1
|
Christian M, Kraft M, Wilknitz P, Nowotny M, Schöneich S. Flupyradifurone, imidacloprid and clothianidin disrupt the auditory processing in the locust CNS. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:311-325. [PMID: 39939492 DOI: 10.1007/s00359-025-01735-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/31/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Since the EU banned classic neonicotinoids like imidacloprid and clothianidin, they may be replaced by more recently marketed insecticides such as flupyradifurone. However, they all operate on the same neuropharmacological principle as selective agonists at the insect's nicotinic acetylcholine receptors. Here we investigated the impact of flupyradifurone, imidacloprid and clothianidin on the neuronal processing in the auditory pathway of the desert locust Schistocerca gregaria. While stepwise increasing the insecticide concentration in the haemolymph, we extracellularly recorded the spike responses of auditory afferents in the tympanal nerve and of auditory interneurons in the neck connectives. All three insecticides showed a very similar dose-dependent suppression of spike responses in the auditory interneurons ascending towards the brain, whereas the spike responses in the sensory neurons of the ears appeared unaffected. Furthermore, by systematic injection experiments we demonstrate that insecticide dosages which already supress the information transfer in the auditory pathway are by far too low to induce the typical poisoning symptoms like trembling, spasms, and paralysis. We discuss how sublethal intoxication with classical neonicotinoids or functionally related insecticides like flupyradifurone may disrupt the postsynaptic balance between excitation and inhibition in the auditory pathway of locusts and other orthopteran insects.
Collapse
Affiliation(s)
- Marcelo Christian
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany.
| | - Michelle Kraft
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany
| | - Paul Wilknitz
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany
| | - Manuela Nowotny
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany
| | - Stefan Schöneich
- Institute for Zoology and Evolutionary Research, Friedrich Schiller University Jena, Erbertstraße 1, 07743, Jena, Germany.
| |
Collapse
|
2
|
Zhang Y, Zhang Y, Li Z, Liu X, Liu X, Yao S, Du M, An S. Sublethal indoxacarb exposure alters pheromone production and ovarian development in the yellow peach moth, Conogethes punctiferalis. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2025; 210:106368. [PMID: 40262882 DOI: 10.1016/j.pestbp.2025.106368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 03/01/2025] [Accepted: 03/03/2025] [Indexed: 04/24/2025]
Abstract
The Conogethes punctiferalis, a major pest of peach and other fruit trees, causes significant damage by boring into fruits during its larval stage. Indoxacarb, a sodium channel blocker insecticide, has been widely applied in agriculture and horticulture for pest control, particularly against larval pests. However, its effects on adult insects remain largely unexplored. Present study employed C. punctiferalis as model to investigate the toxic effects of indoxacarb on adult moths. The results showed that sublethal exposure to indoxacarb significantly reduced the release of sex pheromones, reduced female attraction to males, and lowered mating success rate. Further investigations indicated that exposure to sublethal indoxacarb resulted in a significant decrease in Ca2+ levels in the pheromone gland (PG), subsequently affecting the activities of calcineurin and acetyl-CoA carboxylase as well as affecting the expression levels of genes related to sex pheromone biosynthesis. Physiological assays revealed that indoxacarb exposure significantly reduced trehalose content, hexokinase activity, and pyruvic acid content in the PG. Moreover, ovarian development was hindered as the exposure led to reduced ovarian size and vitellogenin (Vg) content. Transcriptomic analysis revealed change in genes linked to ovarian development, including Vg, vitellogenin receptor (VgR), and genes related to lipid metabolism. In conclusion, this study demonstrates that indoxacarb exerts a dual regulatory effect on adult C. punctiferalis, inhibiting both sex pheromone biosynthesis and ovarian development. These findings provide novel insights into the mechanisms by which sublethal pesticide exposure influences adult moths.
Collapse
Affiliation(s)
- Yunhui Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China; Postdoctoral station of Crop science, Henan Agricultural University, Zhengzhou, China
| | - Yao Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Zhen Li
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiaoguang Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Xiaoming Liu
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Shuangyan Yao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China
| | - Mengfang Du
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.
| | - Shiheng An
- College of Plant Protection, Henan Agricultural University, Zhengzhou, China.
| |
Collapse
|
3
|
Derstine N, Murray C, Purnell FS, Amsalem E. Sublethal pesticide exposure decreases mating and disrupts chemical signaling in a beneficial pollinator. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 970:179005. [PMID: 40054238 DOI: 10.1016/j.scitotenv.2025.179005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/25/2025] [Accepted: 02/26/2025] [Indexed: 03/17/2025]
Abstract
Pesticides provide vital protection against insect pests and the diseases they vector but are simultaneously implicated in the drastic worldwide decline of beneficial insect populations. Convincing evidence suggests that even sublethal pesticide exposure has detrimental effects on both individual- and colony-level traits, but the mechanisms mediating these effects remained poorly understood. Here, we use bumble bees to examine how sublethal exposure to pesticides affects mating, a key life history event shared by nearly all insects, and whether these impacts are mediated via impaired sexual communication. In insects, mate location and copulation are primarily regulated through chemical signals and rely on both the production and perception of semiochemicals. We show through behavioral bioassays that mating success is reduced in bumble bee gynes after exposure to field-relevant sublethal doses of imidacloprid, and that this effect is likely mediated through a disruption of both the production and perception of semiochemicals. Semiochemical production was altered in gyne and male cuticular hydrocarbons (CHCs), but not in exocrine glands where sex pheromones are presumably produced (i.e., gyne mandibular glands and male labial glands). Male responsiveness to gyne mandibular gland secretion was reduced, but not the queen responsiveness to the male labial secretion. In addition, pesticide exposure reduced queen fat body lipid stores and male sperm quality. Overall, the exposure to imidacloprid affected the fitness and CHCs of both sexes and the antennal responses of males to gynes. Together, our findings identify disruption of chemical signaling as the mechanism through which sublethal pesticide exposure reduces mating success.
Collapse
Affiliation(s)
- Nathan Derstine
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Cameron Murray
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| | - Freddy S Purnell
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Etya Amsalem
- Department of Entomology, Center for Chemical Ecology, Center for Pollinator Research, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA.
| |
Collapse
|
4
|
Beringue A, Queffelec J, Le Lann C, Sulmon C. Sublethal pesticide exposure in non-target terrestrial ecosystems: From known effects on individuals to potential consequences on trophic interactions and network functioning. ENVIRONMENTAL RESEARCH 2024; 260:119620. [PMID: 39032619 DOI: 10.1016/j.envres.2024.119620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/23/2024]
Abstract
Over the last decades, the intensification of agriculture has resulted in an increasing use of pesticides, which has led to widespread contamination of non-target ecosystems in agricultural landscapes. Plants and arthropods inhabiting these systems are therefore chronically exposed to, at least, low levels of pesticides through direct pesticide drift, but also through the contamination of their nutrient sources (e.g. soil water or host/prey tissues). Pesticides (herbicides, acaricides/insecticides and fungicides) are chemical substances used to control pests, such as weeds, phytophagous arthropods and pathogenic microorganisms. These molecules are designed to disturb specific physiological mechanisms and induce mortality in targeted organisms. However, under sublethal exposure, pesticides also affect biological processes including metabolism, development, reproduction or inter-specific interactions even in organisms that do not possess the molecular target of the pesticide. Despite the broad current knowledge on sublethal effects of pesticides on organisms, their adverse effects on trophic interactions are less investigated, especially within terrestrial trophic networks. In this review, we provide an overview of the effects, both target and non-target, of sublethal exposures to pesticides on traits involved in trophic interactions between plants, phytophagous insects and their natural enemies. We also discuss how these effects may impact ecosystem functioning by analyzing studies investigating the responses of Plant-Phytophage-Natural enemy trophic networks to pesticides. Finally, we highlight the current challenges and research prospects in the understanding of the effects of pesticides on trophic interactions and networks in non-target terrestrial ecosystems.
Collapse
Affiliation(s)
- Axel Beringue
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France
| | | | - Cécile Le Lann
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France
| | - Cécile Sulmon
- Univ Rennes, CNRS, ECOBIO [(Ecosystèmes, Biodiversité, évolution)], UMR, 6553, Rennes, France.
| |
Collapse
|
5
|
An E, Zhang Y, Yao S. Bifenthrin at Sublethal Concentrations Suppresses Mating and Laying of Female Conogethes punctiferalis by Regulating Sex Pheromone Biosynthesis and JH Signals. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72. [PMID: 39365739 PMCID: PMC11487570 DOI: 10.1021/acs.jafc.4c06445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/06/2024]
Abstract
Conogethes punctiferalis, a polyphagous pest in Asia, infests various crops, causing severe economic losses. Its larvae feed inside plants, making management challenging, with conventional insecticides. This study examines sublethal bifenthrin effects on the reproductive capabilities of adult females. Findings show sublethal bifenthrin concentrations (LC1, LC10, LC20, and LC30) significantly reduce sex pheromone production and mating success in a dose-dependent manner. Furthermore, these sublethal exposures influence the expression of pheromone biosynthesis activating neuropeptide and key juvenile hormone signaling genes, including methoprene-tolerant and Krüppel-homologue 1. Enzyme activity assays and metabolite measurements indicated that sublethal bifenthrin exposure decreases trehalose and pyruvic acid levels, suppressing the enzyme activities required for sex pheromone biosynthesis. Additionally, bifenthrin exposure delays ovarian development, reduces ovary size, and decreases egg production and hatchability. These results suggest bifenthrin's potential in attract-and-kill strategies by disrupting essential pathways for pest control, offering insights for improved insecticide use and innovative pest management for C. punctiferalis.
Collapse
Affiliation(s)
- Eric An
- Dehong
Beijing International Chinese School, Beijing 101100, China
| | - Yao Zhang
- Henan
International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| | - Shuangyan Yao
- Henan
International Laboratory for Green Pest Control/College of Plant Protection, Henan Agricultural University, Zhengzhou 450046, China
| |
Collapse
|
6
|
Garinie T, Nusillard W, Lelièvre Y, Taranu ZE, Goubault M, Thiéry D, Moreau J, Louâpre P. Adverse effects of the Bordeaux mixture copper-based fungicide on the non-target vineyard pest Lobesia botrana. PEST MANAGEMENT SCIENCE 2024; 80:4790-4799. [PMID: 38801156 DOI: 10.1002/ps.8195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 04/29/2024] [Accepted: 05/13/2024] [Indexed: 05/29/2024]
Abstract
BACKGROUND Bordeaux mixture is a copper-based fungicide commonly used in vineyards to prevent fungal and bacterial infections in grapevines. However, this fungicide may adversely affect the entomological component, including insect pests. Understanding the impacts of Bordeaux mixture on the vineyard pest Lobesia botrana is an increasing concern in the viticultural production. RESULTS Bordeaux mixture had detrimental effects on the development and reproductive performance of L. botrana. Several physiological traits were adversely affected by copper-based fungicide exposure, including a decrease in larval survival and a delayed larval development to moth emergence, as well as a reduced reproductive performance through a decrease in female fecundity and fertility and male sperm quality. However, we did not detect any effect of Bordeaux mixture on the measured reproductive behaviors (mating success, pre-mating latency and mating duration). CONCLUSION Ingestion by larvae of food contaminated with Bordeaux mixture had a negative effect on the reproductive performance of the pest L. botrana, which could affect its population dynamics in vineyards. Although this study highlighted collateral damage of Bordeaux mixture on L. botrana, the potential impact of copper-based fungicides on vineyard diversity, including natural predators is discussed and needs to be taken in consideration in integrated pest management. © 2024 The Author(s). Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Tessie Garinie
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
| | - William Nusillard
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
- AgroParisTech, Palaiseau, France
| | - Yann Lelièvre
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
| | - Zofia E Taranu
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, ECCC, Montréal, Canada
| | - Marlène Goubault
- Institut de la Recherche sur la Biologie de l'Insecte, UMR 7261 CNRS, Université de Tours, Tours, France
| | - Denis Thiéry
- INRA (French National Institute for Agricultural Research), UMR 1065 Save, BSA, Centre de recherches INRAe Nouvelle-Aquitaine-Bordeaux, Villenave d'Ornon Cedex, France
| | - Jérôme Moreau
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
- Centre d'Études Biologiques de Chizé, CNRS and La Rochelle Université, Villiers-en-Bois, France
| | - Philippe Louâpre
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, France
| |
Collapse
|
7
|
Suarez-Lopez YA, Hatem AE, Aldebis HK, Vargas-Osuna E. Effects of Tebufenozide on Eggs, Larvae and Adults of Chrysoperla carnea (Neuroptera: Chrysopidae). INSECTS 2023; 14:521. [PMID: 37367337 DOI: 10.3390/insects14060521] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/27/2023] [Accepted: 06/02/2023] [Indexed: 06/28/2023]
Abstract
Quantifying compatibility among control agents is essential for development of integrated pest management (IPM). Chrysoperla carnea (Siemens) and insect growth regulator insecticides are widely used in IPM of Lepidoptera. C. carnea is a generalist predator naturally present in the Mediterranean agroecosystems and bred in insectariums for commercial purposes. Here, we evaluated lethal and sublethal effects of tebufenozide on C. carnea under laboratory conditions. The treatment of eggs with tebufenozide 24 or 48 h after they were laid did not affect the hatching rate or survival of the neonate larvae. Toxic effects of tebufenozide on topically treated larvae was low; development times of surviving larvae and pupae decreased significantly compared with controls. In choice bioassays, a high percentage of third-instar larvae chose prey (Spodoptera littoralis) treated with tebufenozide in preference to untreated prey. Moreover, second-instar larvae of C. carnea that had previously consumed tebufenozide-treated prey (0.75 mL/L) had significantly reduced larval development time compared with controls, while longevity of surviving adults, fecundity and egg viability were unaffected. Ingestion of tebufenozide by adults of C. carnea at the recommended field dose had no significant effect on female fecundity, egg viability or adult longevity. Tebufenozide exhibited low toxicity towards the developmental stages of C. carnea and is therefore a candidate for inclusion in IPM strategies.
Collapse
Affiliation(s)
- Yurany Andrea Suarez-Lopez
- Department of Agronomy, ETSIAM, Campus Rabanales, University of Cordoba, Building C4 "Celestino Mutis", 14071 Cordoba, Spain
| | - Adel E Hatem
- Plant Protection Research Institute (PPRI), 7 Nadi El-Said St., Dokki, Giza 12311, Egypt
| | - Hani K Aldebis
- Department of Agronomy, ETSIAM, Campus Rabanales, University of Cordoba, Building C4 "Celestino Mutis", 14071 Cordoba, Spain
| | - Enrique Vargas-Osuna
- Department of Agronomy, ETSIAM, Campus Rabanales, University of Cordoba, Building C4 "Celestino Mutis", 14071 Cordoba, Spain
| |
Collapse
|
8
|
Chiluwal K, Lee BH, Kwon TH, Kim J, Park CG. Post-fumigation sub-lethal activities of phosphine and ethyl formate on survivorship, fertility and female sex pheromone production of Callosobruchus chinensis (L.). Sci Rep 2023; 13:4333. [PMID: 36922539 PMCID: PMC10017820 DOI: 10.1038/s41598-023-30190-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Phosphine (PH3) and ethyl formate (EF), the two popular fumigant disinfectants of stored product insect pests, are primarily evaluated for their knock down effects without considering their post-fumigation sub-lethal activities. The sub-lethal activities (adult survivorship, fecundity, sterility and female sex pheromone production) of the fumigants were evaluated on a field-to-storage insect pest adzuki bean beetle, Callosobruchus chinensis (L.). The adults' survivorship and female fecundity, both were dose-dependently affected by sub-lethal PH3 and EF fumigation exposures. Hatchability of the eggs laid by fumigated female adults were also significantly affected. Gas-chromatography mass-spectrometry analysis of solid-phase micro-extraction from virgin fumigated C. cinensis females revealed that the PH3 LC25 (the lethal concentration required to kill the 25% of the population) fumigated female C. chinensis released significantly less amount of the pheromone components. In contrast, EF LC25 exposure did not affect the pheromone release. This study unveils the facts that the EF and PH3 fumigation have detrimental bioactivities against C. chinensis. Notably, this suggests to consider the sub-lethal EF and PH3 fumigation rather than the dose required to instantly kill all the C. chinensis individuals for disinfestation of stored adzuki bean.
Collapse
Affiliation(s)
- Kashinath Chiluwal
- Nepal Agricultural Research Council, Directorate of Agricultural Research, Lumle, Kaski, Gandaki Province, Nepal.
| | - Byung Ho Lee
- Institute of Quality and Safety Evaluation of Agricultural Products, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, Republic of Korea
| | | | - Junheon Kim
- Forest Insect Pests and Disease Division, National Institute of Forest Science, Seoul, 02512, Republic of Korea
| | - Chung Gyoo Park
- Insect-Verse Laboratory, Jinju-Daero 859-1, Jinju, 52716, Republic of Korea
| |
Collapse
|
9
|
Crook DJ, Chiesa SG, Warden ML, Nadel H, Ioriatti C, Furtado M. Electrophysiologically Determined Spectral Responses in Lobesia botrana (Lepidoptera: Tortricidae). JOURNAL OF ECONOMIC ENTOMOLOGY 2022; 115:1499-1504. [PMID: 35988020 DOI: 10.1093/jee/toac124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Indexed: 06/15/2023]
Abstract
Electrophysiological methods were used to test the visual sensitivity of European grapevine moth, Lobesia botrana (Lepidoptera: Tortricidae) to wavelengths ranging from 300 to 700 nm. For male and females tested, a main, peak response occurred in the 460-540 nm range (blue-green wavelengths) with females having a generally lower response to wavelengths in that range. A second smaller peak was observed for both sexes at the 340-420 nm range. A general linear model indicated that males, virgin females, and mated females did not react differently to changes in wavelength. No moths showed any obvious sensitivity to wavelengths between 580 and 700 nm. Based on our retinal recording data we suggest that UV light traps (≤480 nm) could be utilized alongside pheromone traps when monitoring L. botrana in high risk areas.
Collapse
Affiliation(s)
- Damon J Crook
- USDA-APHIS-PPQ-S&T Forest Pest Methods Laboratory, Buzzards Bay, MA, USA
| | - Serena G Chiesa
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Melissa L Warden
- USDA-APHIS-PPQ-S&T Forest Pest Methods Laboratory, Buzzards Bay, MA, USA
| | - Hannah Nadel
- USDA-APHIS-PPQ-S&T Forest Pest Methods Laboratory, Buzzards Bay, MA, USA
| | - Claudio Ioriatti
- Technology Transfer Center, Fondazione Edmund Mach, San Michele all'Adige, TN, Italy
| | - Mandy Furtado
- USDA-APHIS-PPQ-S&T Forest Pest Methods Laboratory, Buzzards Bay, MA, USA
| |
Collapse
|
10
|
Straub L, Minnameyer A, Camenzind D, Kalbermatten I, Tosi S, Van Oystaeyen A, Wäckers F, Neumann P, Strobl V. Thiamethoxam as an inadvertent anti-aphrodisiac in male bees. Toxicol Rep 2022; 9:36-45. [PMID: 34987978 PMCID: PMC8693414 DOI: 10.1016/j.toxrep.2021.12.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 12/03/2021] [Accepted: 12/04/2021] [Indexed: 12/03/2022] Open
Abstract
There is consensus that neonicotinoids can impact non-target animal fertility. Thiamethoxam reduced both mating success and sperm physiology in bumblebees. Queens mated by exposed males had 50% less total living sperm in their spermatheca. Thiamethoxam may act as anti-aphrodisiac, thereby limiting conservation efforts.
Sexual reproduction is common to almost all multi-cellular organisms and can be compromised by environmental pollution, thereby affecting entire populations. Even though there is consensus that neonicotinoid insecticides can impact non-target animal fertility, their possible impact on male mating success is currently unknown in bees. Here, we show that sublethal exposure to a neonicotinoid significantly reduces both mating success and sperm traits of male bumblebees. Sexually mature male Bombus terrestris exposed to a field-realistic concentration of thiamethoxam (20 ng g−1) or not (controls) were mated with virgin gynes in the laboratory. The results confirm sublethal negative effects of thiamethoxam on sperm quantity and viability. While the latency to mate was reduced, mating success was significantly impaired in thiamethoxam-exposed males by 32% probably due to female choice. Gynes mated by exposed males revealed impaired sperm traits compared to their respective controls, which may lead to severe constraints for colony fitness. Our laboratory findings demonstrate for the first time that neonicotinoid insecticides can negatively affect male mating success in bees. Given that holds true for the field, this provides a plausible mechanism contributing to declines of wild bee populations globally. The widespread prophylactic use of neonicotinoids may therefore have previously overlooked inadvertent anti-aphrodisiac effects on non-target animals, thereby limiting conservation efforts.
Collapse
Affiliation(s)
- Lars Straub
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Angela Minnameyer
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | - Domenic Camenzind
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| | | | - Simone Tosi
- Department of Agricultural, Forest, and Food Sciences, University of Turin, Italy
| | | | | | - Peter Neumann
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland.,Agroscope, Swiss Bee Research Centre, Bern, Switzerland
| | - Verena Strobl
- Institute of Bee Health, Vetsuisse Faculty, University of Bern, Bern, Switzerland
| |
Collapse
|
11
|
Su H, Wu J, Zhang Z, Ye Z, Chen Y, Yang Y. Effects of cadmium stress at different concentrations on the reproductive behaviors of beet armyworm Spodoptera exigua (Hübner). ECOTOXICOLOGY (LONDON, ENGLAND) 2021; 30:402-410. [PMID: 33661464 DOI: 10.1007/s10646-021-02365-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 02/04/2021] [Indexed: 06/12/2023]
Abstract
Insects are exposed to cadmium stress since cadmium pollution has increasingly become a serious global environmental issue. However, until now few studies have paid attention to the effect of heavy metals on insect reproductive behaviors. In our study, the courtship behaviors, mating behaviors and fecundity of beet armyworm Spodoptera exigua (Lepidoptera: Noctuidae) exposed to different concentrations of cadmium in artificial diets at larval stage were studied. The results showed that cadmium stress changed the courtship rhythm by significantly advancing or delaying the courtship starting time. Low dose of cadmium (0.2 mg/kg) increased the courtship frequency in the first two scotophases, but in the fourth phase, the two cadmium treatments reduced the frequency. The total courtship duration was significantly shortened in the first six scotophases except high dose of cadmium treatment (51.2 mg/kg) in the sixth dark phase. Paired adults did not mate after the seventh scotophase under low cadmium exposure, while high cadmium stress made the paired adults just copulate in the first four scotophases. The daily mating rate and total mating rate decreased with the increase in cadmium concentration. The number of eggs of low cadmium treatment was higher than that of control, but the difference was not significant; the number of eggs in high cadmium treatment was lower than that of control and low cadmium treatment. Our results indicate that cadmium exposure can disrupt the courtship rhythm for females and has negative influences on copulation behavior and high cadmium stress can reduce fecundity. Hence, the insect population increase will be affected by heavy metal pollution. Our study will provide scientific reference for environmental risk assessment of heavy metal pollution.
Collapse
Affiliation(s)
- Honghua Su
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China.
| | - Jiaojiao Wu
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China
| | - Zixin Zhang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China
| | - Zibo Ye
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China
| | - Yuqing Chen
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China
| | - Yizhong Yang
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, 225009, PR China
| |
Collapse
|
12
|
Zhang X, Wang Y, Xu Z, Shao X, Liu Z, Xu X, Maienfisch P, Li Z. Design, Synthesis, and Synergistic Activity of Eight-Membered Oxabridge Neonicotinoid Analogues. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3005-3014. [PMID: 33651612 DOI: 10.1021/acs.jafc.0c04786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Insecticide synergists are sought-after due to their potential in improving the pesticide control efficacy with a reduced dose of an active ingredient. We previously reported that a cis-configuration neonicotinoid (IPPA08) exhibited specific synergistic activity toward neonicotinoid insecticides. In this study, we synthesized a series of structural analogues of IPPA08 by converting the pyridyl moiety of IPPA08 into phenyl groups, via facile double-Mannich condensation reactions between nitromethylene compounds and glutaraldehyde. All of the oxabridged neonicotinoid compounds were found to increase the toxicity of imidacloprid against Aphis craccivora. Notably, compound 25 at 0.75 mg/L lowered the LC50 value of imidacloprid against A. craccivora by 6.54-fold, while a 3.50-fold reduction of the LC50 value was observed for IPPA08. The results of bee toxicity test showed that compound 25 display selectivity in its effects on imidacloprid toxicity against the honey bee (Apis mellifera L.). In summary, replacing the pyridyl ring with a phenyl ring was a viable approach to obtain a novel synergist with oxabridged moiety for neonicotinoid insecticides.
Collapse
Affiliation(s)
- Xiao Zhang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Yiping Wang
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zhiping Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Xusheng Shao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Zewen Liu
- Key Laboratory of Integrated Management of Crop Diseases and Pests (Ministry of Education), College of Plant Protection, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xiaoyong Xu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| | - Peter Maienfisch
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
- Research Portfolio Manager Insecticides and Seedcare, Syngenta Crop Protection AG, Basel CH-4002, Switzerland
| | - Zhong Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
13
|
Gao K, Torres‐Vila LM, Zalucki MP, Li Y, Griepink F, Heckel DG, Groot AT. Geographic variation in sexual communication in the cotton bollworm, Helicoverpa armigera. PEST MANAGEMENT SCIENCE 2020; 76:3596-3605. [PMID: 32406164 PMCID: PMC7586828 DOI: 10.1002/ps.5893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/04/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Geographic variation in male response to sex pheromone lures has been studied in the field in a number of moth species. However, only a few studies have investigated geographic variation in female calling and sex pheromone under field conditions. For an effective field implementation of sex pheromone lures, it is essential to know the local sex pheromone blend and local timing of sexual communication. We investigated the level and extent of geographic variation in the sexual communication of the important agricultural pest Helicoverpa armigera (Lepidoptera, Noctuidae) in three continents. RESULTS We found there is no genetic variation in the calling behavior of H. armigera. In the female sex pheromone, we found more between-population variation than within-population variation. In male response experiments, we found geographic variation as well. Strikingly, when adding the antagonistic compound Z11-16:OAc to the pheromone blend of H. armigera, significantly fewer males were caught in Australia and China, but not in Spain. This variation is likely not only due to local environmental conditions, such as photoperiod and temperature, but also to the presence of other closely related species with which communication interference may occur. CONCLUSION Finding geographic variation in both the female sexual signal and the male response in this pest calls for region-specific pheromone lures. Our study shows that the analysis of geographic variation in moth female sex pheromones as well as male responses is important for effectively monitoring pest species that occur around the globe. © 2020 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Ke Gao
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
| | - Luis M Torres‐Vila
- Servicio de Sanidad VegetalConsejería de Medio Ambiente y Rural PAyTBadajozSpain
| | - Myron P Zalucki
- School of Biological ScienceThe University of QueenslandBrisbaneAustralia
| | - Yiping Li
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of EducationNorthwest A&F UniversityYanglingChina
| | | | - David G Heckel
- Max Planck Institute for Chemical EcologyDepartment of EntomologyJenaGermany
| | - Astrid T Groot
- Institute for Biodiversity and Ecosystem DynamicsUniversity of AmsterdamAmsterdamThe Netherlands
- Max Planck Institute for Chemical EcologyDepartment of EntomologyJenaGermany
| |
Collapse
|
14
|
Shelby EA, Moss JB, Andreason SA, Simmons AM, Moore AJ, Moore PJ. Debugging: Strategies and Considerations for Efficient RNAi-Mediated Control of the Whitefly Bemisia tabaci. INSECTS 2020; 11:E723. [PMID: 33105847 PMCID: PMC7690610 DOI: 10.3390/insects11110723] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 10/19/2020] [Accepted: 10/21/2020] [Indexed: 01/26/2023]
Abstract
The whitefly Bemisia tabaci is a globally important pest that is difficult to control through insecticides, transgenic crops, and natural enemies. Post-transcriptional gene silencing through RNA interference (RNAi) has shown potential as a pest management strategy against B. tabaci. While genomic data and other resources are available to create highly effective customizable pest management strategies with RNAi, current applications do not capitalize on species-specific biology. This lack of specificity has the potential to have substantial ecological impacts. Here, we discuss both short- and long-term considerations for sustainable RNAi pest management strategies for B. tabaci, focusing on the need for species specificity incorporating both life history and population genetic considerations. We provide a conceptual framework for selecting sublethal target genes based on their involvement in physiological pathways, which has the greatest potential to ameliorate unintended negative consequences. We suggest that these considerations allow an integrated pest management approach, with fewer negative ecological impacts and reduced likelihood of the evolution of resistant populations.
Collapse
Affiliation(s)
- Emily A. Shelby
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| | - Jeanette B. Moss
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| | - Sharon A. Andreason
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC 29414, USA; (S.A.A.); (A.M.S.)
| | - Alvin M. Simmons
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Vegetable laboratory, Charleston, SC 29414, USA; (S.A.A.); (A.M.S.)
| | - Allen J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| | - Patricia J. Moore
- Department of Entomology, University of Georgia, Athens, GA 30602, USA; (E.A.S.); (J.B.M.); (A.J.M.)
| |
Collapse
|
15
|
Benelli G, Pavoni L, Zeni V, Ricciardi R, Cosci F, Cacopardo G, Gendusa S, Spinozzi E, Petrelli R, Cappellacci L, Maggi F, Pavela R, Bonacucina G, Lucchi A. Developing a Highly Stable Carlina acaulis Essential Oil Nanoemulsion for Managing Lobesia botrana. NANOMATERIALS 2020; 10:nano10091867. [PMID: 32961890 PMCID: PMC7559805 DOI: 10.3390/nano10091867] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/27/2020] [Accepted: 09/15/2020] [Indexed: 01/25/2023]
Abstract
The growing interest in the development of green pest management strategies is leading to the exploitation of essential oils (EOs) as promising botanical pesticides. In this respect, nanotechnology could efficiently support the use of EOs through their encapsulation into stable nanoformulations, such as nanoemulsions (NEs), to improve their stability and efficacy. This technology assures the improvement of the chemical stability, hydrophilicity, and environmental persistence of EOs, giving an added value for the fabrication of natural insecticides effective against a wide spectrum of insect vectors and pests of public and agronomical importance. Carlina acaulis (Asteraceae) root EO has been recently proposed as a promising ingredient of a new generation of botanical insecticides. In the present study, a highly stable C. acaulis-based NE was developed. Interestingly, such a nanosystem was able to encapsulate 6% (w/w) of C. acaulis EO, showing a mean diameter of around 140 nm and a SOR (surfactant-to-oil ratio) of 0.6. Its stability was evaluated in a storage period of six months and corroborated by an accelerated stability study. Therefore, the C. acaulis EO and C. acaulis-based NE were evaluated for their toxicity against 1st instar larvae of the European grapevine moth (EGVM), Lobesia botrana (Denis & Schiffermüller, 1775) (Lepidoptera: Tortricidae), a major vineyard pest. The chemical composition of C. acaulis EO was investigated by gas chromatography-mass spectrometry (GC-MS) revealing carlina oxide, a polyacetylene, as the main constituent. In toxicity assays, both the C. acaulis EO and the C. acaulis-based NE were highly toxic to L. botrana larvae, with LC50 values of 7.299 and 9.044 µL/mL for C. acaulis EO and NE, respectively. The C. acaulis-based NE represents a promising option to develop highly stable botanical insecticides for pest management. To date, this study represents the first evidence about the insecticidal toxicity of EOs and EO-based NEs against this major grapevine pest.
Collapse
Affiliation(s)
- Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
- Correspondence: ; Tel.: +39-0502216141
| | - Lucia Pavoni
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Valeria Zeni
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
| | - Renato Ricciardi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
| | - Francesca Cosci
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
| | - Gloria Cacopardo
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
| | - Saverio Gendusa
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Eleonora Spinozzi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Riccardo Petrelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Loredana Cappellacci
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Filippo Maggi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Roman Pavela
- Crop Research Institute, Drnovska 507, 161 06 Prague, Czech Republic;
- Department of Plant Protection, Czech University of Life Sciences Prague, Kamycka 129, 165 00 Praha 6, Suchdol, Czech Republic
| | - Giulia Bonacucina
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy; (L.P.); (S.G.); (E.S.); (R.P.); (L.C.); (F.M.); (G.B.)
| | - Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; (V.Z.); (R.R.); (F.C.); (G.C.); (A.L.)
| |
Collapse
|
16
|
Korenko S, Sýkora J, Řezáč M, Heneberg P. Neonicotinoids suppress contact chemoreception in a common farmland spider. Sci Rep 2020; 10:7019. [PMID: 32341403 PMCID: PMC7184746 DOI: 10.1038/s41598-020-63955-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 04/08/2020] [Indexed: 01/20/2023] Open
Abstract
Neonicotinoid insecticides are increasingly recognized for their role as information disruptors by modifying the chemical communication system of insects and therefore decreasing the chances of reproduction in target insects. However, data from spiders are lacking. In the present study, we tested the responses of males of a common agrobiont spider, Pardosa agrestis, to the application of field-realistic concentration of acetamiprid, which was formulated as Mospilan, and trace amounts of thiacloprid, which was formulated as Biscaya. We applied fresh or 24-h-old residues of Mospilan or Biscaya to the males just prior to the experiment or treated only the surface of a tunnel containing female draglines. We evaluated the ability of the males to recognize female cues from female dragline silk in a Y-maze. The field-realistic, sublethal doses of Mospilan altered pheromone-guided behavior. The choice of the tunnel with female draglines by males was hampered by tarsal treatment of the males with 24 h-old residues of Mospilan. The mating dance display was commonly initiated in control males that came into contact with female draglines and was suppressed by the Mospilan treatments in all three experimental settings. Some males only initiated the mating dance but did not manage to complete it; this was particularly true for males that were treated tarsally with fresh Mospilan residues, as none of these males managed to complete the mating dance. All three experimental settings with Mospilan decreased the frequency of males that managed to both select the tunnel with female draglines and complete the mating dance. The responses to the low-dose Biscaya were much milder and the study was not sufficiently powered to confirm the effects of Biscaya; however, the surprisingly observed trends in responses to very low Biscaya concentrations call for further analyses of long-term effects of trace amounts of neonicotinoids on the pheromone-guided behavior of spiders. These are the first conclusive data regarding the effects of commercially available formulations of neonicotinoid insecticides on the intraspecific chemical communication of spiders.
Collapse
Affiliation(s)
- Stanislav Korenko
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Agroecology and Crop Production, Prague, Czech Republic
| | - Jakub Sýkora
- Czech University of Life Sciences Prague, Faculty of Agrobiology, Food and Natural Resources, Department of Agroecology and Crop Production, Prague, Czech Republic
| | - Milan Řezáč
- Crop Research Institute, Biodiversity Lab, Prague, Czech Republic
| | - Petr Heneberg
- Crop Research Institute, Biodiversity Lab, Prague, Czech Republic. .,Charles University, Third Faculty of Medicine, Prague, Czech Republic.
| |
Collapse
|
17
|
Young HK, Denecke SM, Robin C, Fournier-Level A. Sublethal larval exposure to imidacloprid impacts adult behaviour in Drosophila melanogaster. J Evol Biol 2019; 33:151-164. [PMID: 31637792 DOI: 10.1111/jeb.13555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 10/07/2019] [Accepted: 10/11/2019] [Indexed: 12/27/2022]
Abstract
Pesticides are now chronically found in numerous ecosystems incurring widespread toxic effects on multiple organisms. For insects, the larvae are very exposed to pesticide pollution and the acute effect of insecticides on larvae has been characterized in a range of species. However, the carry-on effects in adults of sublethal exposure occurring in larvae are not well characterized. Here, we use a collection of strains of Drosophila melanogaster differing in their larval resistance to a commonly used insecticide, imidacloprid, and we test the effect of larval exposure on behavioural traits at the adult stage. Focusing on locomotor activity and on courtship and mating behaviour, we observed a significant carry-on effect of imidacloprid exposure. The heritability of activity traits measured in flies exposed to imidacloprid was higher than measured in controls and in these, courtship traits were genetically less correlated from mating success. Altogether, we did not observe a significant effect of the larval insecticide resistance status on adult behavioural traits, suggesting that selection for resistance in larvae does not involve repeatable behavioural changes in adults. This lack of correlation between larval resistance and adult behaviour also suggests that resistance at the larval stage does not necessarily result in increased behavioural resilience at a later life stage. These findings imply that selection for resistance in larvae as well as for behavioural resilience to sublethal exposure in adult will combine and impose a greater evolutionary constraint. Our conclusions further substantiate the need to encompass multiple trait measures and life stages in toxicological assays to properly assess the environmental impact of pesticides.
Collapse
Affiliation(s)
- Helen K Young
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
| | - Shane M Denecke
- Institute of Molecular Biology and Biotechnology FORTH, Heraklion, Greece
| | - Charles Robin
- School of BioSciences, The University of Melbourne, Parkville, Vic., Australia
| | | |
Collapse
|
18
|
Ferdenache M, Bezzar-Bendjazia R, Marion-Poll F, Kilani-Morakchi S. Transgenerational effects from single larval exposure to azadirachtin on life history and behavior traits of Drosophila melanogaster. Sci Rep 2019; 9:17015. [PMID: 31745147 PMCID: PMC6863814 DOI: 10.1038/s41598-019-53474-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 11/01/2019] [Indexed: 01/07/2023] Open
Abstract
Azadirachtin is one of the successful botanical pesticides in agricultural use with a broad-spectrum insecticide activity, but its possible transgenerational effects have not been under much scrutiny. The effects of sublethal doses of azadirachtin on life-table traits and oviposition behaviour of a model organism in toxicological studies, D. melanogaster, were evaluated. The fecundity and oviposition preference of flies surviving to single azadirachtin-treated larvae of parental generation was adversely affected and resulted in the reduction of the number of eggs laid and increased aversion to this compound over two successive generations. In parental generation, early exposure to azadirachtin affects adult's development by reducing the number of organisms, delay larval and pupal development; male biased sex ratio and induced morphological alterations. Moreover, adult's survival of the two generations was significantly decreased as compared to the control. Therefore, Single preimaginal azadirachtin treatment can affect flies population dynamics via transgenerational reductions in survival and reproduction capacity as well as reinforcement of oviposition avoidance which can contribute as repellent strategies in integrated pest management programs. The transgenerational effects observed suggest a possible reduction both in application frequency and total amount of pesticide used, would help in reducing both control costs and possible ecotoxicological risks.
Collapse
Affiliation(s)
- M Ferdenache
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000, Annaba, Algeria
- Evolution, Génomes, Comportement, Ecologie. CNRS, IRD, Univ Paris-Sud. Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
| | - R Bezzar-Bendjazia
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000, Annaba, Algeria
| | - F Marion-Poll
- Evolution, Génomes, Comportement, Ecologie. CNRS, IRD, Univ Paris-Sud. Université Paris-Saclay, F-91198, Gif-sur-Yvette, France
- AgroParisTech, Paris, France
| | - S Kilani-Morakchi
- Laboratory of Applied Animal Biology, Department of Biology, Faculty of Sciences, Badji Mokhtar University of Annaba, 23000, Annaba, Algeria.
| |
Collapse
|
19
|
Navarro-Roldán MA, Amat C, Bau J, Gemeno C. Extremely low neonicotinoid doses alter navigation of pest insects along pheromone plumes. Sci Rep 2019; 9:8150. [PMID: 31148562 PMCID: PMC6544627 DOI: 10.1038/s41598-019-44581-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/15/2019] [Indexed: 12/26/2022] Open
Abstract
The prevailing use of neonicotinoids in pest control has adverse effects on non-target organisms, like honeybees. However, relatively few studies have explored the effect of sublethal neonicotinoid levels on olfactory responses of pest insects, and thus their potential impact on semiochemical surveillance and control methods, such as monitoring or mating disruption. We recently reported that sublethal doses of the neonicotinoid thiacloprid (TIA) had dramatic effects on sex pheromone release in three tortricid moth species. We present now effects of TIA on pheromone detection and, for the first time, navigational responses of pest insects to pheromone sources. TIA delayed and reduced the percentage of males responding in the wind tunnel without analogous alteration of electrophysiological antennal responses. During navigation along an odor plume, treated males exhibited markedly slower flights and, in general, described narrower flight tracks, with an increased susceptibility to wind-induced drift. All these effects increased in a dose-dependent manner starting at LC0.001 - which would kill just 10 out of 106 individuals - and revealed an especially pronounced sensitivity in one of the species, Grapholita molesta. Our results suggest that minimal neonicotinoid quantities alter chemical communication, and thus could affect the efficacy of semiochemical pest management methods.
Collapse
Affiliation(s)
| | - Carles Amat
- Department of Crop and Forest Sciences, University of Lleida (UdL), 25198, Lleida, Spain
| | - Josep Bau
- Department of Biosciences, University of Vic - Central University of Catalonia, 08500, Vic, Spain
| | - César Gemeno
- Department of Crop and Forest Sciences, University of Lleida (UdL), 25198, Lleida, Spain.
| |
Collapse
|
20
|
Müller T, Römer CI, Müller C. Parental sublethal insecticide exposure prolongs mating response and decreases reproductive output in offspring. J Appl Ecol 2019. [DOI: 10.1111/1365-2664.13398] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Thorben Müller
- Department of Chemical Ecology Bielefeld University Bielefeld Germany
| | - Clara Isis Römer
- Department of Chemical Ecology Bielefeld University Bielefeld Germany
| | - Caroline Müller
- Department of Chemical Ecology Bielefeld University Bielefeld Germany
| |
Collapse
|
21
|
Müller T, Gesing MA, Segeler M, Müller C. Sublethal insecticide exposure of an herbivore alters the response of its predator. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 247:39-45. [PMID: 30654252 DOI: 10.1016/j.envpol.2018.12.040] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2018] [Revised: 12/13/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
Sublethal insecticide exposure poses risks for many non-target organisms and is a challenge for successful implementation of integrated pest management (IPM) programs. Next to detrimental effects of short-term insecticide exposure on fitness-related traits of organisms, also properties such as chemical signaling traits can be altered, which mediate intra- and interspecific communication. We investigated the effects of different durations of larval sublethal exposure to the pyrethroid lambda-cyhalothrin on performance traits of larvae and adults of the herbivorous mustard leaf beetle, Phaedon cochleariae. Moreover, by applying a direct contact and olfactometer bioassays, we determined the reaction of a generalist predator, the ant Myrmica rubra, towards insecticide-exposed and unexposed herbivore larvae and their secretions. Already short-term sublethal insecticide exposure of a few days caused a prolonged larval development and a reduced adult body mass of males. These effects may result from an insecticide-induced reduction in energy reserves. Furthermore, ants responded more frequently to insecticide-exposed than to unexposed larvae of P. cochleariae and their secretions. This increased responsiveness of ants towards insecticide-exposed larvae may be due to an insecticide-induced change in synthesis of chrysomelidial and epichrysomelidial, the dominant compounds of the larval secretion, which act defensive against various generalist predators. In conclusion, the results highlight that short-term insecticide exposure can impair the fitness of an herbivorous species due to both direct toxic effects and an increased responsiveness of predators. Consequently, exposure of single non-target species can have consequences for ecological communities in both natural habitats and IPM programs.
Collapse
Affiliation(s)
- Thorben Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Matthias Alexander Gesing
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Markus Segeler
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany
| | - Caroline Müller
- Department of Chemical Ecology, Bielefeld University, Universitätsstr. 25, 33615, Bielefeld, Germany.
| |
Collapse
|
22
|
Lucchi A, Sambado P, Juan Royo AB, Bagnoli B, Conte G, Benelli G. Disrupting mating of Lobesia botrana using sex pheromone aerosol devices. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:22196-22204. [PMID: 29804248 DOI: 10.1007/s11356-018-2341-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
Pheromone-mediated mating disruption (MD) is widely used as a control tool to manage the European grapevine moth (EGVM), Lobesia botrana. Most of the MD formulations are "passive" reservoir dispensers, which need to be used at a rather large number of units per hectare. A promising alternative is represented by automatic aerosol devices, releasing pheromone puffs at programmed time intervals. Herein, we investigated the effectiveness of MD aerosol product Isonet® L MisterX841 in reducing EGVM infestation on grape in comparison to the reference MD product Isonet® L and the grower's standard. Experiments were carried out over 2 years in two different study sites of Aragon region (Spain). EGVM male catches were monitored using traps baited with the female sex pheromone. The effectiveness of MD formulations against the three generations of EGVM was assessed by determining the percentage of infested bunches and the number of nests per bunch. As expected, a much greater amount of male catches in the grower's standard over Isonet® L MisterX841 and Isonet ® L was observed. No significant differences about EGVM male catches were found in vineyards where Isonet® L MisterX841 and Isonet® L were used. EGVM-infested bunches, as well as number of nests per bunch, were higher in the grower's standard, if compared to vineyards where we tested Isonet® L MisterX841 and Isonet® L. However, the employ of the latter led to a lower EGVM bunch infestation, if compared to Isonet® L MisterX841. Overall, the MD approach proposed here is effective against EGVM. These aerosol devices require a lower number of units per hectare if compared to hand-applied dispensers, saving labor costs and contributing to reduce plastic disposal in agricultural settings.
Collapse
Affiliation(s)
- Andrea Lucchi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Paolo Sambado
- CBC Iberia S.A., Av. Diagonal 605, 08028, Barcelona, Spain
| | | | - Bruno Bagnoli
- Department for Innovation in Biological, Agro-food and Forest Systems, University of Tuscia, via San Camillo de Lellis s.n.c., 01100, Viterbo, Italy
| | - Giuseppe Conte
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, 56124, Pisa, Italy.
- The BioRobotics Institute, Sant'Anna School of Advanced Studies, Viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy.
| |
Collapse
|
23
|
|