1
|
Patel RS, Bhadoriya RJ, Modi KM, Vora MA, Patel MN, Parekh HM. Selective detection of Fe 3+ via fluorescent in real sample using aminoanthraquinone resorcin[4]arene-based receptors with logic gate application. Talanta 2025; 285:127322. [PMID: 39642608 DOI: 10.1016/j.talanta.2024.127322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 11/19/2024] [Accepted: 12/01/2024] [Indexed: 12/09/2024]
Abstract
Resorcin[4]arene based fluorescent sensors RES-AAQ containing eight anthraquinone groups as binding sites, were developed for very accurate and sensitive detection of Fe3+ metal ion. The motivation for this study lies in the need for advanced sensing techniques for precisely identifying Fe3+ ions. Due to its unique redox properties, Fe3+ plays a crucial role in biological processes, environmental remediation, medical diagnostics, and advanced detection methods. The sensors were extensively characterized using FT-IR, 1H NMR, 13C NMR, and ESI-MS techniques. The absorption spectra revealed significant interactions between RES-AAQ and Fe3+ ions. Fluorescence quenching was observed due to Photoinduced electron transfer (PET). The quenching process was systematically analyzed using Stern-Volmer analysis. Each sensor (L1, L2, L3, L4) demonstrated remarkable detection limits for Fe3+ ions (10.51 nM, 10.48 nM, 10.49 nM, 10.47 nM, respectively) along with substantial binding affinities (binding constants: 9.07x109 M-1, 1.19x109 M-1, 1.49x109 M-1 and 1.03x109 M-1 for L1, L2, L3, and L4, respectively). Traditional, Fe3+ detection methods often suffer from limitations such as complexity, lack of sensitivity, or interference from other metal ions. This research offers highly sensitive fluorescent sensors for Fe3+ detection with potential applications in human blood serum and tap water. Molecular docking, DFT studies, and ESI-MS investigation have been employed to gain insights into the binding interactions between the molecules. The low detection limits, high binding affinity, and real-world applicability highlight the significant advantages of developed sensors compared to existing methods. Additionally, a combinatorial logic gate was constructed to facilitate a proper understanding of the working principle of RES-AAQ.
Collapse
Affiliation(s)
- Ronak S Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India
| | - Rubi J Bhadoriya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India
| | - Krunal M Modi
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China; Department of Humanity and Science, School of Engineering, Indrashil University, Mehsana, 382740, Gujarat, India
| | - Manoj A Vora
- Department of Chemical Engineering, Nirma Univesity, Gota, Ahmedabad, 382481, Gujarat, India; Department of Chemistry, Faculty of Science, Gokul Global University, Siddhpur, 384151, Gujarat. India
| | - Mohan N Patel
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India
| | - Hitesh M Parekh
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat. India.
| |
Collapse
|
2
|
Kashyap P, Rajpurohit D, Modi K, Bhasin H, Fernandes P, Mishra D. Benzene Sulfonyl Linked Tetrasubstituted Thiacalix[4]arene for Selective and Sensitive Fluorometric Sensing of Sulfosulfuron along with Theoretical Studies. J Fluoresc 2023; 33:1961-1970. [PMID: 36930343 DOI: 10.1007/s10895-023-03194-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 02/20/2023] [Indexed: 03/18/2023]
Abstract
Herein, we designed two fluorescent tetrasubstituted benzene sulfonyl appended Thiacalix[4]arene receptors named L1 and L2, which sensitively and selectively detect Sulfosulfuron among other herbicides and pesticides. The detection limit (LOD) was found to be 0.21 ppm and 0.35 ppm, and the enhancement constant (Ks) was determined to be 7.07 X 104 M-1 and 5.55 X 104 M-1 for L1 and L2, respectively. Using the non-linear regression method, the association constant was obtained as 2.1 X 104 M-1 and 2.23 X 104 M-1 whereas, the binding ratio was found to be 1:1 for both L1 and L2, respectively. Additionally, the interference studies show the selective nature of receptors for Sulfosulfuron among its sulfonylurea family. To further confirm the interaction mechanism, 1H-NMR spectroscopy, and a computational investigation were carried out, which validates the 1:1 binding ratio. The receptors were found to be recyclable in nature with simple acid-base treatment. This new approach of using supramolecules as fluorescent probes for sensitive and selective detection of herbicides is rare in the literature.
Collapse
Affiliation(s)
- Priyanka Kashyap
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India.
| | - Dushyantsingh Rajpurohit
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Krunal Modi
- Department of Humanity and Science, School of Engineering, Indrashil University, 382740, Mehsana, Gujarat, India.
| | - Hinaly Bhasin
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Patrick Fernandes
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Divya Mishra
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India.
| |
Collapse
|
3
|
Verma N, Sutariya P, Patel T, Shukla M, Pandya A. Tailored calix[4]arene-gold nanoconjugate as a ultra-sensitive immunosensing nanolabel. Biomed Microdevices 2022; 25:1. [PMID: 36449135 DOI: 10.1007/s10544-022-00640-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/27/2022] [Indexed: 12/03/2022]
Abstract
The construction of highly sensitive and specific immunosensing nanolabels have attracted tremendous attention in the development of reliable point-of-care disease diagnostics. However, there are still challenges with traditional immunoassays, such as complicated and time-consuming procedure, the use of enzyme label, non-specificity, and require readers for detection. Therefore, we have designed and developed site-directed antibody-immobilized calix[4]arene-gold nanoconjugate based colorimetric immunosensing nanolabel to offer high sensitivity. The prepared nanolabel enabled oriented binding of the antibodies by providing full accessibility of Fab domain for antigen binding. The improved sensitivity of the developed nanolabel was evaluated using vertical flow immunoassay (VFIA) for detecting C-reactive protein (CRP) with a lower detection limit up to 1 ng/ml. Our developed nanolabel was found to be highly specific, easy, quick, and appropriate for onsite detection. The nanolabel is validated with spiked blood samples which exhibited ~90% recovery having a relative error of ~2%. Furthermore, the nanolabel was also used for screening of human blood real samples which showed relative error of ~0.6%. The developed nanolabel can be utilized as a potential nanolabel for the quantitative detection of various biomolecules in clinical samples.
Collapse
Affiliation(s)
- Nidhi Verma
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Pinkesh Sutariya
- Department of Chemistry, Sardar Patel University, Vallabh Vidyanagar, Gujarat, 388120, India
| | - Tvarit Patel
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Malvika Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Alok Pandya
- Department of Biotechnology and Bioengineering, Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
4
|
Sayin S. A highly selective fluorescence probe for Co2+ or Cu2+ detection based on a new tetraquinoline-substituted calix[4]arene derivative. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
5
|
Panjwani F, Dey S, Kongor A, Kumar A, Panchal M, Modi K, Vora M, Kumar A, Jain VK. Pyrene functionalized oxacalix[4]arene architecture as dual readout sensor for expeditious recognition of cyanide anion. J Fluoresc 2022; 32:1425-1433. [PMID: 35438369 DOI: 10.1007/s10895-022-02924-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/01/2022] [Indexed: 10/18/2022]
Abstract
A pyrene functionalized oxacalix[4]arene architecture (DPOC) was utilized as a fluorescence probe for selective recognition of cyanide ions. The receptor DPOC shows excellent selectivity towards cyanide ion with a red shift of 108 nm in absorption band along with a significant change in colour from light yellow to pink. The fluorescence titration experiments further confirm the lower limit of detection as 1.7µM with no significant influences of competing anions. 1 H-NMR titration experiments support the deprotonation phenomena, as the -NH proton disappears upon successive addition of cyanide ions. The DFT calculation also indicates a certain increment of -NH bond length upon interaction with cyanide ions. The spectral properties as well as colour of DPOC-CN- system may be reversed upon the addition of Ag+/ Cu2+ ions up to 5 consecutive cycles. Moreover, DPOC coated "test strips" were prepared for visual detection of cyanide ions.
Collapse
Affiliation(s)
- Falak Panjwani
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Shuvankar Dey
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Anita Kongor
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Anshu Kumar
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Manthan Panchal
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Krunal Modi
- Faculty of Science, Department of Chemistry, Ganpat University, Kherva Mehsana, Gujarat, India
| | - Manoj Vora
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Ashu Kumar
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India
| | - Vinod Kumar Jain
- Department of Chemistry, School of Sciences, Gujarat University, 380009, Ahmedabad, Gujarat, India.
| |
Collapse
|
6
|
Shaaban IA, Assiri MA, Ali TE, Mohamed TA. Keto-enol tautomerism, spectral (infrared, Raman and NMR) studies and Normal coordinate analysis of 4-Methyl-2-hydroxyquinoline using quantum mechanical calculations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
7
|
Divya D, Thennarasu S. Rotational Isomerization about C−C Single Bond in a Novel ICT Probe Facilitates Naked‐Eye, Colorimetric and Ratiometric Detection of Cobalt in Aqueous Samples**. ChemistrySelect 2021. [DOI: 10.1002/slct.202101089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dhakshinamurthy Divya
- Organic and Bioorganic Chemistry Laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600020 India
| | - Sathiah Thennarasu
- Organic and Bioorganic Chemistry Laboratory CSIR-Central Leather Research Institute, Adyar Chennai 600020 India
| |
Collapse
|
8
|
Fateh F, Yildirim A, Bhatti AA, Yilmaz M. A New Benzothiazin-functionalized Calix[4]arene-based Fluorescent Chemosensor for the Selective Detection of Co 2+ Ion. J Fluoresc 2021; 31:1075-1083. [PMID: 33961196 DOI: 10.1007/s10895-021-02745-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 05/03/2021] [Indexed: 10/21/2022]
Abstract
Calixarenes, which have a great place in supramolecular chemistry, have become the most prominent macrocyclic compounds in synthetic organic chemistry due to their easy synthesis and functionalization. In this study, p-tert-butyl calix[4]arene dihydrazide derivative was synthesized and then reacted with 3-oxo-3,4-dihydro-2 H-benzo[b][1,4] thiazin-2-ylideneacetyl chloride to prepare new calixarene based chromophore compound 4. The structure of the synthesized compound was elucidated by spectroscopic methods such as 1H NMR 13C NMR and FT-IR spectroscopy. Chromogenic and fluorescence properties of compound 4 were evaluated. It was observed from both studies that compound 4 was Co2+ selective and shows fluorescence Switched-off behavior. Stoichiometry, binding constant and the detection limit were calculated. The stoichiometry between compound 4 and Co2+ was found to be 1:1. The binding constant value (K) was calculated as 666.67 M- 1 using Benesi-Hildebrand equation, while the detection limit for Co2+ ion was calculated as 0.0465 µM.
Collapse
Affiliation(s)
- Fatimah Fateh
- Department of Chemistry, Selcuk University, Konya, 42075, Turkey
| | - Ayse Yildirim
- Department of Chemistry, Selcuk University, Konya, 42075, Turkey
| | - Asif Ali Bhatti
- Department of Chemistry, Government College University Hyderabad, Hyderabad, 71000, Pakistan
| | - Mustafa Yilmaz
- Department of Chemistry, Selcuk University, Konya, 42075, Turkey.
| |
Collapse
|
9
|
Sayin S. Synthesis of new anthracene-substituted calix[4]triazacrown-5 as highly sensitive fluorescent chemosensor and extractant against hazardous dichromate anion. LUMINESCENCE 2021; 36:1716-1724. [PMID: 34164899 DOI: 10.1002/bio.4113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 02/01/2023]
Abstract
A new fluorogenic anthracene functionalized calix[4]triazacrown-5 (Ant-AzClx) was successfully synthesized using a simple Schiff's base reaction. The 1 H-NMR, 13 C-NMR, ESI-MS, and elemental analysis techniques were performed to characterize its structure. Excited at 370 nm, Ant-AzClx reveals excimer emission at 418 nm. Therefore, its anion binding properties were investigated against F- , HCO3 - , H2 PO4 - , NO3 - , Cr2 O7 2- , and SO4 2- ions. When hazardous dichromate anion was introduced into medium, the fluorescence intensity of Ant-AzClx was markedly quenched. The binding constant, stoichiometry, the detection limits and Stern-Volmer equation for the complex formed between Ant-AzClx and Cr2 O7 2- ion were determined. Furthermore, the 1 H-NMR technique was also performed to assess the mechanism of the complex (Ant-AzClx@Cr2 O7 2- ). Apart from its excellent fluorescent chemosensor properties for selective and sensitive recognition of Cr2 O7 2- ion, Ant-AzClx was used as an efficient extractant towards dichromate anion. The extraction results indicated that Ant-AzClx exhibited high extraction capability, leading to it being a promising extractant for the removal of dichromate anions from water.
Collapse
Affiliation(s)
- Serkan Sayin
- Department of Environmental Engineering, Giresun University, Giresun, Turkey
| |
Collapse
|
10
|
Sayin S. Synthesis of New Quinoline-Conjugated Calixarene as a Fluorescent Sensor for Selective Determination of Cu 2+ Ion. J Fluoresc 2021; 31:1143-1151. [PMID: 33978882 DOI: 10.1007/s10895-021-02749-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 05/07/2021] [Indexed: 12/27/2022]
Abstract
A novel quinoline-functionalized calix [4] arene derivative (Quin-Calix) has been successfully synthesized at partial cone conformation and duly characterized by using FTIR, 1H-NMR, 13C-NMR, ESI-MS and elemental analysis techniques. Moreover, the cation-binding property of the calix [4] arene derivative (Quin-Calix) has been investigated towards Cu2+, Ba2+, Cd2+, Co2+, Ni2+, Zn2+ and Fe3+ ions, and the recognition event monitored by UV-Vis absorption and fluorescence studies. The results indicated that Quin-Calix displays a remarkable affinity and selectivity only for Cu2+ ion. The binding constant and stoichiometry of the complex formed between Quin-Calix and Cu2+ ion have been also calculated from the fluorescence data. In addition, Stern-Vohmer equation has been used to elucidate the mechanism of quenching.
Collapse
Affiliation(s)
- Serkan Sayin
- Department of Environmental Engineering, Faculty of Engineering, Giresun University, 28200, Giresun, Turkey.
| |
Collapse
|
11
|
Mohan B, Modi K, Patel C, Kumar S, Sharma HK. Synthesis and computational mechanistic studies of copper selective molecular receptor. VIETNAM JOURNAL OF CHEMISTRY 2020. [DOI: 10.1002/vjch.201900161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Brij Mohan
- Department of Chemistry, Kurukshetra University; Kurukshetra-136119 India
| | - Krunal Modi
- J. Heyrovský Institute of Physical chemistry, Academy of Sciences of the Czech Republic; Dolejškova 2155/3, 182 23 Prague 8 Czech Republic
- Department of Chemistry, Faculty of Science, Ganpat University Mehsana-Gozaria Highway; Kherva, Mehsana-384012
| | - Chirag Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Sciences, Gujarat University; Ahmedabad - 380009 Gujarat India
| | - Sandeep Kumar
- Department of Chemical Sciences, Indian Institute of Science Education and Research Mohali; Sector 81, Manauli PO, S.A.S. Nagar Mohali Punjab 140306 India
| | | |
Collapse
|
12
|
Takagiri Y, Ikuta T, Maehashi K. Selective Detection of Cu 2+ Ions by Immobilizing Thiacalix[4]arene on Graphene Field-Effect Transistors. ACS OMEGA 2020; 5:877-881. [PMID: 31956840 PMCID: PMC6964509 DOI: 10.1021/acsomega.9b03821] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 12/12/2019] [Indexed: 05/21/2023]
Abstract
Highly accurate quantitative detection of heavy metals is essential for environmental pollution monitoring and health safety. Here, for selective detection of Cu2+ ions with high sensitivity, thiacalix[4]arene (TCA) immobilized on graphene field-effect transistors (G-FETs) are developed. Our proposed TCA-immobilized G-FETs are successfully used to detect Cu2+ ions at concentrations ranging from 1 μM to 1 mM via changes in their transfer characteristics. Moreover, the measured transfer characteristics clearly shift only when Cu2+ ions are introduced in the buffer solution despite it containing other metal ions, including those of Na+, Mg2+, Ni2+, and Cd2+; this selective detection of Cu2+ ions is attributed to the planar arrangement of TCA on graphene. Therefore, TCA-immobilized G-FETs selectively detect Cu2+ with high sensitivity.
Collapse
Affiliation(s)
- Yuki Takagiri
- Institute of Engineering Tokyo University
of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Takashi Ikuta
- Institute of Engineering Tokyo University
of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Kenzo Maehashi
- Institute of Engineering Tokyo University
of Agriculture and Technology, 2-24-16, Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
13
|
Mohan B, Sharma HK. Synthesis of calix[6]arene and transduction of its furfural derivative as sensor for Hg(II) ions. Inorganica Chim Acta 2019. [DOI: 10.1016/j.ica.2018.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
14
|
Mohan B, Modi K, Patel C, Bhatia P, Kumar P, Kumar A, Sharma HK. Selectivity for La 3+ ion by synthesized 4-((5-methylfuran-2-yl)methylene)hydrazono)methyl)phenol receptor and its spectral analysis. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:581-589. [PMID: 29980059 DOI: 10.1016/j.saa.2018.06.084] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/04/2018] [Accepted: 06/22/2018] [Indexed: 06/08/2023]
Abstract
The functionalized molecules with specific molecular sites appear to be a promising approach for detection of cation in UV-visible and fluorescence spectroscopy. The synthesized receptor 4-((5-methylfuran-2-yl)methylene)hydrazono)methyl)phenol MFMHMP was found selective for La3+ among Ag+, K+, Na+, Be2+, Mg2+, Ca2+, Eu3+, Al3+, La3+, Zr4+, Th4+, UO22+, Fe3+, Fe2+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+ metal ions used as their nitrates by UV-visible spectroscopy and fluorescence spectroscopy. The binding nature of MFMHMP with La3+ ion was analyzed by UV-visible, fluorescence, IR, mass spectroscopy and cyclic voltammetric studies. The stoichiometry was established to be 1:1 by Benesi-Hildebrand, mole-ratio method and method of continuous variation (Job's method) with good association affinity K = 6.245 × 104 M-1. Computational studies and Density functional theory (DFT) calculation gives the proof of electron transfer during excitation and emission. Binding energy of complex through Density Function Theory -62.387 kcal/mol has also indication of strong binding. The electron transfer energy of Higher occupied molecular orbital (HOMO) to Lower unoccupied molecular orbital (LUMO) is about 4.662 eV for MFMHMP+La3+ Complex. Among that all transitions HOMO → LUMO + 8 and HOMO → LUMO + 9 play a key role for the blue shift transition during complexation.
Collapse
Affiliation(s)
- Brij Mohan
- Department of Chemistry, Kurukshetra University Kurukshetra-136119.
| | - Krunal Modi
- J. Heyrovský Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Dolejškova 2155/3, 182 23 Prague 8, Czech Republic
| | - Chirag Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Sciences, Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Pankaj Bhatia
- Department of Chemistry, Kurukshetra University Kurukshetra-136119
| | - Parveen Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra-136119
| | - Ashwani Kumar
- Department of Chemistry, Kurukshetra University Kurukshetra-136119
| | | |
Collapse
|
15
|
Sangai NP, Patel CN, Pandya HA. Ameliorative effects of quercetin against bisphenol A-caused oxidative stress in human erythrocytes: an in vitro and in silico study. Toxicol Res (Camb) 2018; 7:1091-1099. [PMID: 30542603 PMCID: PMC6244173 DOI: 10.1039/c8tx00105g] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/07/2018] [Indexed: 12/29/2022] Open
Abstract
Bisphenol A (BPA) is an endocrine disruptor of xenobiotic type, mainly used for the production of polycarbonate plastic, epoxy resins and non-polymer additives. Because of its wide usages in the environment, the toxic effects of BPA have proved to be harmful to human health. However, its effects on human haemoglobin remain unclear. The affinity between BPA and haemoglobin, as well as erythrocytes, is an important factor in understanding the mechanism of the toxicity of BPA. Flavonoids are strong antioxidants that prevent oxidative stress and Quercetin is a flavonoid found in numerous vegetables and fruits. Therefore, the present investigation was undertaken to investigate whether Quercetin can be used to alleviate the toxic effects of BPA in vitro in human red blood cells (RBC). Venous blood samples were collected from healthy, well-nourished adult volunteers (25-30 years old) by phlebotomy. In a RBC suspension with a cell density of 2 × 104 cell per mL, the concentration of BPA (25-150 µg mL-1) was found to cause an increase in the lipid peroxidation (LPO) and a decrease in the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPX) in human RBC. However, the concurrent addition of BPA (150 µg mL-1) and quercetin (10-50 µg mL-1) lead to significant amelioration. In silico studies gave structural insight into BPA and quercetin to decipher the plausible binding mechanism and molecular level recognition.
Collapse
Affiliation(s)
- Neha P Sangai
- Department of Botany , Bioinformatics and Climate Change Impacts Management , University School of Sciences , Gujarat University , Ahmedabad-380 009 , Gujarat , India .
| | - Chirag N Patel
- Department of Botany , Bioinformatics and Climate Change Impacts Management , University School of Sciences , Gujarat University , Ahmedabad-380 009 , Gujarat , India .
| | - Himanshu A Pandya
- Department of Botany , Bioinformatics and Climate Change Impacts Management , University School of Sciences , Gujarat University , Ahmedabad-380 009 , Gujarat , India .
| |
Collapse
|
16
|
Inoue K, Aikawa S, Sakamaki M, Fukushima Y. Colorimetric Co2+
sensor based on an anionic pyridylazo dye and a cationic polyelectrolyte in aqueous solution. POLYM INT 2018. [DOI: 10.1002/pi.5682] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Koshiro Inoue
- Department of Applied Chemistry, Faculty of Science and Engineering; Toyo University; Saitama Japan
| | - Shunichi Aikawa
- Research Institute of Industrial Technology; Toyo University; Saitama Japan
| | - Masaru Sakamaki
- Department of Applied Chemistry, Faculty of Science and Engineering; Toyo University; Saitama Japan
| | - Yasumasa Fukushima
- Department of Applied Chemistry, Faculty of Science and Engineering; Toyo University; Saitama Japan
| |
Collapse
|
17
|
Mohan B, Modi K, Patel C, Bhatia P, Kumar A, Sharma HK. Design and synthesis of two armed molecular receptor for recognition of Gd3+metal ion and its computational study. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4502] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Brij Mohan
- Department of Chemistry; Kurukshetra University; Kurukshetra 136119 India
| | - Krunal Modi
- J. Heyrovsky Institute of physical Chemistry; Academy of Sciences of the Czech Republic; Dolejškova 2155/3 182 23 Prague 8 Czech Republic
| | - Chirag Patel
- Department of Botany, Bioinformatics and Climate Change Impacts Management, University School of Sciences; Gujarat University; Ahmedabad Gujarat 380009 India
| | - Pankaj Bhatia
- Department of Chemistry; Kurukshetra University; Kurukshetra 136119 India
| | - Ashwani Kumar
- Department of Chemistry; Kurukshetra University; Kurukshetra 136119 India
| | | |
Collapse
|
18
|
|
19
|
Patel CN, Georrge JJ, Modi KM, Narechania MB, Patel DP, Gonzalez FJ, Pandya HA. Pharmacophore-based virtual screening of catechol-o-methyltransferase (COMT) inhibitors to combat Alzheimer's disease. J Biomol Struct Dyn 2017; 36:3938-3957. [PMID: 29281938 DOI: 10.1080/07391102.2017.1404931] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Alzheimer's disease (AD) is one of the most significant neurodegenerative disorders and its symptoms mostly appear in aged people. Catechol-o-methyltransferase (COMT) is one of the known target enzymes responsible for AD. With the use of 23 known inhibitors of COMT, a query has been generated and validated by screening against the database of 1500 decoys to obtain the GH score and enrichment value. The crucial features of the known inhibitors were evaluated by the online ZINC Pharmer to identify new leads from a ZINC database. Five hundred hits were retrieved from ZINC Pharmer and by ADMET (absorption, distribution, metabolism, excretion, and toxicity) filtering by using FAF-Drug-3 and 36 molecules were considered for molecular docking. From the COMT inhibitors, opicapone, fenoldopam, and quercetin were selected, while ZINC63625100_413 ZINC39411941_412, ZINC63234426_254, ZINC63637968_451, and ZINC64019452_303 were chosen for the molecular dynamics simulation analysis having high binding affinity and structural recognition. This study identified the potential COMT inhibitors through pharmacophore-based inhibitor screening leading to a more complete understanding of molecular-level interactions.
Collapse
Affiliation(s)
- Chirag N Patel
- a Department of Botany, Bioinformatics and Climate Change Impacts Management , University School of Sciences, Gujarat University , Ahmedabad 380 009 , Gujarat , India
| | - John J Georrge
- b Department of Bioinformatics , Christ College , Rajkot 360 005 , Gujarat , India
| | - Krunal M Modi
- c J. Heyrovský Institute of Physical Chemistry , Academy of Sciences of the Czech Republic , Dolejškova 2155/3, 182 23, Prague 8 , Czech Republic
| | - Moksha B Narechania
- d Human Genetics Division, Department of Zoology, BMTC and HG , University School of Sciences (USSC), Gujarat University , Ahmedabad 380009 , Gujarat , India
| | - Daxesh P Patel
- e Laboratory of Metabolism, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Rockville , MD , USA
| | - Frank J Gonzalez
- e Laboratory of Metabolism, Center for Cancer Research , National Cancer Institute, National Institutes of Health , Rockville , MD , USA
| | - Himanshu A Pandya
- a Department of Botany, Bioinformatics and Climate Change Impacts Management , University School of Sciences, Gujarat University , Ahmedabad 380 009 , Gujarat , India
| |
Collapse
|
20
|
Mohan B, Modi K, Bhatia P, Sharma HK, Mishra D, Jain VK, Arora LS. An ionic receptor for Zn2+ metal ion using synthesised bis-formylpyrazole calix[4]arene and its computational study. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1415437] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Brij Mohan
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Krunal Modi
- J. Heyrovsky Institute of Physical Chemistry, Academy of Sciences of the Czech Republic, Prague, Czech Republic
| | - Pankaj Bhatia
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - H. K. Sharma
- Department of Chemistry, Kurukshetra University, Kurukshetra, India
| | - Divya Mishra
- Department of Chemistry, University School of Sciences, Gujarat University, Ahmedabad, India
| | - Vinod K. Jain
- Department of Chemistry, University School of Sciences, Gujarat University, Ahmedabad, India
| | | |
Collapse
|
21
|
Nosov RV, Yakimova LS, Stoikov II. Chemoselective acylation of monosubstituted thiacalix[4]arene with di-tert-butyl dicarbonate. RUSS J GEN CHEM+ 2017. [DOI: 10.1134/s1070363217090109] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|