1
|
Salum YM, Yin A, Zaheer U, Liu Y, Guo Y, He W. CRISPR/Cas9-Based Genome Editing of Fall Armyworm ( Spodoptera frugiperda): Progress and Prospects. Biomolecules 2024; 14:1074. [PMID: 39334840 PMCID: PMC11430287 DOI: 10.3390/biom14091074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/23/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
The fall armyworm (Spodoptera frugiperda) poses a substantial threat to many important crops worldwide, emphasizing the need to develop and implement advanced technologies for effective pest control. CRISPR/Cas9, derived from the bacterial adaptive immune system, is a prominent tool used for genome editing in living organisms. Due to its high specificity and adaptability, the CRISPR/Cas9 system has been used in various functional gene studies through gene knockout and applied in research to engineer phenotypes that may cause economical losses. The practical application of CRISPR/Cas9 in diverse insect orders has also provided opportunities for developing strategies for genetic pest control, such as gene drive and the precision-guided sterile insect technique (pgSIT). In this review, a comprehensive overview of the recent progress in the application of the CRISPR/Cas9 system for functional gene studies in S. frugiperda is presented. We outline the fundamental principles of applying CRISPR/Cas9 in S. frugiperda through embryonic microinjection and highlight the application of CRISPR/Cas9 in the study of genes associated with diverse biological aspects, including body color, insecticide resistance, olfactory behavior, sex determination, development, and RNAi. The ability of CRISPR/Cas9 technology to induce sterility, disrupt developmental stages, and influence mating behaviors illustrates its comprehensive roles in pest management strategies. Furthermore, this review addresses the limitations of the CRISPR/Cas9 system in studying gene function in S. frugiperda and explores its future potential as a promising tool for controlling this insect pest.
Collapse
Affiliation(s)
- Yussuf Mohamed Salum
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Anyuan Yin
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Uroosa Zaheer
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yuanyuan Liu
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yi Guo
- Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Green Prevention and Control on Fruits and Vegetables in South China Ministry of Agriculture and Rural Affairs, Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Guangzhou 510640, China
| | - Weiyi He
- State Key Laboratory for Ecological Pest Control of Fujian and Taiwan Crops, Institute of Applied Ecology, International Joint Research Laboratory of Ecological Pest Control, Ministry of Education, Ministerial and Provincial Joint Innovation Centre for Safety Production of Cross-Strait Crops, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
2
|
Jurenka R. Fatty Acid Origin of Insect Pheromones. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024. [PMID: 38874890 DOI: 10.1007/5584_2024_813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2024]
Abstract
Pheromones are utilized to a great extent in insects. Many of these pheromones are biosynthesized through a pathway involving fatty acids. This chapter will provide examples where the biosynthetic pathways of fatty acid-derived pheromones have been studied in detail. These include pheromones from Lepidoptera, Coleoptera, and Hymenoptera. Many species of Lepidoptera utilize fatty acids as precursors to pheromones with a functional group that include aldehydes, alcohols, and acetate esters. In addition, the biosynthesis of hydrocarbons will be briefly examined because many insects utilize hydrocarbons or modified hydrocarbons as pheromones.
Collapse
|
3
|
Dam MI, Ding BJ, Svensson GP, Wang HL, Melo DJ, Lassance JM, Zarbin PH, Löfstedt C. Sex pheromone biosynthesis in the sugarcane borer Diatraea saccharalis: paving the way for biotechnological production. PEST MANAGEMENT SCIENCE 2024; 80:996-1007. [PMID: 37830147 DOI: 10.1002/ps.7830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 09/19/2023] [Accepted: 10/13/2023] [Indexed: 10/14/2023]
Abstract
BACKGROUND The sugarcane borer Diatraea saccharalis (Lepidoptera) is a key pest on sugarcane and other grasses in the Americas. Biological control as well as insecticide treatments are used for pest management, but economic losses are still significant. The use of female sex pheromones for mating disruption or mass trapping in pest management could be established for this species, provided that economical production of pheromone is available. RESULTS Combining in vivo labelling studies, differential expression analysis of transcriptome data and functional characterisation of insect genes in a yeast expression system, we reveal the biosynthetic pathway and identify the desaturase and reductase enzymes involved in the biosynthesis of the main pheromone component (9Z,11E)-hexadecadienal, and minor components hexadecanal, (9Z)-hexadecenal and (11Z)-hexadecenal. We next demonstrate heterologous production of the corresponding alcohols of the pheromone components, by expressing multiple steps of the biosynthetic pathway in yeast. CONCLUSION Elucidation of the genetic basis of sex pheromone biosynthesis in D. saccharalis, and heterologous expression in yeast, paves the way for biotechnological production of the pheromone compounds needed for pheromone-based pest management of this species. © 2023 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
| | - Bao-Jian Ding
- Department of Biology, Lund University, Lund, Sweden
| | | | - Hong-Lei Wang
- Department of Biology, Lund University, Lund, Sweden
| | - Douglas J Melo
- Department of Biology, Lund University, Lund, Sweden
- Departamento de Química, Universidade Federal do Paraná, Curitiba, Brazil
| | - Jean-Marc Lassance
- Département de gestion vétérinaire des Ressources Animales (DRA), University of Liege, Bât. B36 GIGA-Neurosciences, Quartier Hôpital, Liège 1, Belgium
| | - Paulo Hg Zarbin
- Departamento de Química, Universidade Federal do Paraná, Curitiba, Brazil
| | | |
Collapse
|
4
|
Shi L, Liu X, Liu H, Shan S, Shen S, Bai M, Lan H, Khashaveh A, Gu S, Zhang Y. Knockout of the delta11-desaturase SfruDES1 disrupts sex pheromone biosynthesis, mating and oviposition in the fall armyworm, Spodoptera frugiperda. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2024; 200:105832. [PMID: 38582595 DOI: 10.1016/j.pestbp.2024.105832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 04/08/2024]
Abstract
Moth insects rely on sex pheromones for long distance attraction and searching for sex partners. The biosynthesis of moth sex pheromones involves the catalytic action of multiple enzymes, with desaturases playing a crucial role in the process of carbon chain desaturation. However, the specific desaturases involved in sex pheromone biosynthesis in fall armyworm (FAW), Spodoptera frugiperda, have not been clarified. In this study, a Δ11 desaturase (SfruDES1) gene in FAW was knocked out using the CRISPR/Cas9 genome editing system. A homozygous mutant of SfruDES1 was obtained through genetic crosses. The gas chromatography-mass spectrometry (GC-MS) analysis results showed that the three main sex pheromone components (Z7-12:Ac, Z9-14:Ac, and Z11-16:Ac) and the three minor components (Z9-14:Ald, E11-14:Ac and Z11-14:Ac) of FAW were not detected in homozygous mutant females compared to the wild type. Furthermore, behavioral assay demonstrated that the loss of SfruDES1 resulted in a significant reduction in the attractiveness of females to males, along with disruptions in mating behavior and oviposition. Additionally, in a heterologous expression system, recombinant SfruDES1 could introduce a cis double bond at the Δ11 position in palmitic acid, which resulted in the changes in components of the synthesized products. These findings suggest desaturase plays a key role in the biosynthesis of sex pheromones, and knockout of the SfruDES1 disrupts sex pheromone biosynthesis and mating behavior in FAW. The SfruDES1 could serve as tool to develop a control method for S. frugiperda.
Collapse
Affiliation(s)
- Longfei Shi
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiaohe Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Huaijing Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shuang Shan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shi Shen
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Agronomy & Reseources and Enviroment, Tianjin Agricultural University, Tianjin 300384, China
| | - Minghui Bai
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; College of Plant Science &Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Hao Lan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Adel Khashaveh
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Shaohua Gu
- College of Plant Protection, China Agricultural University, Beijing 100193, China
| | - Yongjun Zhang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
5
|
Xu D, Tong Y, Chen B, Li B, Wang S, Zhang D. The influence of first desaturase subfamily genes on fatty acid synthesis, desiccation tolerance and inter-caste nutrient transfer in the termite Coptotermes formosanus. INSECT MOLECULAR BIOLOGY 2024; 33:55-68. [PMID: 37750189 DOI: 10.1111/imb.12877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 09/13/2023] [Indexed: 09/27/2023]
Abstract
Desaturase enzymes play an essential role in the biosynthesis of unsaturated fatty acids (UFAs). In this study, we identified seven "first desaturase" subfamily genes (Cfor-desatA1, Cfor-desatA2-a, Cfor-desatA2-b, Cfor-desatB-a, Cfor-desatB-b, Cfor-desatD and Cfor-desatE) from the Formosan subterranean termite Coptotermes formosanus. These desaturases were highly expressed in the cuticle and fat body of C. formosanus. Inhibition of either the Cfor-desatA2-a or Cfor-desatA2-b gene resulted in a significant decrease in the contents of fatty acids (C16:0, C18:0, C18:1 and C18:2) in worker castes. Moreover, we observed that inhibition of most of desaturase genes identified in this study had a negative impact on the survival rate and desiccation tolerance of workers. Interestingly, when normal soldiers were reared together with dsCfor-desatA2-b-treated workers, they exhibited higher mortality, suggesting that desaturase had an impact on trophallaxis among C. formosanus castes. Our findings shed light on the novel roles of desaturase family genes in the eusocial termite C. formosanus.
Collapse
Affiliation(s)
- Danni Xu
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Yuxin Tong
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| | - Bosheng Chen
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Baoling Li
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Shengyin Wang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
| | - Dayu Zhang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou, China
- School of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China
| |
Collapse
|
6
|
Ashok K, Bhargava CN, Asokan R, Pradeep C, Kennedy JS, Manamohan M, Rai A. CRISPR/Cas9 mediated mutagenesis of the major sex pheromone gene, acyl-CoA delta-9 desaturase (DES9) in Fall armyworm Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae). Int J Biol Macromol 2023; 253:126557. [PMID: 37657567 DOI: 10.1016/j.ijbiomac.2023.126557] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 09/03/2023]
Abstract
The Fall armyworm, Spodoptera frugiperda is a significant global pest causing serious yield loss on several staple crops. In this regard, this pest defies several management approaches based on chemicals, Bt transgenics etc., requiring effective alternatives. Recently CRISPR/Cas9 mediated genome editing has opened up newer avenues to establish functions of various target genes before employing them for further application. The virgin female moths of S. frugiperda emit sex pheromones to draw conspecific males. Therefore, we have edited the key pheromone synthesis gene, fatty acyl-CoA Delta-9 desaturase (DES9) of the Indian population of S. frugiperda. In order to achieve a larger deletion of the DES9, we have designed two single guide RNA (sgRNA) in sense and antisense direction targeting the first exon instead of a single guide RNA. The sgRNA caused site-specific knockout with a larger deletion which impacted the mating. Crossing studies between wild male and mutant female resulted in no fecundity, while fecundity was normal when mutant male crossed with the wild female. This indicates that mating disruption is stronger in females where DES9 is mutated. The current work is the first of its kind to show that DES9 gene editing impacted the likelihood of mating in S. frugiperda.
Collapse
Affiliation(s)
- Karuppannasamy Ashok
- ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, Karnataka, India; Tamil Nadu Agricultural University, Coimbatore 641003, Tamil Nadu, India.
| | - Chikmagalur Nagaraja Bhargava
- ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, Karnataka, India; University of Agricultural Sciences, Bengaluru 560065, Karnataka, India
| | - Ramasamy Asokan
- ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, Karnataka, India.
| | - Chalapathi Pradeep
- ICAR-Indian Institute of Horticultural Research, Bengaluru 560089, Karnataka, India; University of Agricultural Sciences, Bengaluru 560065, Karnataka, India
| | | | | | - Anil Rai
- ICAR - Indian Agricultural Statistics Research Institute, New Delhi 110012, India
| |
Collapse
|
7
|
Yang HH, Li JQ, Ma S, Yao WC, Chen YW, El Wakil A, Dewer Y, Zhu XY, Sun L, Zhang YN. RNAi-mediated silencing of SlitPer disrupts sex pheromone communication behavior in Spodoptera litura. PEST MANAGEMENT SCIENCE 2023; 79:3993-3998. [PMID: 37269066 DOI: 10.1002/ps.7593] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/20/2023] [Accepted: 06/02/2023] [Indexed: 06/04/2023]
Abstract
BACKGROUND The 24-h circadian rhythm is considered crucial for insect sexual communication. However, its molecular mechanisms and signaling pathways, particularly the roles of the clock gene period (Per), remain largely unclear. The sex pheromone communication behavior of Spodoptera litura displays typical circadian rhythm characteristics. Thus, it represents an excellent model for functional analyses of the clock gene Per. RESULTS In this study, we investigated the potential roles of SlitPer in regulating sex pheromone communication in S. litura using RNA interference, quantitative real-time polymerase chain reactions (qPCR), gas chromatography, and behavioral assays. The qPCR results showed that the expression levels of SlitPer and two desaturase genes (SlitDes5 and SlitDes11) in the siPer group differed significantly at most time points from those in the siNC group. Dynamic variation in the three major sex pheromone titers and calling behavior of S. litura females in the siPer group was disordered. In addition, the mating rates of siPer S. litura females decreased significantly by 33.33%. Oviposition by mated siPer females was substantially reduced by 84.84%. CONCLUSION These findings provide a fundamental basis for elucidating the molecular mechanism by which Per regulates sex pheromone communication behavior in lepidopteran species. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Hui-Hui Yang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Jian-Qiao Li
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Sai Ma
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Wei-Chen Yao
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Yu-Wen Chen
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Abeer El Wakil
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Giza, Egypt
| | - Xiu-Yun Zhu
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| | - Liang Sun
- Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou, China
| | - Ya-Nan Zhang
- College of Life Sciences, Huaibei Normal University, Huaibei, China
| |
Collapse
|
8
|
Zhang B, Li F, Qu C, Duan H, Fu Y, Luo C. A novel domain-duplicated SlitFAR3 gene involved in sex pheromone biosynthesis in Spodoptera litura. INSECT SCIENCE 2023; 30:611-624. [PMID: 36302113 DOI: 10.1111/1744-7917.13131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 06/15/2023]
Abstract
Fatty acyl reductases (FARs) are key enzymes that participate in sex pheromone biosynthesis by reducing fatty acids to fatty alcohols. Lepidoptera typically harbor numerous FAR gene family members. Although FAR genes are involved in the biosynthesis of sex pheromones in moths, the key FAR gene of Spodoptera litura remains unclear. In this work, we predicted 30 FAR genes from the S. litura genome and identified a domain duplication within gene SlitFAR3, which exhibited high and preferential expression in the sexually mature female pheromone glands (PGs) and a rhythmic expression pattern during the scotophase of sex pheromone production. The molecular docking of SlitFAR3, as predicted using a 3D model, revealed a co-factor NADPH binding cavity and 2 substrate binding cavities. Functional expression in yeast cells combined with comprehensive gas chromatography indicated that the SlitFAR3 gene could produce fatty alcohol products. This study is the first to focus on the special phenomenon of FAR domain duplication, which will advance our understanding of biosynthesis-related genes from the perspective of evolutionary biology.
Collapse
Affiliation(s)
- Biyun Zhang
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fengqi Li
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Hongxia Duan
- Innovation Center of Pesticide Research, Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, China
| | - Yuejun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan, China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
9
|
Zhang BY, Li FQ, Qu C, Dewer Y, Fu YJ, Luo C. Identification and Expression Profiles of Candidate Sex Pheromone Biosynthesis Genes by the Transcriptome Analysis of Sex Pheromone Glands in Spodoptera litura and Spodoptera exigua. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:7009-7019. [PMID: 37126455 DOI: 10.1021/acs.jafc.3c00749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Like many insects, females of the Noctuid moth Spodoptera litura and Spodoptera exigua release chemical signals to attract males from a long distance for successful mating. In this study, 98 and 86 genes related to the sex pheromone biosynthesis of S. litura and S. exigua were identified. The tissue expression profiles of highly expressed genes in sex pheromone glands (PGs) were further examined by real-time quantitative polymerase chain reaction. The results displayed that only SlitDes5 and SexiDes5 gene were specifically and significantly overexpressed in the PGs of S. litura and S. exigua. The functional study of SlitDes5 gene showed that RNA interference reduced its expression level by 49.42%. In addition, the content of the sex pheromones of S. litura, Z9E11-14:OAc, Z9E12-14:OAc, E11-14:OAc, and Z9-14:OAc, decreased by 41.98% on average. Our findings provide a basis for better understanding the key genes that affect the biosynthesis of sex pheromones and for determining potential gene targets for pest control strategies.
Collapse
Affiliation(s)
- Bi-Yun Zhang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Feng-Qi Li
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Youssef Dewer
- Phytotoxicity Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, Dokki 12618, Egypt
| | - Yue-Jun Fu
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Biotechnology, Shanxi University, Taiyuan 030006, China
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
10
|
Qu C, Kang Z, Zhang B, Fang Y, Wang R, Li F, Zhao H, Luo C. Genome-Wide Identification and Expression Profiling of Candidate Sex Pheromone Biosynthesis Genes in the Fall Armyworm ( Spodoptera frugiperda). INSECTS 2022; 13:insects13121078. [PMID: 36554988 PMCID: PMC9783692 DOI: 10.3390/insects13121078] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/18/2022] [Indexed: 05/17/2023]
Abstract
Spodoptera frugiperda is an agricultural pest causing substantial damage and losses to commercial crops. Sex pheromones are critical for successful mating in Lepidoptera and have been used for monitoring and control of many pest species. The sex pheromone of S. frugiperda is known, but the genes involved in its biosynthesis have not been identified. We systematically studied 99 candidate sex pheromone genes in the genome of S. frugiperda including 1 acetyl-CoA carboxylase (ACC), 11 fatty acid synthases (FASs), 17 desaturases (DESs), 4 fatty acid transport proteins (FATPs), 29 fatty acyl-CoA reductases (FARs), 17 acetyl-CoA acetyltransferases (ACTs), 5 acyl-CoA dehydrogenase (ACDs), 3 enoyl-CoA hydratases (ECHs), 3 hydroxyacyl-CoA dehydrogenases (HCDs), 6 ethyl-CoA thiolases (KCTs), and 3 acyl-CoA-binding proteins (ACBPs). Based on the comparative transcriptome results, we found 22 candidate sex pheromone biosynthesis genes predominately expressed in pheromone glands (PGs) than abdomens without PGs including SfruFAS4, SfruFATP3, SfruACD5, SfruKCT3, SfruDES2, SfruDES5, SfruDES11, SfruDES13, SfruFAR1, SfruFAR2, SfruFAR3, SfruFAR6, SfruFAR7, SfruFAR8, SfruFAR9, SfruFAR10, SfruFAR11, SfruFAR14, SfruFAR16, SfruFAR29, SfruACT6, and SfruACT10. A combination of phylogenetic and tissue-specific transcriptomic analyses indicated that SfruDES5, SfruDES11, SfruFAR2, SfruFAR3, and SfruFAR9 may be key genes involved in the sex pheromone synthesis of S. frugiperda. Our results could provide a theoretical basis for understanding the molecular mechanisms of sex pheromone biosynthesis in S. frugiperda, and also provide new targets for developing novel pest control methods based on disrupting sexual communication.
Collapse
Affiliation(s)
- Cheng Qu
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Zhiwei Kang
- School of Life Science, Institute of Life Science and Green Development, Hebei University, Baoding 071002, China
| | - Biyun Zhang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Yong Fang
- Hunan Agricultural Biotechnology Research Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China
| | - Ran Wang
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Fengqi Li
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Haipeng Zhao
- College of Plant Protection, Shandong Agricultural University, Tai'an 271018, China
- Correspondence: (H.Z.); (C.L.)
| | - Chen Luo
- Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
- Correspondence: (H.Z.); (C.L.)
| |
Collapse
|
11
|
Xia YH, Ding BJ, Dong SL, Wang HL, Hofvander P, Löfstedt C. Release of moth pheromone compounds from Nicotiana benthamiana upon transient expression of heterologous biosynthetic genes. BMC Biol 2022; 20:80. [PMID: 35361182 PMCID: PMC8969271 DOI: 10.1186/s12915-022-01281-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 03/12/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Using genetically modified plants as natural dispensers of insect pheromones may eventually become part of a novel strategy for integrated pest management. RESULTS In the present study, we first characterized essential functional genes for sex pheromone biosynthesis in the rice stem borer Chilo suppressalis (Walker) by heterologous expression in Saccharomyces cerevisiae and Nicotiana benthamiana, including two desaturase genes CsupYPAQ and CsupKPSE and a reductase gene CsupFAR2. Subsequently, we co-expressed CsupYPAQ and CsupFAR2 together with the previously characterized moth desaturase Atr∆11 in N. benthamiana. This resulted in the production of (Z)-11-hexadecenol together with (Z)-11-hexadecenal, the major pheromone component of C. suppressalis. Both compounds were collected from the transformed N. benthamiana headspace volatiles using solid-phase microextraction. We finally added the expression of a yeast acetyltransferase gene ATF1 and could then confirm also (Z)-11-hexadecenyl acetate release from the plant. CONCLUSIONS Our results pave the way for stable transformation of plants to be used as biological pheromone sources in different pest control strategies.
Collapse
Affiliation(s)
- Yi-Han Xia
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden
- Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 4, SE-41296, Gothenburg, Sweden
| | - Bao-Jian Ding
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden
| | - Shuang-Lin Dong
- Education Ministry Key Laboratory of Integrated Management of Crop Diseases and Pests, College of Plant Protection, Nanjing Agricultural University, Nanjing, CN-210095, China
| | - Hong-Lei Wang
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden
| | - Per Hofvander
- Department of Plant Breeding, Swedish University of Agricultural Sciences, P.O. Box 101, SE-23053, Alnarp, Sweden
| | - Christer Löfstedt
- Department of Biology, Lund University, Sölvegatan 37, SE-22362, Lund, Sweden.
| |
Collapse
|
12
|
Ding B, Wang H, Al‐Saleh MA, Löfstedt C, Antony B. Bioproduction of (Z,E)-9,12-tetradecadienyl acetate (ZETA), the major pheromone component of Plodia, Ephestia, and Spodoptera species in yeast. PEST MANAGEMENT SCIENCE 2022; 78:1048-1059. [PMID: 34773383 PMCID: PMC9300079 DOI: 10.1002/ps.6716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/04/2021] [Accepted: 11/13/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND (Z,E)-9,12-tetradecadienyl acetate (ZETA, Z9,E12-14:OAc) is a major sex pheromone component for many stored-product moth species. This pheromone is used worldwide for mating disruption, detection, monitoring, and mass trapping in raw and processed food storage facilities. In this study, we demonstrate the biological production of ZETA pheromone by engineered yeast Saccharomyces cerevisiae. RESULTS We mined the pheromone gland transcriptome data of the almond moth, Ephestia (Cadra) cautella (Walker), to trace a novel E12 fatty acyl desaturase and expressed candidates heterologously in yeast and Sf9 systems. Furthermore, we demonstrated a tailor-made ZETA pheromone bioproduction in yeast through metabolic engineering using this E12 desaturase, in combination with three genes from various sources coding for a Z9 desaturase, a fatty acyl reductase, and an acetyltransferase, respectively. Electrophysiological assays (gas chromatography coupled to an electroantennographic detector) proved that the transgenic yeast-produced ZETA pheromone component elicits distinct antennal responses. CONCLUSION The reconstructed biosynthetic pathway in yeast efficiently produces ZETA pheromone, leaves an undetectable level of biosynthetic intermediates, and paves the way for the economically competitive high-demand ZETA pheromone's bioproduction technology for high-value storage pest control.
Collapse
Affiliation(s)
| | | | - Mohammed Ali Al‐Saleh
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, Chemical Ecology and Functional Genomics LaboratoryCollege of Food and Agricultural SciencesRiyadhSaudi Arabia
| | | | - Binu Antony
- Department of Plant Protection, King Saud University, Chair of Date Palm Research, Chemical Ecology and Functional Genomics LaboratoryCollege of Food and Agricultural SciencesRiyadhSaudi Arabia
| |
Collapse
|
13
|
Xu JW, Li LL, Wang M, Yang HH, Yao WC, Dewer Y, Zhu XY, Zhang YN. Identification and dynamic expression profiling of circadian clock genes in Spodoptera litura provide new insights into the regulation of sex pheromone communication. BULLETIN OF ENTOMOLOGICAL RESEARCH 2022; 112:78-90. [PMID: 35225175 DOI: 10.1017/s0007485321000559] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spodoptera litura is an important pest that causes significant economic damage to numerous crops worldwide. Sex pheromones (SPs) mediate sexual communication in S. litura and show a characteristic degree of rhythmic activity, occurring mainly during the scotophase; however, the specific regulatory mechanisms remain unclear. Here, we employed a genome-wide analysis to identify eight candidate circadian clock genes in S. litura. Sequence characteristics and expression patterns were analyzed. Our results demonstrated that some circadian clock genes might regulate the biosynthesis and perception of SPs by regulating the rhythmic expression of SP biosynthesis-related genes and SP perception-related genes. Interestingly, all potential genes exhibited peak expression in the scotophase, consistent with the SP could mediate courtship and mating behavior in S. litura. Our findings are helpful in elucidating the molecular mechanism by which circadian clock genes regulate sexual communication in S. litura.
Collapse
Affiliation(s)
- Ji-Wei Xu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Lu-Lu Li
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Meng Wang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Hui-Hui Yang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Wei-Chen Yao
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Youssef Dewer
- Bioassay Research Department, Central Agricultural Pesticide Laboratory, Agricultural Research Center, 7 Nadi El-Seid Street, Dokki12618, Giza, Egypt
| | - Xiu-Yun Zhu
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| | - Ya-Nan Zhang
- Anhui Province Key Laboratory of Pollutant Sensitive Materials and Environmental Remediation, College of Life Sciences, Huaibei Normal University, 100 Dongshan Road, Huaibei 235000, China
| |
Collapse
|
14
|
Wu C, Hong B, Jiang S, Luo X, Lin H, Zhou Y, Wu J, Yue X, Shi H, Wu R. Recent advances on essential fatty acid biosynthesis and production: Clarifying the roles of Δ12/Δ15 fatty acid desaturase. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2021.108306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
15
|
Nuo SM, Yang AJ, Li GC, Xiao HY, Liu NY. Transcriptome analysis identifies candidate genes in the biosynthetic pathway of sex pheromones from a zygaenid moth, Achelura yunnanensis (Lepidoptera: Zygaenidae). PeerJ 2021; 9:e12641. [PMID: 34993022 PMCID: PMC8679906 DOI: 10.7717/peerj.12641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/24/2021] [Indexed: 12/29/2022] Open
Abstract
In most moth species, sex pheromones responsible for mating and communication of both sexes are primarily produced by the pheromone glands (PGs) of female moths. Although the PG transcriptomes and pheromone production related genes from 24 moth species have been characterized, studies on the related information remain unknown in the Zygaenidae family. Here, we sequenced the PG transcriptome of a zygaenid moth, Achelura yunnanensis. Such the sequencing resulted in the yields of 47,632,610 clean reads that were assembled into 54,297 unigenes, coupled with RNA sequencing data from 12 other tissues. Based on the transcriptome, a total of 191 genes encoding pheromone biosynthesis and degradation enzymes were identified, 161 of which were predicted to have full-length sequences. A comparative analysis among 24 moth species of nine families indicated that the numbers of the genes were variable, ranging from 14 in two Grapholita species to 191 in A. yunnanensis. Phylogenetic analysis in parallel with the expression data highlighted some key genes, including three △9 and four △11 desaturases, four fatty acyl-CoA reductases (FARs) clustering in the pgFAR clade, and three significantly antennae-enriched aldehyde oxidases. An extensive tissue- and sex- expression profile revealed a broad distribution of the genes, in which 128 relatives were detected in the PGs and 127 in the antennae. This study reports, for the first time, the gene repertoires associated with the pheromone production in Zygaenidae, and provides a valuable resource for exploring putative roles of the PG-enriched genes in A. yunnanensis.
Collapse
Affiliation(s)
- Shu-Mei Nuo
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
| | - An-Jin Yang
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
| | - Gen-Ceng Li
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
| | - Hai-Yan Xiao
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
| | - Nai-Yong Liu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, Yunnan, China
| |
Collapse
|
16
|
Wang QH, Gao X, Yu HS, Zhang Z, Yu QY. Exploring the Terminal Pathway of Sex Pheromone Biosynthesis and Metabolism in the Silkworm. INSECTS 2021; 12:insects12121062. [PMID: 34940150 PMCID: PMC8706005 DOI: 10.3390/insects12121062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/23/2021] [Accepted: 11/23/2021] [Indexed: 11/24/2022]
Abstract
Simple Summary Insect sex pheromone biosynthesis has received widespread attention, while the terminal pathway related to aldehyde synthesis and metabolism is still poorly understood at a molecular level. Previous studies found that the silkworm, Bombyx mori (Lepidoptera, Bombycidae), has two pheromone compounds, bombykol and bombykal, with a ratio of 11:1, while its closest wild relative, B. mandarina, only uses bombykol as a pheromone. In this study, sex pheromone gland transcriptomes were compared between the domestic and wild silkworms. All the candidate gene families were identified. Then we used the differentially expressed information, tissue and developmental expression profiles, and phylogenetic analysis to identify the putative causal genes involved in the terminal pathway. Our findings provide insights into the aldehyde synthesis and metabolism pathways and evolutionary conservation in moths. Abstract Sex pheromones are vital to sexual communication and reproduction in insects. Although some key enzymes in pheromone production have been well studied, information on genes involved in the terminal pathway is limited. The domestic silkworm employs a pheromone blend containing (E,Z)-10,12-hexadecadienol (bombykol) and analogous (E,Z)-10,12-hexadecadienal (bombykal); whereas, its wild ancestor B. mandarina uses only bombykol. The two closely related moths might be a good model for exploring the genes involved in aldehyde pheromone synthesis and metabolism. By deep sequencing and analyzing the sex pheromone gland (PG) transcriptomes; we identified 116 candidate genes that may be related to pheromone biosynthesis, metabolism, and chemoreception. Spatiotemporal expression profiles and differentially expressed analysis revealed that four alcohol oxidases (BmorAO1; 2; 3; and 4); one aldehyde reductase (BmorAR1); and one aldehyde oxidase (BmorAOX5) might be involved in the terminal pathway. Phylogenetic analysis showed that, except for BmorAO3 and MsexAO3, AOs did not show a conversed orthologous relationship among moths; whereas, ARs and AOXs were phylogenetically conserved. This study provides crucial candidates for further functional elucidation, and which may be utilized as potential targets to disrupt sexual communication in other moth pests.
Collapse
Affiliation(s)
- Qing-Hai Wang
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
| | - Xing Gao
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
| | - Hong-Song Yu
- School of Basic Medical Sciences, Zunyi Medical University, Zunyi 563000, China;
| | - Ze Zhang
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
| | - Quan-You Yu
- School of Life Sciences, Chongqing University, Chongqing 400044, China; (Q.-H.W.); (X.G.); (Z.Z.)
- Correspondence:
| |
Collapse
|
17
|
Ahmed S, Roy MC, Al Baki MA, Jung JK, Lee D, Kim Y. CRISPR/Cas9 mutagenesis against sex pheromone biosynthesis leads to loss of female attractiveness in Spodoptera exigua, an insect pestt. PLoS One 2021; 16:e0259322. [PMID: 34788305 PMCID: PMC8598075 DOI: 10.1371/journal.pone.0259322] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
Virgin female moths are known to release sex pheromones to attract conspecific males. Accurate sex pheromones are required for their chemical communication. Sex pheromones of Spodoptera exigua, a lepidopteran insect, contain unsaturated fatty acid derivatives having a double bond at the 12th carbon position. A desaturase of S. exigua (SexiDES5) was proposed to have dual functions by forming double bonds at the 11th and 12th carbons to synthesize Z9,E12-tetradecedienoic acid, which could be acetylated to be a main sex pheromone component Z9,E12-tetradecenoic acetate (Z9E12-14:Ac). A deletion of SexiDES5 using CRISPR/Cas9 was generated and inbred to obtain homozygotes. Mutant females could not produce Z9E12-14:Ac along with Z9-14:Ac and Z11-14:Ac. Subsequently, pheromone extract of mutant females did not induce a sensory signal in male antennae. They failed to induce male mating behavior including hair pencil erection and orientation. In the field, these mutant females did not attract any males while control females attracted males. These results indicate that SexiDES5 can catalyze the desaturation at the 11th and 12th positions to produce sex pheromone components in S. exigua. This study also suggests an application of the genome editing technology to insect pest control by generating non-attractive female moths.
Collapse
Affiliation(s)
- Shabbir Ahmed
- Department of Plant Medicals, Andong National University, Andong, Korea
| | | | | | - Jin Kyo Jung
- Division of Crop Cultivation and Environment Research, Department of Central Area Crop Science, National Institute of Crop Science, Rural Development Administration, Suwon, Korea
| | - Daeweon Lee
- Metabolomics Research Center for Functional Materials, Kyungsung University, Busan, Korea
| | - Yonggyun Kim
- Department of Plant Medicals, Andong National University, Andong, Korea
| |
Collapse
|
18
|
Rizvi SAH, George J, Reddy GVP, Zeng X, Guerrero A. Latest Developments in Insect Sex Pheromone Research and Its Application in Agricultural Pest Management. INSECTS 2021; 12:insects12060484. [PMID: 34071020 PMCID: PMC8224804 DOI: 10.3390/insects12060484] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/14/2021] [Accepted: 05/20/2021] [Indexed: 02/07/2023]
Abstract
Since the first identification of the silkworm moth sex pheromone in 1959, significant research has been reported on identifying and unravelling the sex pheromone mechanisms of hundreds of insect species. In the past two decades, the number of research studies on new insect pheromones, pheromone biosynthesis, mode of action, peripheral olfactory and neural mechanisms, and their practical applications in Integrated Pest Management has increased dramatically. An interdisciplinary approach that uses the advances and new techniques in analytical chemistry, chemical ecology, neurophysiology, genetics, and evolutionary and molecular biology has helped us to better understand the pheromone perception mechanisms and its practical application in agricultural pest management. In this review, we present the most recent developments in pheromone research and its application in the past two decades.
Collapse
Affiliation(s)
| | - Justin George
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776, USA; (J.G.); (G.V.P.R.)
| | - Gadi V. P. Reddy
- Southern Insect Management Research Unit, USDA-ARS, Stoneville, MS 38776, USA; (J.G.); (G.V.P.R.)
| | - Xinnian Zeng
- College of Plant Protection, South China Agricultural University, Guangzhou 510642, China
- Correspondence: (X.Z.); (A.G.)
| | - Angel Guerrero
- Department of Biological Chemistry, Institute of Advanced Chemistry of Catalonia-CSIC, 08034 Barcelona, Spain
- Correspondence: (X.Z.); (A.G.)
| |
Collapse
|
19
|
Lassance JM, Ding BJ, Löfstedt C. Evolution of the codling moth pheromone via an ancient gene duplication. BMC Biol 2021; 19:83. [PMID: 33892710 PMCID: PMC8063362 DOI: 10.1186/s12915-021-01001-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 03/07/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Defining the origin of genetic novelty is central to our understanding of the evolution of novel traits. Diversification among fatty acid desaturase (FAD) genes has played a fundamental role in the introduction of structural variation in fatty acyl derivatives. Because of its central role in generating diversity in insect semiochemicals, the FAD gene family has become a model to study how gene family expansions can contribute to the evolution of lineage-specific innovations. Here we used the codling moth (Cydia pomonella) as a study system to decipher the proximate mechanism underlying the production of the ∆8∆10 signature structure of olethreutine moths. Biosynthesis of the codling moth sex pheromone, (E8,E10)-dodecadienol (codlemone), involves two consecutive desaturation steps, the first of which is unusual in that it generates an E9 unsaturation. The second step is also atypical: it generates a conjugated diene system from the E9 monoene C12 intermediate via 1,4-desaturation. RESULTS Here we describe the characterization of the FAD gene acting in codlemone biosynthesis. We identify 27 FAD genes corresponding to the various functional classes identified in insects and Lepidoptera. These genes are distributed across the C. pomonella genome in tandem arrays or isolated genes, indicating that the FAD repertoire consists of both ancient and recent duplications and expansions. Using transcriptomics, we show large divergence in expression domains: some genes appear ubiquitously expressed across tissue and developmental stages; others appear more restricted in their expression pattern. Functional assays using heterologous expression systems reveal that one gene, Cpo_CPRQ, which is prominently and exclusively expressed in the female pheromone gland, encodes an FAD that possesses both E9 and ∆8∆10 desaturation activities. Phylogenetically, Cpo_CPRQ clusters within the Lepidoptera-specific ∆10/∆11 clade of FADs, a classic reservoir of unusual desaturase activities in moths. CONCLUSIONS Our integrative approach shows that the evolution of the signature pheromone structure of olethreutine moths relied on a gene belonging to an ancient gene expansion. Members of other expanded FAD subfamilies do not appear to play a role in chemical communication. This advises for caution when postulating the consequences of lineage-specific expansions based on genomics alone.
Collapse
Affiliation(s)
- Jean-Marc Lassance
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Bao-Jian Ding
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Christer Löfstedt
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| |
Collapse
|
20
|
Ding BJ, Xia YH, Wang HL, Andersson F, Hedenström E, Gross J, Löfstedt C. Biosynthesis of the Sex Pheromone Component (E,Z)-7,9-Dodecadienyl Acetate in the European Grapevine Moth, Lobesia botrana, Involving ∆11 Desaturation and an Elusive ∆7 Desaturase. J Chem Ecol 2021; 47:248-264. [PMID: 33779878 PMCID: PMC8019676 DOI: 10.1007/s10886-021-01252-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/13/2021] [Accepted: 02/02/2021] [Indexed: 11/05/2022]
Abstract
The European grapevine moth, Lobesia botrana, uses (E,Z)-7,9-dodecadienyl acetate as its major sex pheromone component. Through in vivo labeling experiments we demonstrated that the doubly unsaturated pheromone component is produced by ∆11 desaturation of tetradecanoic acid, followed by chain shortening of (Z)-11-tetradecenoic acid to (Z)-9-dodecenoic acid, and subsequently introduction of the second double bond by an unknown ∆7 desaturase, before final reduction and acetylation. By sequencing and analyzing the transcriptome of female pheromone glands of L. botrana, we obtained 41 candidate genes that may be involved in sex pheromone production, including the genes encoding 17 fatty acyl desaturases, 13 fatty acyl reductases, 1 fatty acid synthase, 3 acyl-CoA oxidases, 1 acetyl-CoA carboxylase, 4 fatty acid transport proteins and 2 acyl-CoA binding proteins. A functional assay of desaturase and acyl-CoA oxidase gene candidates in yeast and insect cell (Sf9) heterologous expression systems revealed that Lbo_PPTQ encodes a ∆11 desaturase producing (Z)-11-tetradecenoic acid from tetradecanoic acid. Further, Lbo_31670 and Lbo_49602 encode two acyl-CoA oxidases that may produce (Z)-9-dodecenoic acid by chain shortening (Z)-11-tetradecenoic acid. The gene encoding the enzyme introducing the E7 double bond into (Z)-9-dodecenoic acid remains elusive even though we assayed 17 candidate desaturases in the two heterologous systems.
Collapse
Affiliation(s)
- Bao-Jian Ding
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| | - Yi-Han Xia
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden.
| | - Hong-Lei Wang
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| | - Fredrik Andersson
- Department of Chemical Engineering, Mid Sweden University, SE-851 70, Sundsvall, Sweden
| | - Erik Hedenström
- Department of Chemical Engineering, Mid Sweden University, SE-851 70, Sundsvall, Sweden
| | - Jürgen Gross
- Federal Research Centre for Cultivated Plants, Institute for Plant Protection in Fruit Crops and Viticulture, Julius Kühn-Institut, Dossenheim, Germany
| | - Christer Löfstedt
- Department of Biology, Lund University, Sölvegatan 37, SE-223 62, Lund, Sweden
| |
Collapse
|
21
|
Wang QH, Gong Q, Fang SM, Liu YQ, Zhang Z, Yu QY. Identification of genes involved in sex pheromone biosynthesis and metabolic pathway in the Chinese oak silkworm, Antheraea pernyi. Int J Biol Macromol 2020; 163:1487-1497. [PMID: 32755713 DOI: 10.1016/j.ijbiomac.2020.07.263] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/19/2020] [Accepted: 07/20/2020] [Indexed: 11/29/2022]
Abstract
The Chinese oak silkworm, Antheraea pernyi, has not only been semi-domesticated as an important economical insect but also used for genetic research. The female moths of A. pernyi employ a pheromone blend containing (E,Z)-6,11-hexadecadienal (E6,Z11-16:Ald), (E,Z)-6,11-hexadecadienyl acetate (E6,Z11-16:OAc), and (E,Z)-4,9-tetradecadienyl acetate (E4,Z9-14:OAc). While its biosynthesis pathway is largely unknown. By deep sequencing and de novo assembly of sex pheromone gland (PG) transcriptome, we identified 141 candidate genes that are putatively related to pheromone biosynthesis, degradation, and chemoreception in A. pernyi. Gene expression patterns and phylogenetic analysis revealed that two desaturases (AperDES1 and 2), two fatty acid reductase (AperFAR1 and 2), and three acetyltransferase genes (AperACT1, 2 and 3) showed PG-biased or specific expression and were phylogenetically related to genes known to be involved in pheromone synthesis in other species. Furthermore, two carboxylesterases (AperCOE6 and 11) and two chemosensory protein (AperCSP1 and 6) were also expressed specifically or predominantly in the PGs, which might be related to sex pheromone degradation and transportation, respectively. Based on these results, the sex pheromone biosynthesis and metabolic pathway was proposed in A. pernyi. This study provides some crucial candidates for further functional elucidation, and may be used for interfering sexual communication in other Saturniidae pests.
Collapse
Affiliation(s)
- Qing-Hai Wang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Qian Gong
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Shou-Min Fang
- College of Life Science, China West Normal University, Nanchong 637002, China
| | - Yan-Qun Liu
- Department of Sericulture, College of Bioscience and Biotechnology, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Ze Zhang
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Quan-You Yu
- Laboratory of Evolutionary and Functional Genomics, School of Life Sciences, Chongqing University, Chongqing 401331, China.
| |
Collapse
|
22
|
Petkevicius K, Löfstedt C, Borodina I. Insect sex pheromone production in yeasts and plants. Curr Opin Biotechnol 2020; 65:259-267. [DOI: 10.1016/j.copbio.2020.07.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 07/20/2020] [Indexed: 11/28/2022]
|
23
|
Lee MC, Choi BS, Kim MS, Yoon DS, Park JC, Kim S, Lee JS. An improved genome assembly and annotation of the Antarctic copepod Tigriopus kingsejongensis and comparison of fatty acid metabolism between T. kingsejongensis and the temperate copepod T. japonicus. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 35:100703. [PMID: 32563028 DOI: 10.1016/j.cbd.2020.100703] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Revised: 06/07/2020] [Accepted: 06/08/2020] [Indexed: 01/05/2023]
Abstract
Copepods in the genus Tigriopus are widely distributed in the intertidal zone worldwide. To assess differences in fatty acid (FA) metabolism among congeneric species in this genus inhabiting polar and temperate environments, we analyzed and compared FA profiles of the Antarctic copepod Tigriopus kingsejongensis and the temperate copepod T. japonicus. Higher amounts of total FAs were found in the Antarctic copepod T. kingsejongensis than the temperate copepod T. japonicus under administration of the identical amount of Tetraselmis suecica. To determine the genomic basis for this, we identified fatty acid metabolism-related genes in an improved genome of T. kingsejongensis. The total length of the assembled genome was approximately 338 Mb with N50 = 1.473 Mb, 938 scaffolds, and a complete Benchmarking Universal Single-Copy Orthologs value of 95.8%. A total of 25,470 genes were annotated using newly established pipeline. We identified eight elongation of very long-chain fatty acid protein (Elovl) genes and nine fatty acid desaturase (Fad) genes in the genome of T. kingsejongensis. In addition, fatty acid profiling suggested that the duplicated Δ5/6 desaturase gene in T. kingsejongensis is likely to play an essential role in synthesis of different FAs in T. kingsejongensis to those in T. japonicus. However, further experimental research is required to validate our in silico findings. This study provides a better understanding of fatty acid metabolism in the Antarctic copepod T. kingsejongensis.
Collapse
Affiliation(s)
- Min-Chul Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | | | - Min-Sub Kim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Deok-Seo Yoon
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Sanghee Kim
- Division of Life Sciences, Korea Polar Research Institute, Incheon 21990, South Korea
| | - Jae-Seong Lee
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
24
|
Hasan MA, Ahmed S, Kim Y. Biosynthetic pathway of arachidonic acid in Spodoptera exigua in response to bacterial challenge. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2019; 111:103179. [PMID: 31255640 DOI: 10.1016/j.ibmb.2019.103179] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/24/2019] [Accepted: 06/24/2019] [Indexed: 06/09/2023]
Abstract
Eicosanoids play crucial roles in mediating insect immune responses. In vertebrates, phospholipase A2 (PLA2) releases arachidonic acid (AA) from phospholipids (PLs) for biosynthesis of various eicosanoids. However, little AA is found in PLs of lepidopteran insects. Spodoptera exigua, a lepidopteran insect, is known to use eicosanoids to mediate immunity. Although AA was not detected in PLs of hemocytes and fat body (two immune tissues) of naïve larvae, it was detected at small but significant level after bacterial infection, suggesting induction of AA biosynthesis for immunity. Based on a mammalian AA biosynthetic pathway, this study hypothesizes that AA is synthesized from C18 polyunsaturated fatty acid (PUFA) precursor by subsequent desaturation and elongation reactions because PLs of S. exigua larvae are rich in linoleic acid. After inhibiting PLA2 activity to prevent release of free fatty acids, different PUFA precursors were injected to S. exigua larvae followed by assessment of eicosanoid-mediated cellular immune response. ω-6 PUFAs were effective in inducing immune response whereas α-linolenic acid (an ω-3 PUFA) was not. Several fatty acyl desaturases (SeDESs) have been predicted from S. exigua transcriptomes. Specific inhibitors against Δ5 or Δ6 DESs inhibited eicosanoid-mediated immune responses. Furthermore, RNA interference (RNAi) specific to Δ5 or Δ6 DES genes significantly suppressed eicosanoid-mediated immune responses. Four very long chain fatty acid elongase genes (SeEloV-A ∼ SeEloV-D) were predicted. Among respective RNAi treatments of these genes, only one RNAi treatment specific to type 5 elongase (SeEloV-B) suppressed eicosanoid-mediated immune response. These results suggest that S. exigua larvae can synthesize AA from linoleic acid via Δ5- and Δ6-desaturations by SeDESs along with chain elongation by SeEloV-B. Finally, this study showed significant fitness cost of uncontrolled AA biosynthesis. AA injection alone without bacterial challenge significantly induced both cellular and humoral immune responses. This unnecessary energy expense due to free AA resulted in reduced pupal size and decreased adult egg production. The detrimental effect of free AA explains physiological significance of little AA content in lepidopteran insects except for life-or-death situation such as pathogen infection.
Collapse
Affiliation(s)
- Md Ariful Hasan
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Shabbir Ahmed
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea
| | - Yonggyun Kim
- Department of Plant Medicals, College of Life Sciences, Andong National University, Andong, 36729, South Korea.
| |
Collapse
|