1
|
Michálek O, King GF, Pekár S. Prey specificity of predatory venoms. Biol Rev Camb Philos Soc 2024; 99:2253-2273. [PMID: 38991997 DOI: 10.1111/brv.13120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 07/01/2024] [Accepted: 07/03/2024] [Indexed: 07/13/2024]
Abstract
Venom represents a key adaptation of many venomous predators, allowing them to immobilise prey quickly through chemical rather than physical warfare. Evolutionary arms races between prey and a predator are believed to be the main factor influencing the potency and composition of predatory venoms. Predators with narrowly restricted diets are expected to evolve specifically potent venom towards their focal prey, with lower efficacy on alternative prey. Here, we evaluate hypotheses on the evolution of prey-specific venom, focusing on the effect of restricted diet, prey defences, and prey resistance. Prey specificity as a potential evolutionary dead end is also discussed. We then provide an overview of the current knowledge on venom prey specificity, with emphasis on snakes, cone snails, and spiders. As the current evidence for venom prey specificity is still quite limited, we also overview the best approaches and methods for its investigation and provide a brief summary of potential model groups. Finally, possible applications of prey-specific toxins are discussed.
Collapse
Affiliation(s)
- Ondřej Michálek
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, 4072, Australia
- Australian Research Council Centre of Excellence for Innovations in Peptide and Protein Science, The University of Queensland, St. Lucia, Queensland, 4072, Australia
| | - Stano Pekár
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Kotlářská 2, Brno, 611 37, Czech Republic
| |
Collapse
|
2
|
Dashevsky D, Harris RJ, Zdenek CN, Benard-Valle M, Alagón A, Portes-Junior JA, Tanaka-Azevedo AM, Grego KF, Sant'Anna SS, Frank N, Fry BG. Red-on-Yellow Queen: Bio-Layer Interferometry Reveals Functional Diversity Within Micrurus Venoms and Toxin Resistance in Prey Species. J Mol Evol 2024; 92:317-328. [PMID: 38814340 PMCID: PMC11168994 DOI: 10.1007/s00239-024-10176-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 05/03/2024] [Indexed: 05/31/2024]
Abstract
Snakes in the family Elapidae largely produce venoms rich in three-finger toxins (3FTx) that bind to the α 1 subunit of nicotinic acetylcholine receptors (nAChRs), impeding ion channel activity. These neurotoxins immobilize the prey by disrupting muscle contraction. Coral snakes of the genus Micrurus are specialist predators who produce many 3FTx, making them an interesting system for examining the coevolution of these toxins and their targets in prey animals. We used a bio-layer interferometry technique to measure the binding interaction between 15 Micrurus venoms and 12 taxon-specific mimotopes designed to resemble the orthosteric binding region of the muscular nAChR subunit. We found that Micrurus venoms vary greatly in their potency on this assay and that this variation follows phylogenetic patterns rather than previously reported patterns of venom composition. The long-tailed Micrurus tend to have greater binding to nAChR orthosteric sites than their short-tailed relatives and we conclude this is the likely ancestral state. The repeated loss of this activity may be due to the evolution of 3FTx that bind to other regions of the nAChR. We also observed variations in the potency of the venoms depending on the taxon of the target mimotope. Rather than a pattern of prey-specificity, we found that mimotopes modeled after snake nAChRs are less susceptible to Micrurus venoms and that this resistance is partly due to a characteristic tryptophan → serine mutation within the orthosteric site in all snake mimotopes. This resistance may be part of a Red Queen arms race between coral snakes and their prey.
Collapse
Affiliation(s)
- Daniel Dashevsky
- Australian National Insect Collection, Commonwealth Scientific and Industrial Research Organisation, Canberra, ACT, 2601, Australia.
| | - Richard J Harris
- Venom Evolution Lab, School of the Environment, The University of Queensland, Saint Lucia, QLD, 4072, Australia
- Australian Institute of Marine Science, Cape Cleveland, QLD, 4810, Australia
| | - Christina N Zdenek
- Celine Frere Group, School of the Environment, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| | - Melisa Benard-Valle
- Department of Biotechnology and Biomedicine, Technical University of Denmark, DK-2800, Kongens Lyngby, Region Hovedstaden, Denmark
| | - Alejandro Alagón
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, 62210, Cuernavaca, Morelos, Mexico
| | - José A Portes-Junior
- Laboratório de Coleções Zoológicas, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Anita M Tanaka-Azevedo
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Kathleen F Grego
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Sávio S Sant'Anna
- Laboratório de Herpetologia, Instituto Butantan, São Paulo, São Paulo, 05503-900, Brazil
| | - Nathaniel Frank
- MToxins Venom Lab, 717 Oregon Street, Oshkosh, WI, 54902, USA
| | - Bryan G Fry
- Venom Evolution Lab, School of the Environment, The University of Queensland, Saint Lucia, QLD, 4072, Australia
| |
Collapse
|
3
|
Mancuso M, Zaman S, Maddock ST, Kamei RG, Salazar-Valenzuela D, Wilkinson M, Roelants K, Fry BG. Resistance Is Not Futile: Widespread Convergent Evolution of Resistance to Alpha-Neurotoxic Snake Venoms in Caecilians (Amphibia: Gymnophiona). Int J Mol Sci 2023; 24:11353. [PMID: 37511112 PMCID: PMC10379402 DOI: 10.3390/ijms241411353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/16/2023] [Accepted: 06/20/2023] [Indexed: 07/30/2023] Open
Abstract
Predatory innovations impose reciprocal selection pressures upon prey. The evolution of snake venom alpha-neurotoxins has triggered the corresponding evolution of resistance in the post-synaptic nicotinic acetylcholine receptors of prey in a complex chemical arms race. All other things being equal, animals like caecilians (an Order of legless amphibians) are quite vulnerable to predation by fossorial elapid snakes and their powerful alpha-neurotoxic venoms; thus, they are under strong selective pressure. Here, we sequenced the nicotinic acetylcholine receptor alpha-1 subunit of 37 caecilian species, representing all currently known families of caecilians from across the Americas, Africa, and Asia, including species endemic to the Seychelles. Three types of resistance were identified: (1) steric hindrance from N-glycosylated asparagines; (2) secondary structural changes due to the replacement of proline by another amino acid; and (3) electrostatic charge repulsion of the positively charged neurotoxins, through the introduction of a positively charged amino acid into the toxin-binding site. We demonstrated that resistance to alpha-neurotoxins convergently evolved at least fifteen times across the caecilian tree (three times in Africa, seven times in the Americas, and five times in Asia). Additionally, as several species were shown to possess multiple resistance modifications acting synergistically, caecilians must have undergone at least 20 separate events involving the origin of toxin resistance. On the other hand, resistance in non-caecilian amphibians was found to be limited to five origins. Together, the mutations underlying resistance in caecilians constitute a robust signature of positive selection which strongly correlates with elapid presence through both space (sympatry with caecilian-eating elapids) and time (Cenozoic radiation of elapids). Our study demonstrates the extent of convergent evolution that can be expected when a single widespread predatory adaptation triggers parallel evolutionary arms races at a global scale.
Collapse
Affiliation(s)
- Marco Mancuso
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Shabnam Zaman
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Simon T Maddock
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
- School of Life Sciences, University of Wolverhampton, Wulfruna Street, Wolverhampton WV1 1LY, UK
- Island Biodiversity and Conservation Centre, University of Seychelles, Mahé P.O. Box 1348, Seychelles
| | - Rachunliu G Kamei
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
- Amphibians and Reptiles Division, The Field Museum of Natural History, 1400 S Lake Shore Dr., Chicago, IL 60605, USA
| | - David Salazar-Valenzuela
- Centro de Investigación de la Biodiversidad y Cambio Climático (BioCamb) e Ingeniería en Biodiversidad y Recursos Genéticos, Facultad de Ciencias de Medio Ambiente, Universidad Indoamérica, Machala y Sabanilla, Quito EC170301, Ecuador
| | - Mark Wilkinson
- Department of Life Sciences, The Natural History Museum, London SW7 5BD, UK
| | - Kim Roelants
- Amphibian Evolution Lab, Biology Department, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Bryan G Fry
- Venom Evolutionary Lab, School of Biological Sciences, University of Queensland, St. Lucia, QLD 4072, Australia
| |
Collapse
|
4
|
van Thiel J, Khan MA, Wouters RM, Harris RJ, Casewell NR, Fry BG, Kini RM, Mackessy SP, Vonk FJ, Wüster W, Richardson MK. Convergent evolution of toxin resistance in animals. Biol Rev Camb Philos Soc 2022; 97:1823-1843. [PMID: 35580905 PMCID: PMC9543476 DOI: 10.1111/brv.12865] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 04/22/2022] [Accepted: 04/26/2022] [Indexed: 12/17/2022]
Abstract
Convergence is the phenomenon whereby similar phenotypes evolve independently in different lineages. One example is resistance to toxins in animals. Toxins have evolved many times throughout the tree of life. They disrupt molecular and physiological pathways in target species, thereby incapacitating prey or deterring a predator. In response, molecular resistance has evolved in many species exposed to toxins to counteract their harmful effects. Here, we review current knowledge on the convergence of toxin resistance using examples from a wide range of toxin families. We explore the evolutionary processes and molecular adaptations driving toxin resistance. However, resistance adaptations may carry a fitness cost if they disrupt the normal physiology of the resistant animal. Therefore, there is a trade‐off between maintaining a functional molecular target and reducing toxin susceptibility. There are relatively few solutions that satisfy this trade‐off. As a result, we see a small set of molecular adaptations appearing repeatedly in diverse animal lineages, a phenomenon that is consistent with models of deterministic evolution. Convergence may also explain what has been called ‘autoresistance’. This is often thought to have evolved for self‐protection, but we argue instead that it may be a consequence of poisonous animals feeding on toxic prey. Toxin resistance provides a unique and compelling model system for studying the interplay between trophic interactions, selection pressures and the molecular mechanisms underlying evolutionary novelties.
Collapse
Affiliation(s)
- Jory van Thiel
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Muzaffar A Khan
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Roel M Wouters
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| | - Richard J Harris
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, U.K
| | - Bryan G Fry
- Venom Evolution Lab, School of Biological Sciences, University of Queensland, St Lucia, 4072, Australia
| | - R Manjunatha Kini
- Department of Biological Sciences, National University of Singapore, Singapore, 117558, Singapore.,Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,Department of Biochemistry, Medical College of Virginia, Virginia Commonwealth University, Richmond, VA, 23298, U.S.A
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, CO, 80639-0017, U.S.A
| | - Freek J Vonk
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR Leiden, The Netherlands.,Amsterdam Institute of Molecular and Life Sciences, Division of BioAnalytical Chemistry, Department of Chemistry and Pharmaceutical Sciences, Vrije Universiteit Amsterdam, De Boelelaan 1085, 1081HV Amsterdam, The Netherlands
| | - Wolfgang Wüster
- Molecular Ecology and Fisheries Genetics Laboratory, School of Natural Sciences, Bangor University, Bangor, LL57 2UW, U.K
| | - Michael K Richardson
- Institute of Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE Leiden, The Netherlands
| |
Collapse
|
5
|
Chemical Ecology and Predator-Prey Interactions: Understanding the Role of Chemistry on Complex, Trophic Relationships in a Changing World. J Chem Ecol 2021; 47:819-821. [PMID: 34748130 DOI: 10.1007/s10886-021-01328-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 10/25/2021] [Accepted: 10/28/2021] [Indexed: 10/19/2022]
|