1
|
Ben Romdhane O, Baccari W, Saidi I, Flamini G, Ascrizzi R, Chaieb I, Halim Harrath A, Jannet HB. Chemical Composition, Repellent, and Phytotoxic Potentials of the Fractionated Resin Essential Oil from Araucaria heterophylla Growing in Tunisia. Chem Biodivers 2024; 21:e202400185. [PMID: 38513004 DOI: 10.1002/cbdv.202400185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/05/2024] [Accepted: 03/19/2024] [Indexed: 03/23/2024]
Abstract
The resin essential oil (REO) of the Tunisian Araucaria heterophylla trunk bark was investigated for its chemical composition. Then, it was evaluated for its insecticidal and allelopathic activities. The REO was obtained by hydrodistillation for 9 h (yield of 4.2 % w/w). Moreover, fractional hydrodistillation was carried out at 3-hour intervals, resulting in 3 fractions (R1-R3), to facilitate chemical identification and localization of the aforementioned biological activities. GC/MS analysis of the obtained samples allowed the identification of 25 compounds, representing between 91.2 and 96.3 % of their total constituents, which consisted predominantly of sesquiterpene hydrocarbons, oxygenated sesquiterpenes and diterpene hydrocarbons. α-Copaene (10.8 %), γ-muurolene (5.8 %), α-copaen-11-ol (7.8 %), spathulenol (10.5 %), 15-copaenol (8.2 %), ylangenal (10.3 %), dehydrosaussurea lactone (7.7 %), and sandaracopimaradiene (11.4 %) were identified as major compounds. The second part aimed to assess the impact of the A. heterophylla EO and its three fractions for their insecticidal and repellent activity against Tribolium castaneum (Herbst), a stored grain pest, of which a strong repellent activity was noted. In addition, the studied samples showed high phytotoxic effects against Lactuca sativa. The third fraction (R3) performed a total inhibitory potential on seed germination and seedling growth of the target plant. Furthermore, alongside this discovery, an estimation was conducted through molecular docking analysis. Wherein the main compounds of the studied samples were docked into the active pocket of protoporphyrinogen IX oxidase (PDB: 1SEZ), a key enzyme in chlorophyll biosynthesis. Thus, it is recommended to use the REO of A. heterophylla as a natural herbicide.
Collapse
Affiliation(s)
- Oumayma Ben Romdhane
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia Phone
| | - Wiem Baccari
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia Phone
| | - Ilyes Saidi
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia Phone
| | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" Nutrafood, University of Pisa, Italy
| | - Roberta Ascrizzi
- Dipartimento di Farmacia, Università di Pisa, Via Bonanno 6, 56126, Pisa, Italy
- Centro Interdipartimentale di Ricerca "Nutraceutica e Alimentazione per la Salute" Nutrafood, University of Pisa, Italy
| | - Ikbal Chaieb
- Laboratory of Horticultural production and protection (LR21AGR03) Regional Centre of Research on Horticulture and Organic Agriculture, 57, University of Sousse, Chott Mariem, TN-4042, Sousse, Tunisia
| | - Abdel Halim Harrath
- Department of Zoology, College of Science, King Saud University, Riyad, 11451, Saudi Arabia
| | - Hichem Ben Jannet
- Laboratory of Heterocyclic Chemistry, Natural Products and Reactivity (LR11ES39), Team: Medicinal Chemistry and Natural Products, Faculty of Science of Monastir, University of Monastir, Avenue of Environment, 5019, Monastir, Tunisia Phone
| |
Collapse
|
2
|
Zhou Y, Deng D, Chen R, Lai C, Chen Q. Effects of antennal segments defects on blood-sucking behavior in Aedes albopictus. PLoS One 2023; 18:e0276036. [PMID: 37561778 PMCID: PMC10414602 DOI: 10.1371/journal.pone.0276036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 07/23/2023] [Indexed: 08/12/2023] Open
Abstract
After mating, female mosquitoes need a blood meal to promote the reproductive process. When mosquitoes bite infected people and animals, they become infected with germs such as viruses and parasites. Mosquitoes rely on many cues for host selection and localization, among which the trace chemical cues emitted by the host into the environment are considered to be the most important, and the sense of smell is the main way to perceive these trace chemical cues. However, the current understanding of the olfactory mechanism is not enough to meet the needs of mosquito control. Unlike previous studies that focused on the olfactory receptor recognition spectrum to reveal the olfactory mechanism of mosquito host localization. In this paper, based on the observation that mosquitoes with incomplete antennae still can locate the host and complete blood feeding in the laboratory, we proposed that there may be some protection or compensation mechanism in the 13 segments of antennae flagella, and only when the antennae are missing to a certain threshold will it affect the mosquito's ability to locate the host. Through rational-designed behavioral experiments, we found that the 6th and 7th flagellomeres on the Aedes albopictus antenna are important in the olfactory detection of host searching. This study preliminarily screened antennal segments important for host localization of Ae. albopictus, and provided a reference for subsequent cell biology and molecular biology studies on these segments. Meanwhile, the morphology and distribution of sensilla on each antenna flagellomere were also analyzed and discussed in this paper.
Collapse
Affiliation(s)
- Yiyuan Zhou
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Dongyang Deng
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Rong Chen
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Chencen Lai
- Microbiology and Biochemical Pharmaceutical Engineering Research Center of Guizhou Provincial Department of Education, Guizhou Medical University, Guiyang, China
- Department of Nosocomial Infection, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Qian Chen
- Research Center of Eugenics, The First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, China
- Department of Obstetrics, The first affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
3
|
Lazarević J, Kostić I, Šešlija Jovanović D, Ćalić D, Milanović S, Kostić M. Pure Camphor and a Thujone-Camphor Mixture as Eco-Friendly Antifeedants against Larvae and Adults of the Colorado Potato Beetle. PLANTS (BASEL, SWITZERLAND) 2022; 11:3587. [PMID: 36559699 PMCID: PMC9783734 DOI: 10.3390/plants11243587] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
The Colorado potato beetle (CPB) is a serious pest of economically important Solanaceae species. The use of essential oil compounds in pest management has been proposed as an alternative to harmful chemical insecticides that disturb human health and ecosystem functioning. We examined the antifeedant activity of three concentrations (0.125%, 0.25% and 0.5%) of pure camphor and a thujone-camphor mixture against 3rd instar larvae and adults. Their efficacy was evaluated according to the degree of leaf damage and avoidance of treated leaves by the CPB. Treatment of potato leaves significantly reduced leaf damage compared to the control. Leaf protection increased at higher concentrations of the examined compounds. Camphor was more effective against larvae and the thujone-camphor mixture was more effective against adults. Additionally, adults moved faster towards the control leaf disc in the two-choice olfactometer assay if an alternative disc was treated with a thujone-camphor mixture, whereas larvae responded similarly to the two potential repellents. However, after contact with the leaf disc treated with the highest compound concentration, the larvae escaped faster from the thujone-camphor mixture than from pure camphor. In conclusion, both examined compounds are promising eco-friendly antifeedants, but their efficacy depends on the developmental stage of the beetle, compound type and applied concentration.
Collapse
Affiliation(s)
- Jelica Lazarević
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Igor Kostić
- Institute for Multidisciplinary Research, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
| | - Darka Šešlija Jovanović
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Dušica Ćalić
- Institute for Biological Research “Siniša Stanković”—National Institute of the Republic of Serbia, University of Belgrade, Bulevar Despota Stefana 142, 11060 Belgrade, Serbia
| | - Slobodan Milanović
- Faculty of Forestry, University of Belgrade, Kneza Višeslava 1, 11030 Belgrade, Serbia
- Department of Forest Protection and Wildlife Management, Faculty of Forestry and Wood Technology, Mendel University, Zemědělská 3, 61300 Brno, Czech Republic
| | - Miroslav Kostić
- Institute for Medicinal Plant Research “Dr Josif Pančić”, Tadeuša Košćuška 1, 11000 Belgrade, Serbia
| |
Collapse
|
4
|
Sousa DL, Xavier EO, Cruz RCDD, Souza IAD, Oliveira RAD, Silva DCD, Gualberto SA, Freitas JSD. Chemical composition and repellent potential of essential oil from Croton tetradenius (Euphorbiaceae) leaves against Aedes aegypti (Diptera: Culicidae). BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
5
|
Sun Z, Wang R, Du Y, Gao B, Gui F, Lu K. Olfactory perception of herbicide butachlor by GOBP2 elicits ecdysone biosynthesis and detoxification enzyme responsible for chlorpyrifos tolerance in Spodoptera litura. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 285:117409. [PMID: 34049133 DOI: 10.1016/j.envpol.2021.117409] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/13/2021] [Accepted: 05/15/2021] [Indexed: 06/12/2023]
Abstract
Insecticide resistance is one of the major obstacles for controlling agricultural pests. There have been a lot of studies on insecticides stimulating the development of insect resistance. Herbicides account for the largest sector in the agrochemical market and are often co-applied with insecticides to control insect pests and weeds in the same cropland ecosystem. However, whether and how herbicides exposure will affect insecticide resistance in insect pests is largely unexplored. Here we reported that after exposure to herbicide butachlor, the lepidopteran Spodoptera litura larvae reduced susceptibility to the insecticide chlorpyrifos. Docking simulation studies suggested that general odorant-binding protein 2 (GOBP2) could bind to butachlor with high binding affinity, and silencing SlGOBP2 by RNA interference (RNAi) decreased larval tolerance to chlorpyrifos. Butachlor exposure induced ecdysone biosynthesis, whose function on increasing chlorpyrifos tolerance was supported in synergism experiments and confirmed by silencing the key gene (SlCYP307A1) for ecdysone synthesis. Butachlor exposure also activated the expression of detoxification enzyme genes. Silencing the genes with the highest herbicide-induced expression among the three detoxification enzyme genes led to increased larval susceptibility to chlorpyrifos. Collectively, we proposed a new mechanism that olfactory recognition of herbicides by GOBP2 triggers insect hormone biosynthesis and leads to high metabolic tolerance against insecticides. These findings provide valuable information for the dissection of mechanisms of herbicide-induced resistance to insecticides and also supplements the development of reduced-risk strategies for pest control.
Collapse
Affiliation(s)
- Zhongxiang Sun
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China; Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China; State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Rumeng Wang
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Yifei Du
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Binyuan Gao
- Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Furong Gui
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, 650201, China; Yunnan Plateau Characteristic Agriculture Industry Research Institute, Kunming, 650201, China
| | - Kai Lu
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
6
|
Liu F, Chen Z, Ye Z, Liu N. The Olfactory Chemosensation of Hematophagous Hemipteran Insects. Front Physiol 2021; 12:703768. [PMID: 34434117 PMCID: PMC8382127 DOI: 10.3389/fphys.2021.703768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
As one of the most abundant insect orders on earth, most Hemipteran insects are phytophagous, with the few hematophagous exceptions falling into two families: Cimicidae, such as bed bugs, and Reduviidae, such as kissing bugs. Many of these blood-feeding hemipteran insects are known to be realistic or potential disease vectors, presenting both physical and psychological risks for public health. Considerable researches into the interactions between hemipteran insects such as kissing bugs and bed bugs and their human hosts have revealed important information that deepens our understanding of their chemical ecology and olfactory physiology. Sensory mechanisms in the peripheral olfactory system of both insects have now been characterized, with a particular emphasis on their olfactory sensory neurons and odorant receptors. This review summarizes the findings of recent studies of both kissing bugs (including Rhodnius prolixus and Triatoma infestans) and bed bugs (Cimex lectularius), focusing on their chemical ecology and peripheral olfactory systems. Potential chemosensation-based applications for the management of these Hemipteran insect vectors are also discussed.
Collapse
Affiliation(s)
- Feng Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Zhou Chen
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.,Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| | - Zi Ye
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States.,Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Nannan Liu
- Department of Entomology and Plant Pathology, Auburn University, Auburn, AL, United States
| |
Collapse
|
7
|
Liu F, Wang Q, Xu P, Andreazza F, Valbon WR, Bandason E, Chen M, Yan R, Feng B, Smith LB, Scott JG, Takamatsu G, Ihara M, Matsuda K, Klimavicz J, Coats J, Oliveira EE, Du Y, Dong K. A dual-target molecular mechanism of pyrethrum repellency against mosquitoes. Nat Commun 2021; 12:2553. [PMID: 33953207 PMCID: PMC8099882 DOI: 10.1038/s41467-021-22847-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 04/02/2021] [Indexed: 02/06/2023] Open
Abstract
Pyrethrum extracts from flower heads of Chrysanthemum spp. have been used worldwide in insecticides and repellents. While the molecular mechanisms of its insecticidal action are known, the molecular basis of pyrethrum repellency remains a mystery. In this study, we find that the principal components of pyrethrum, pyrethrins, and a minor component, (E)-β-farnesene (EBF), each activate a specific type of olfactory receptor neurons in Aedes aegypti mosquitoes. We identify Ae. aegypti odorant receptor 31 (AaOr31) as a cognate Or for EBF and find that Or31-mediated repellency is significantly synergized by pyrethrin-induced activation of voltage-gated sodium channels. Thus, pyrethrum exerts spatial repellency through a novel, dual-target mechanism. Elucidation of this two-target mechanism may have potential implications in the design and development of a new generation of synthetic repellents against major mosquito vectors of infectious diseases.
Collapse
Affiliation(s)
- Feng Liu
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Qiang Wang
- Department of Entomology, Michigan State University, East Lansing, MI, USA.,Department of Preventive Medicine and Public Health Laboratory Science, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Peng Xu
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Felipe Andreazza
- Department of Entomology, Michigan State University, East Lansing, MI, USA.,Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Department of Biology, Duke University, Durham, NC, USA
| | - Wilson R Valbon
- Department of Entomology, Michigan State University, East Lansing, MI, USA.,Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil.,Department of Biology, Duke University, Durham, NC, USA
| | - Elizabeth Bandason
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Mengli Chen
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Ru Yan
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, China
| | - Bo Feng
- Department of Entomology, Michigan State University, East Lansing, MI, USA.,Institute of Health and Environment, Wenzhou Medical University, Wenzhou, China
| | - Leticia B Smith
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Jeffrey G Scott
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Genki Takamatsu
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - Makoto Ihara
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - Kazuhiko Matsuda
- Department of Applied Biological Chemistry, Faculty of Agriculture, Kindai University, Nakamachi, Nara, Japan
| | - James Klimavicz
- Department of Entomology, Iowa State University, Ames, IA, USA
| | - Joel Coats
- Department of Entomology, Iowa State University, Ames, IA, USA
| | - Eugenio E Oliveira
- Department of Entomology, Michigan State University, East Lansing, MI, USA.,Department of Entomology, Universidade Federal de Viçosa, Viçosa, MG, Brazil
| | - Yuzhe Du
- Department of Entomology, Michigan State University, East Lansing, MI, USA
| | - Ke Dong
- Department of Entomology, Michigan State University, East Lansing, MI, USA. .,Department of Biology, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Human Odour Coding in the Yellow Fever Mosquito, Aedes aegypti. Sci Rep 2019; 9:13336. [PMID: 31527631 PMCID: PMC6746732 DOI: 10.1038/s41598-019-49753-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/30/2019] [Indexed: 11/16/2022] Open
Abstract
Insects use their olfactory systems to obtain chemical information on mating partners, oviposition sites and food. The yellow fever mosquito Aedes aegypti, an important vector of human infectious diseases, shows strong preference for human blood meals. This study investigated the chemical basis of host detection by characterizing the neuronal responses of antennal olfactory sensilla of female Ae. aegypti to 103 compounds from human skin emanations. The effect of blood feeding on the responses of olfactory sensilla to these odorants was examined as well. Sensilla SBTII, GP, and three functional subtypes of SST (SST1, SST2, and SST3) responded to most of the compounds tested. Olfactory receptor neurons (ORNs) ‘A’ and ‘B’ in the trichoid sensilla, either activated or inhibited, were involved in the odour coding process. Compounds from different chemical classes elicited responses with different temporal structures and different response patterns across the olfactory sensilla. Except for their increased responses to several odorants, blood-fed mosquitoes generally evoked reduced responses to specific aldehydes, alcohols, aliphatics/aromatics, ketones, and amines through the SST1, SST2, SBTI, SBTII and GP sensilla. The odorants eliciting diminished responses in female mosquitoes after blood feeding may be important in Ae. aegypti host-seeking activity and thus can be candidates for mosquito attractants in the process of this disease vector management.
Collapse
|