Station, Cornell University, Geneva, NY, USA
| |
Collapse
|
4
|
Jing D, Zhang T, Bai S, Prabu S, He K, Dewer Y, Wang Z. GOBP1 Plays a Key Role in Sex Pheromones and Plant Volatiles Recognition in Yellow Peach Moth, Conogethes punctiferalis (Lepidoptera: Crambidae). INSECTS 2019; 10:insects10090302. [PMID: 31533342 PMCID: PMC6780721 DOI: 10.3390/insects10090302] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 09/12/2019] [Accepted: 09/15/2019] [Indexed: 02/02/2023]
Abstract
Insects recognize odorous compounds using sensory neurons organized in olfactory sensilla. The process odor detection in insects requires an ensemble of proteins, including odorant binding proteins, olfactory receptors, and odor degrading enzymes; each of them are encoded by multigene families. Most functional proteins seem to be broadly tuned, responding to multiple chemical compounds with different, but mostly quite similar structures. Based on the hypothesis that insects recognize host volatiles by means of general odorant binding proteins (GOBPs), the current study aimed to characterize GOBPs of the yellow peach moth, Conogethes punctiferalis (Guenée). In oviposition preference tests, it was found that the yellow peach moth preferred volatiles from Prunus persica (peach) in finding their host plant. Exposure of the moth to volatiles from peaches affected the expression level of GOBP genes. Binding affinity of GOBPs from yellow peach moth was assessed for 16 host plant volatiles and 2 sex pheromones. The fluorescence ligand-binding assays revealed highest affinities for hexadecanal, farnesol, and limonene with KD values of 0.55 ± 0.08, 0.35 ± 0.04, and 1.54 ± 0.39, respectively. The binding sites of GOBPs from yellow peach moth were predicted using homology modeling and characterized using molecular docking approaches. The results indicated the best binding affinity of both GOBP1 and GOBP2 for farnesol, with scores of −7.4 and −8.5 kcal/mol. Thus, GOBPs may play an important role in the process of finding host plants.
Collapse
Affiliation(s)
- Dapeng Jing
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110161, China.
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Tiantao Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Shuxiong Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Sivaprasath Prabu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Kanglai He
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Sabahia Plant Protection Research Station, Agricultural Research Center, Alexandria 21616, Egypt.
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Jing L, Zhaoqun L, Zongxiu L, Xiaoming C, Lei B, Zhaojun X, Chen Z. Comparison of male antennal morphology and sensilla physiology for sex pheromone olfactory sensing between sibling moth species: Ectropis grisescens and Ectropis obliqua (Geometridae). ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2019; 101:e21545. [PMID: 30869176 DOI: 10.1002/arch.21545] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 02/05/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Ectropis grisescens and Ectropis obliqua (Lepidoptera: Geometridae) are sibling pest species that co-occur on tea plants. The sex pheromone components of both species contain (Z,Z,Z)-3,6,9-octadecatriene and (Z,Z)-3,9-cis-6,7-epoxy-octadecadiene. E. obliqua has (Z,Z)-3,9-cis-6,7-epoxy-nonadecadiene as an additional sex pheromone component, which ensures reproductive segregation between the two species. To ascertain the detection mechanism of olfactory organs for sex pheromone components of E. grisescens and E. obliqua, we applied scanning electron microscopy and single sensillum recording to compare antennal morphology and sensillum physiology in the two species. There was no apparent morphological difference between the antennae of the two species. Both species responded similarly to all three sex pheromone components, including, E. obliqua specific component. The distribution patterns of antennal sensilla trichodea differed between the two species. Sex pheromone olfactory sensing in these sibling species appears to be determined by the density of different types of olfactory sensing neurons. Dose-dependent responses of sensilla trichodea type 1 to (Z,Z)-3,9-cis-6,7-epoxy-octadecadiene, the most abundant component, showed an "all or none" pattern and the other two components showed sigmoidal dose-response curves with a half threshold of 10-4 (dilution equal to the concentration of 10 μg/μl). These results suggest that the major sex pheromone component functions as an on-off controller while secondary components function as modulators during olfactory transmission to the primary olfactory center.
Collapse
Affiliation(s)
- Liu Jing
- Research Center of Agricultural Products Quality Safety, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Xihu District, China
| | - Li Zhaoqun
- Research Center of Agricultural Products Quality Safety, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Xihu District, China
| | - Luo Zongxiu
- Research Center of Agricultural Products Quality Safety, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Xihu District, China
| | - Cai Xiaoming
- Research Center of Agricultural Products Quality Safety, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Xihu District, China
| | - Bian Lei
- Research Center of Agricultural Products Quality Safety, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Xihu District, China
| | - Xin Zhaojun
- Research Center of Agricultural Products Quality Safety, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Xihu District, China
| | - Zongmao Chen
- Research Center of Agricultural Products Quality Safety, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, Xihu District, China
| |
Collapse
|
6
|
Pickett JA, Weston LA. Possibilities for rationally exploiting co-evolution in addressing resistance to insecticides, and beyond. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2018; 151:18-24. [PMID: 30704708 DOI: 10.1016/j.pestbp.2018.03.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 03/09/2018] [Accepted: 03/20/2018] [Indexed: 06/09/2023]
Abstract
Certain biorational chemical agents used against insect pests impact essential stages or processes in insect life cycles when applied for pest management. Development of resistance to these agents, while involving maintenance of the natural role of the chemical agent, frequently requires the evolution of a new chemical structure by the resistant organism. When considering the process of resistance development, one could theoretically consider biorational structural determination rather than the less predictable or feasible generation of a novel replacement insecticide. At first consideration, this process might exclude toxicants such as typical pest control agents and rather be a phenomenon reserved principally for signalling processes such as are fulfilled by pheromones and other semiochemicals. However, because there is a unique co-evolutionary relationship between chemical defence and the physiology of the antagonistic organism, this process can be further explored for potential to overcome resistance to toxins. Given further consideration, newly evolved chemical defences may rationally provide options for new resistance-defeating chemistry. This review therefore discusses the potential for overcoming insecticide resistance through targeted application of this approach. Potential for use of a similar approach to counteract fungicide and herbicide resistance is also considered. Furthermore, the possible applications of this approach to address drug or pharmaceutic resistance are also considered.
Collapse
Affiliation(s)
- John A Pickett
- School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom.
| | - Leslie A Weston
- Graham Centre for Agricultural Innovation, Charles Sturt University, Wagga Wagga, NSW 2678, Australia.
| |
Collapse
|
7
|
Coates BS, Dopman EB, Wanner KW, Sappington TW. Genomic mechanisms of sympatric ecological and sexual divergence in a model agricultural pest, the European corn borer. CURRENT OPINION IN INSECT SCIENCE 2018; 26:50-56. [PMID: 29764660 DOI: 10.1016/j.cois.2018.01.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/17/2018] [Indexed: 06/08/2023]
Abstract
The European corn borer, Ostrinia nubilalis, is a model species for elucidating mechanisms underlying adaptively differentiated subpopulations in the face of reciprocal gene flow, and is a major pest of cultivated maize in North America and Eurasia. Strains are characterized by different pheromone communication systems in combination with voltinism strains that are adapted to distinct local climate and photoperiod through adjustments in diapause traits. However, only partial barriers to inter-strain hybridization exist in areas of sympatry. Recent research shows that genes governing important strain-specific isolating traits are disproportionately located on the Z-chromosome. Furthermore, co-adapted combinations of some of these genes are non-recombining due to location within a large chromosomal inversion, and assist in maintaining strain integrity despite hybridization.
Collapse
Affiliation(s)
- Brad S Coates
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA, United States.
| | - Erik B Dopman
- Tufts University, Department of Biology, Medford, MA, United States
| | - Kevin W Wanner
- Montana State University, Department of Plant Sciences and Plant Pathology, Bozeman, MT, United States
| | - Thomas W Sappington
- USDA-ARS, Corn Insects & Crop Genetics Research Unit, Ames, IA, United States
| |
Collapse
|
8
|
Luo ZX, Li ZQ, Cai XM, Bian L, Chen ZM. Evidence of Premating Isolation Between Two Sibling Moths: Ectropis grisescens and Ectropis obliqua (Lepidoptera: Geometridae). JOURNAL OF ECONOMIC ENTOMOLOGY 2017; 110:2364-2370. [PMID: 29029204 DOI: 10.1093/jee/tox216] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Indexed: 06/07/2023]
Abstract
The sex pheromones of Ectropis grisescens Warren and Ectropis obliqua Prout were both reported to contain (Z,Z,Z)-3,6,9-octadecatriene (Z3,Z6,Z9-18:H) and (Z,Z)-3,9-cis-6,7-epoxy-octadecadiene (Z3,epo6,Z9-18:H). To clarify how these two sibling geometrids maintain premating isolation, the female sex pheromones of the two species were reexamined. Gas chromatography-electroantennographic detection (GC-EAD) and gas chromatography-mass spectrometry revealed two GC-EAD-active compounds, Z3,Z6,Z9-18:H and Z3,epo6,Z9-18:H, in E. grisescens female pheromone glands as well as an additional GC-EAD-active compound, (Z,Z)-3,9-cis-6,7-epoxy-nonadecadiene (Z3,epo6,Z9-19:H), in E. obliqua female pheromone glands. Synthesized Z3,Z6,Z9-18:H and Z3,epo6,Z9-18:H elicited dose-dependent electroantennogram (EAG) responses from male antennae of both E. grisescens and E. obliqua. However, Z3,epo6,Z9-19:H only elicited dose-dependent EAG responses from E. obliqua and limited EAG responses from E. grisescens at all doses. In wind-tunnel studies, lures that contained Z3,Z6,Z9-18:H and Z3,epo6,Z9-18:H attracted E. grisescens males and had no effect on E. obliqua males. The addition of Z3,epo6,Z9-19:H to the blend of Z3,Z6,Z9-18:H and Z3,epo6,Z9-18:H strongly attracted E. obliqua males but had a limited attraction for E. grisescens males. Thus, Z3,Z6,Z9-18:H and Z3,epo6,Z9-18:H were sex pheromone components of E. grisescens, whereas Z3,Z6,Z9-18:H, Z3,epo6,Z9-18:H and Z3,epo6,Z9-19:H were sex pheromone components of E. obliqua. The presence or absence of Z3,epo6,Z9-19:H played a central role in the premating isolation of these two sibling species.
Collapse
Affiliation(s)
- Z X Luo
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, China
| | - Z Q Li
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, China
| | - X M Cai
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, China
| | - L Bian
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, China
| | - Z M Chen
- Key Laboratory of Tea Biology and Resource Utilization, Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Science, China
| |
Collapse
|
9
|
Wang Y, Kim KS, Guo W, Li Q, Zhang Y, Wang Z, Coates BS. Introgression between divergent corn borer species in a region of sympatry: Implications on the evolution and adaptation of pest arthropods. Mol Ecol 2017; 26:6892-6907. [PMID: 29105878 DOI: 10.1111/mec.14387] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/09/2017] [Accepted: 09/26/2017] [Indexed: 11/29/2022]
Abstract
The Asian corn borer, Ostrinia furnacalis, and European corn borer, O. nubilalis (Lepidoptera: Crambidae), cause damage to cultivated maize in spatially distinct geographies and have evolved divergent hydrocarbons as the basis of sexual communication. The Yili area of Xinjiang Uyghur Autonomous Region in China represents the only known region where O. furnacalis has invaded a native O. nubilalis range, and these two corn borer species have made secondary contact. Genetic differentiation was estimated between Ostrinia larvae collected from maize plants at 11 locations in Xinjiang and genotyped using high-throughput SNP and microsatellite markers. Maternal lineages were assessed by direct sequencing of mitochondrial cytochrome c oxidase subunit I and II haplotypes, and a high degree of genotypic diversity was demonstrated between lineages based on SNP genotypes. Furthermore, historical introgression was predicted among SNP genotypes only at sympatric locations in the Yili area, whereas in Xinjiang populations only O. furnacalis haplotypes were detected and no analogous introgressed genotypes were predicted. Our detection of putative hybrids and historical evidence of introgression defines Yili area as a hybrid zone between the species in normal ecological interactions and furthermore, might indicate that adaptive traits could spread even between seemingly divergent species through horizontal transmission. Results of this study indicate there may be a continuum in the degree of reproductive isolation between Ostrinia species and that the elegance of distinct and complete speciation based on modifications to the pheromone communication might need to be reconsidered.
Collapse
Affiliation(s)
- Yangzhou Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China.,Jilin Academy of Agricultural Sciences, Changchun, China
| | - Kyung Seok Kim
- Iowa State University, Department of Natural Resource Ecology and Management, Ames, IA, USA
| | - Wenchao Guo
- Research Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Qiyun Li
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Yunyue Zhang
- Jilin Academy of Agricultural Sciences, Changchun, China
| | - Zhenying Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Brad S Coates
- United States Department of Agriculture, Agricultural Research Service, Corn Insects and Crop Genetics Research Unit, Iowa State University, Ames, IA, USA
| |
Collapse
|
10
|
He YQ, Feng B, Guo QS, Du Y. Age influences the olfactory profiles of the migratory oriental armyworm mythimna separate at the molecular level. BMC Genomics 2017; 18:32. [PMID: 28056777 PMCID: PMC5217624 DOI: 10.1186/s12864-016-3427-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Accepted: 12/15/2016] [Indexed: 01/13/2023] Open
Abstract
Background The oriental armyworm Mythimna separata (Walk) is a serious migratory pest; however, studies on its olfactory response and its underlying molecular mechanism are limited. To gain insights to the olfactory mechanism of migration, olfactory genes were identified using antennal transcriptome analysis. The olfactory response and the expression of olfactory genes for 1-day and 5-day-old moths were respectively investigated by EAG and RT-qPCR analyses. Results Putative 126 olfactory genes were identified in M. separata, which included 43 ORs, 13 GRs, 16 IRs, 37 OBPs, 14 CSPs, and 3 SNMPs. RPKM values of IR75d and 10 ORs were larger than co-receptors IR25a and ORco, and the RPKM value of PR2 was larger than that of other ORs. Expression of GR1 (sweet receptor) was higher than that of other GRs. Several sex pheromones activated evident EAG responses where the responses of 5-day-old male moths to the sex pheromones were significantly greater than those of female and 1-day old male moths. In accordance with the EAG response, 11 pheromone genes, including 6 PRs and 5 PBPs were identified in M. separate, and the expression levels of 7 pheromone genes in 5-day-old moths were significantly higher than those of females and 1-day-old moths. PR2 and PBP2 might be used in identifying Z11-16: Ald, which is the main sex pheromone component of M. separata. EAG responses to 16 plant volatiles and the expression levels of 43 olfactory genes in 1-day-old moths were significantly greater than that observed in the 5-day-old moths. Heptanal, Z6-nonenal, and benzaldehyde might be very important floral volatiles for host searching and recognized by several olfactory genes with high expression. Some plant volatiles might be important to male moths because the EAG response to 16 plant volatiles and the expression of 43 olfactory genes were significantly larger in males than in females. Conclusions The findings of the present study show the effect of adult age on olfactory responses and expression profile of olfactory genes in the migratory pest M. separate. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-3427-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue-Qiu He
- Ningbo City College of Vocational Technology, Xuefu Road, Yinzhou High Educational Park, NingBo, 315100, ZheJiang, China
| | - Bo Feng
- Institute of Health and Environmental Ecology, Wenzhou Medical University, University Town, Wenzhou, 325035, China
| | - Qian-Shuang Guo
- Institute of Health and Environmental Ecology, Wenzhou Medical University, University Town, Wenzhou, 325035, China
| | - Yongjun Du
- Institute of Health and Environmental Ecology, Wenzhou Medical University, University Town, Wenzhou, 325035, China.
| |
Collapse
|
11
|
Pickett JA, Khan ZR. Plant volatile-mediated signalling and its application in agriculture: successes and challenges. THE NEW PHYTOLOGIST 2016; 212:856-870. [PMID: 27874990 DOI: 10.1111/nph.14274] [Citation(s) in RCA: 108] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/04/2016] [Indexed: 05/25/2023]
Abstract
856 I. 856 II. 857 III. 858 IV. 859 V. 860 VI. 862 VII. 863 VIII. 864 IX. 866 866 References 866 SUMMARY: The mediation of volatile secondary metabolites in signalling between plants and other organisms has long been seen as presenting opportunities for sustainable crop protection. Initially, exploitation of interactions between plants and other organisms, particularly insect pests, foundered because of difficulties in delivering, sustainably, the signal systems for crop protection. We now have mounting and, in some cases, clear practical evidence for successful delivery by companion cropping or next-generation genetic modification (GM). At the same time, the type of plant signalling being exploited has expanded to signalling from plants to organisms antagonistic to pests, and to plant stress-induced, or primed, plant-to-plant signalling for defence and growth stimulation.
Collapse
Affiliation(s)
- John A Pickett
- Rothamsted Research, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Zeyaur R Khan
- Push-Pull Programme, International Centre of Insect Physiology and Ecology, PO Box 30, Mbita, 40305, Kenya
| |
Collapse
|
12
|
Wang Y, Chen Q, Zhao H, Ren B. Identification and Comparison of Candidate Olfactory Genes in the Olfactory and Non-Olfactory Organs of Elm Pest Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) Based on Transcriptome Analysis. PLoS One 2016; 11:e0147144. [PMID: 26800515 PMCID: PMC4723088 DOI: 10.1371/journal.pone.0147144] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Accepted: 12/29/2015] [Indexed: 11/18/2022] Open
Abstract
The leaf beetle Ambrostoma quadriimpressum (Coleoptera: Chrysomelidae) is a predominant forest pest that causes substantial damage to the lumber industry and city management. However, no effective and environmentally friendly chemical method has been discovered to control this pest. Until recently, the molecular basis of the olfactory system in A. quadriimpressum was completely unknown. In this study, antennae and leg transcriptomes were analyzed and compared using deep sequencing data to identify the olfactory genes in A. quadriimpressum. Moreover, the expression profiles of both male and female candidate olfactory genes were analyzed and validated by bioinformatics, motif analysis, homology analysis, semi-quantitative RT-PCR and RT-qPCR experiments in antennal and non-olfactory organs to explore the candidate olfactory genes that might play key roles in the life cycle of A. quadriimpressum. As a result, approximately 102.9 million and 97.3 million clean reads were obtained from the libraries created from the antennas and legs, respectively. Annotation led to 34344 Unigenes, which were matched to known proteins. Annotation data revealed that the number of genes in antenna with binding functions and receptor activity was greater than that of legs. Furthermore, many pathway genes were differentially expressed in the two organs. Sixteen candidate odorant binding proteins (OBPs), 10 chemosensory proteins (CSPs), 34 odorant receptors (ORs), 20 inotropic receptors [1] and 2 sensory neuron membrane proteins (SNMPs) and their isoforms were identified. Additionally, 15 OBPs, 9 CSPs, 18 ORs, 6 IRs and 2 SNMPs were predicted to be complete ORFs. Using RT-PCR, RT-qPCR and homology analysis, AquaOBP1/2/4/7/C1/C6, AquaCSP3/9, AquaOR8/9/10/14/15/18/20/26/29/33, AquaIR8a/13/25a showed olfactory-specific expression, indicating that these genes might play a key role in olfaction-related behaviors in A. quadriimpressum such as foraging and seeking. AquaOBP4/C5, AquaOBP4/C5, AquaCSP7/9/10, AquaOR17/24/32 and AquaIR4 were highly expressed in the antenna of males, suggesting that these genes were related to sex-specific behaviors, and expression trends that were male specific were observed for most candidate olfactory genes, which supported the existence of a female-produced sex pheromone in A. quadriimpressum. All of these results could provide valuable information and guidance for future functional studies on these genes and provide better molecular knowledge regarding the olfactory system in A. quadriimpressum.
Collapse
Affiliation(s)
- Yinliang Wang
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Qi Chen
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Hanbo Zhao
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
| | - Bingzhong Ren
- Jilin Provincial Key Laboratory of Animal Resource Conservation and Utilization, Northeast Normal University, Changchun, China
- Key Laboratory of Vegetation Ecology, MOE, Northeast Normal University, Changchun, China
- * E-mail:
| |
Collapse
|