1
|
Wang J, Zhang Y, Guo X, Jia L, Chen X. A bicarboxaminoquinoline-based ratiometric fluorescent sensor for the sequential detection of Zn 2+ and PPi. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 320:124594. [PMID: 38875928 DOI: 10.1016/j.saa.2024.124594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/30/2024] [Accepted: 06/03/2024] [Indexed: 06/16/2024]
Abstract
A new ratiometric fluorescent sensor (LP) based on bicarboxaminoquinoline was designed and synthesized for sequentially recognizing Zn2+ and PPi. In aqueous solution, LP exhibited the ratiometric fluorescence response towards Zn2+, along with the about 4-folds enhancement of fluorescence quantum yield. Subsequently, the LP-Zn2+ complex displayed the fluorescence recovery upon adding PPi through the displacement strategy. And the LODs of LP and its Zn2+ complex for sensing Zn2+ and PPi were found to be 15 nM and 5.5 nM, respectively. Notably, the reversibility of LP for sequentially sensing Zn2+ and PPi had been employed to construct the INHIBIT logic gate. Moreover, LP and its Zn2+ complex had been successfully utilized for the detection of Zn2+ and PPi in two real water samples and cells imaging.
Collapse
Affiliation(s)
- Jinping Wang
- College of Chemistry and Chemical Engineering, Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Yu Zhang
- College of Chemistry and Chemical Engineering, Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China.
| | - Xiangfeng Guo
- College of Chemistry, Guangdong University of Petrochemical Technology, Guangdong, Maoming, 525000, China.
| | - Lihua Jia
- College of Chemistry and Chemical Engineering, Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| | - Xiaoshuang Chen
- College of Chemistry and Chemical Engineering, Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
2
|
Bumagina NA, Ksenofontov AA, Antina EV, Berezin MB. The new role of dipyrromethene chemosensor for absorbance-ratiometic and fluorescence "turn-on" sensing Zn 2+ ions in water-organic solutions and real water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 307:123663. [PMID: 37995649 DOI: 10.1016/j.saa.2023.123663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 11/07/2023] [Accepted: 11/16/2023] [Indexed: 11/25/2023]
Abstract
This study presents a dipyrromethene-based sensitive and selective probe for Zn2+ ions detection in aqueous and water-organic media. The probe demonstrates absorbance-ratiometric and "off-on" fluorescent sensing for Zn2+ in a DMSO/H2O (9:1, v/v) mixture. The 3,3',4,4',5,5'-hexamethyl-2,2'-dipyrromethene (HL), similar to its analogs, exhibits weak fluorescence (with a quantum yield of less than 0.001). However, upon the presence of Zn2+ ions in the sensor HL solution, there is a remarkable increase (up to 200-fold) in fluorescence intensity due to the formation of a stable intramolecular chelate complex [ZnL2]. This complex formation induces a significant hyperchromic effect and a red shift (57 nm) in the characteristic absorption bands. The sensing mechanism of the probe towards Zn2+ ions was thoroughly investigated through absorbance and fluorescent titrations, molar ratio plots, 1H NMR, and DFT/TDDFT studies. The fluorescence response exhibited a strong linear relationship with Zn2+ concentration within the range of 0 to 5.7 × 10-6 mol/L. The detection limit (LOD) and limit of quantitation (LoQ) for Zn2+ were determined as 2 × 10-8 mol/L and 6.6 × 10-8 mol/L, respectively. Moreover, the probe demonstrated high selectivity for Zn2+ ions over other metal ions (Na+, Mg2+, Al3+, Cr3+, Mn2+, Fe3+, Co2+, Ni2+, Cu2+, Pd2+, Cd2+, Hg2+, Pb2+). Test systems in the form of test-strips and cotton-pads were developed based on the dipyrromethene sensor for rapid "naked-eye" detection of zinc ions in water. The sensor was successfully applied for detecting Zn2+ ions in real water samples.
Collapse
Affiliation(s)
- Natalia A Bumagina
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya St, 153045 Ivanovo, Russian Federation.
| | - Alexander A Ksenofontov
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya St, 153045 Ivanovo, Russian Federation.
| | - Elena V Antina
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya St, 153045 Ivanovo, Russian Federation.
| | - Mikhail B Berezin
- G.A. Krestov Institute of Solution Chemistry of Russian Academy of Sciences, 1 Akademicheskaya St, 153045 Ivanovo, Russian Federation.
| |
Collapse
|
3
|
Liu X, Zhang H, Zhang Y, Wang Y. Elaborating the mechanism of a highly selective fluorescent ‘turn-on’ probe to detect the group IIIA ions: a detailed time-dependent density functional theory study. Theor Chem Acc 2022. [DOI: 10.1007/s00214-022-02892-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
4
|
Puji Pamungkas KK, Maruyama T, Murai T. 5- N-Arylaminothiazoles with pyridyl groups and their first-row transition metal complexes: synthesis, photophysical properties, and Zn sensing. RSC Adv 2022; 12:14698-14706. [PMID: 35702202 PMCID: PMC9109715 DOI: 10.1039/d2ra01694j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 05/09/2022] [Indexed: 12/02/2022] Open
Abstract
A series of 5-N-arylaminothiazoles were synthesized with facile diversity-oriented synthesis from readily available starting materials via the reaction of thioamide dianions and thioformamides. The introduction of various substituents at the 2-position of a thiazole ring (i.e., 2-pyridyl, 4-methylpyridyl, and phenyl groups) and on the nitrogen atom (i.e., p-tolyl and phenyl groups) significantly influenced the absorption and emission spectra of the isolated compounds. X-ray analysis confirmed that the substituents at the amino site were twisted from a thiazole ring, while the formation of its nickel complex showed dinuclear metal complexes bridged with chlorine atoms. Moreover, the formation of zinc-thiazole complexes showed enhanced emission properties in solution and noticeable emission in a solid state. In addition, thiazole-bridged dypyrromethene type ligands showed high selectivity toward Zn+2, which make them good candidates for zinc sensing.
Collapse
Affiliation(s)
- Khurnia Krisna Puji Pamungkas
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University Yanagido Gifu 501-1193 Japan
| | - Toshifumi Maruyama
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University Yanagido Gifu 501-1193 Japan
| | - Toshiaki Murai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University Yanagido Gifu 501-1193 Japan
| |
Collapse
|
5
|
Theoretical investigation and reconsideration of intramolecular proton-transfer-induced the twisted charge-transfer for the fluorescent sensor to detect the aluminum ion. Struct Chem 2022. [DOI: 10.1007/s11224-022-01941-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
6
|
Taş H, Adams J, Namyslo JC, Schmidt A. Zn 2+ detection of a benzimidazole 8-aminoquinoline fluorescent sensor by inhibited tautomerization. RSC Adv 2021; 11:36450-36458. [PMID: 35494348 PMCID: PMC9043439 DOI: 10.1039/d1ra05591g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 11/03/2021] [Indexed: 11/21/2022] Open
Abstract
A new fluorescent chemosensor based on 8-aminoquinoline L1 bearing a benzimidazole moiety was synthesized, which exists as two predominant tautomers L1A and L1B in diluted DMSO-d6 solution. Among various metal ions, L1 showed a highly selective and sensitive turn-on fluorescence response to the presence of Zn2+ ions in methanol. The detection limit for Zn2+ by L1 was calculated to be 1.76 × 10-7 M. The 1 : 1 complexation ratio of the L1-Zn complex was confirmed through Job plot measurements. Complexation studies were performed by FT-IR, NMR and HR-ESI MS measurements and DFT calculations. With the gained insight, it was possible to successfully apply L1 in water sample analysis.
Collapse
Affiliation(s)
- Harun Taş
- Clausthal University of Technology, Institute of Organic Chemistry Leibnizstrasse 6 D-38678 Clausthal-Zellerfeld Germany
| | - Jörg Adams
- Clausthal University of Technology, Institute of Physical Chemistry Arnold-Sommerfeld-Strasse 4 D-38678 Clausthal-Zellerfeld Germany
| | - Jan C Namyslo
- Clausthal University of Technology, Institute of Organic Chemistry Leibnizstrasse 6 D-38678 Clausthal-Zellerfeld Germany
| | - Andreas Schmidt
- Clausthal University of Technology, Institute of Organic Chemistry Leibnizstrasse 6 D-38678 Clausthal-Zellerfeld Germany
| |
Collapse
|
7
|
All Silica Micro-Fluidic Flow Injection Sensor System for Colorimetric Chemical Sensing. SENSORS 2021; 21:s21124082. [PMID: 34198500 PMCID: PMC8231821 DOI: 10.3390/s21124082] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/22/2022]
Abstract
This paper presents a miniature, all-silica, flow-injection sensor. The sensor consists of an optical fiber-coupled microcell for spectral absorption measurements and a microfluidic reagent injection system. The proposed sensor operates in back reflection mode and, with its compact dimensions, (no more than 200 µm in diameter) enables operation in small spaces and at very low flow rates of analyte and reagent, thus allowing for on-line or in-line colorimetric chemical sensing.
Collapse
|
8
|
Musib D, Raza MK, Devi SS, Roy M. A reversible, benzothiazole-based “Turn-on” fluorescence sensor for selective detection of Zn2+ ions in vitro. J CHEM SCI 2020. [DOI: 10.1007/s12039-020-1745-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Budri M, Naik G, Patil S, Kadolkar P, Gudasi K, Inamdar S. A novel switch on and reversible optical sensor as an efficient, selective receptor for Zn(II) ion and its biological application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 224:117462. [PMID: 31430645 DOI: 10.1016/j.saa.2019.117462] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/03/2019] [Accepted: 08/08/2019] [Indexed: 06/10/2023]
Abstract
In the present study, a promising optical sensor (TR) was designed, synthesized, characterized and its chemosensing mechanism has been explored through 1H NMR, ESI-MS, UV-Vis absorption and emission spectral studies. This compound exhibits a drastic change in its optical properties when treated with Zn2+, whereas other metal ions do not respond. This provides a naked eye detection for Zn2+ ion. In methanolic medium, Zn2+ ion induces strong fluorescence in TR with large Stokes shifts up to ∼132 nm. A 5-fold increase in fluorescence intensity of TR in presence Zn2+ ion is due to inhibition of ESIPT (Excited State Intramolecular Proton Transfer) and -C=N isomerization with large increase in the ICT (Intramolecular Charge Transfer) character of TR in the excited state. The Job's plot and BH plots reveal the formation of 1: 1 stoichiometry with an estimated binding constant of 3.9 × 107 M-1. The detection limit of TR was found to be 3.85 nM. The TR could be regenerated by adding EDTA solution to the complex formed during interaction. The pH studies indicate that TR could render pH dependent fluorescence measurements in a live physiological environment. Computational technique was used to optimize the structures and the theoretical results are correlated with the experimental results. The possible utilization of TR as bio-imaging fluorescent sensor with 98.57% cell viability to detect Zn2+ in HeLa cells was also explored by fluorescent cell imager.
Collapse
Affiliation(s)
- Mahantesh Budri
- Department of Chemistry, Karnatak University, Dharwad 580003, India
| | - Ganesh Naik
- Department of Chemistry, Karnatak University, Dharwad 580003, India
| | - Shivaraj Patil
- Department of Physics, Karnatak University, Dharwad 580003, India
| | | | - Kalagouda Gudasi
- Department of Chemistry, Karnatak University, Dharwad 580003, India.
| | - Sanjeev Inamdar
- Department of Physics, Karnatak University, Dharwad 580003, India
| |
Collapse
|
10
|
Xu H, Chen W, Zhang W, Ju L, Lu H. A selective purine-based fluorescent chemosensor for the “naked-eye” detection of zinc ions (Zn2+): applications in live cell imaging and test strips. NEW J CHEM 2020. [DOI: 10.1039/d0nj02687e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this work, a novel purine based probe PTAHN was successfully designed and synthesized. PTAHN displayed high selectivity towards Zn2+via turn-on fluorescence. What's more, PTAHN can be proficiently employed for imaging Zn2+ in living cells.
Collapse
Affiliation(s)
- Haiyan Xu
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Wei Chen
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Weixia Zhang
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Lixin Ju
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| | - Hongfei Lu
- School of Environmental and Chemical Engineering
- Jiangsu University of Science and Technology
- Zhenjiang
- China
| |
Collapse
|
11
|
Xu Y, Wang H, Zhao J, Yang X, Pei M, Zhang G, Zhang Y, Lin L. A simple fluorescent schiff base for sequential detection of Zn2+ and PPi based on imidazo[2,1-b]thiazole. J Photochem Photobiol A Chem 2019. [DOI: 10.1016/j.jphotochem.2019.112026] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
12
|
Budri M, Chimmalagi G, Naik G, Patil S, Gudasi K, Inamdar S. A Novel Switch on Optical Probe for Selective Sensing of Zn (II) Ion in Acetonitrile Medium: Spectroscopic and Computational Studies. J Fluoresc 2019; 29:1065-1077. [PMID: 31402431 DOI: 10.1007/s10895-019-02425-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 07/29/2019] [Indexed: 01/10/2023]
Affiliation(s)
- Mahantesh Budri
- Department of Chemistry, Karnatak University, Dharwad, 580003, India
| | - Geeta Chimmalagi
- Department of Chemistry, Karnatak University, Dharwad, 580003, India
| | - Ganesh Naik
- Department of Chemistry, Karnatak University, Dharwad, 580003, India
| | - Shivaraj Patil
- Department of Physics, Karnatak University, Dharwad, 580003, India
| | - Kalagouda Gudasi
- Department of Chemistry, Karnatak University, Dharwad, 580003, India.
| | - Sanjeev Inamdar
- Department of Physics, Karnatak University, Dharwad, 580003, India
| |
Collapse
|
13
|
Budri M, Kadolkar P, Gudasi K, Inamdar S. A highly selective and sensitive turn on optical probe as a promising molecular platform for rapid detection of Zn (II) ion in acetonitrile medium: Experimental and theoretical investigations. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.03.097] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Yun JY, Kim A, Hwang SM, Yun D, Lee H, Kim KT, Kim C. A Novel Benzimidazole-Based Fluorescence Probe for Detecting Zinc Ion in Aqueous Solution and Zebrafish. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180390] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jin Yeong Yun
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Ahran Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Suh Mi Hwang
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Dongju Yun
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Hyojin Lee
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Ki-Tae Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul 01811, Korea
| | - Cheal Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Korea
| |
Collapse
|
15
|
Yun JY, Chae JB, Kim M, Lim MH, Kim C. A multiple target chemosensor for the sequential fluorescence detection of Zn2+ and S2− and the colorimetric detection of Fe3+/2+ in aqueous media and living cells. Photochem Photobiol Sci 2019; 18:166-176. [DOI: 10.1039/c8pp00408k] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A novel multiple target sensor DHIC was developed for the fluorescence detection of Zn2+ and S2− and colorimetric detection of Fe3+/2+. Moreover, DHIC could image sequentially Zn2+ and S2− in living cells.
Collapse
Affiliation(s)
- Jin Yeong Yun
- Depart. of Fine Chem
- SNUT (Seoul National Univ. of Sci. and Tech.)
- Seoul 01188
- Republic of Korea
| | - Ju Byeong Chae
- Depart. of Fine Chem
- SNUT (Seoul National Univ. of Sci. and Tech.)
- Seoul 01188
- Republic of Korea
| | - Mingeun Kim
- Department of Chemistry
- Ulsan National Institute of Science and Technology (UNIST)
- Ulsan 44919
- Republic of Korea
- Department of Chemistry
| | - Mi Hee Lim
- Department of Chemistry
- Korea Advanced Institute of Science and Technology (KAIST)
- Daejeon 34141
- Republic of Korea
| | - Cheal Kim
- Depart. of Fine Chem
- SNUT (Seoul National Univ. of Sci. and Tech.)
- Seoul 01188
- Republic of Korea
| |
Collapse
|
16
|
Fluorescent detection of Zn(II) and In(III) and colorimetric detection of Cu(II) and Co(II) by a versatile chemosensor. J IND ENG CHEM 2018. [DOI: 10.1016/j.jiec.2018.04.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Diao H, Guo L, Liu W, Feng L. A novel polymer probe for Zn(II) detection with ratiometric fluorescence signal. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 196:274-280. [PMID: 29466780 DOI: 10.1016/j.saa.2018.02.036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/05/2018] [Accepted: 02/10/2018] [Indexed: 06/08/2023]
Abstract
A conjugated polymer probe comprised of fluorene, quinolone and benzothiazole units was designed and synthesized by the Suzuki coupling reaction. Through the studies of photophysical and thermal properties, the polymer displays blue-emitting feature and good thermal stability. A ratiometric fluorescence signal of the probe for Zn(II) was observed in ethanol with a new emission peak at 555 nm. The probe possesses a high selectivity and sensitivity for Zn(II) during familiar metal ions in ethanol. The detection limit of the probe for Zn (II) is up to 10-8 mol/L. The electron distributions of the polymer before and after bonding with Zn (II) were investigated by the Gaussian 09 software, which agreed with the experimental results. Noticeably, based on the color property of the probe with Zn(II), a series of color test paper were developed for visual detecting Zn(II) ions. This work helps to provide a platform or pattern for the development of polymer fluorescence probe in the chemosensor field.
Collapse
Affiliation(s)
- Haipeng Diao
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Lixia Guo
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China
| | - Wen Liu
- School of Basic Medical Sciences, Shanxi Medical University, Taiyuan 030001, PR China
| | - Liheng Feng
- School of Chemistry and Chemical Engineering, Shanxi University, Taiyuan, 030006, PR China.
| |
Collapse
|
18
|
Wang Y, Ma ZY, Zhang DL, Deng JL, Chen X, Xie CZ, Qiao X, Li QZ, Xu JY. Highly selective and sensitive turn-on fluorescent sensor for detection of Al 3+ based on quinoline-base Schiff base. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 195:157-164. [PMID: 29414573 DOI: 10.1016/j.saa.2018.01.049] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 12/21/2017] [Accepted: 01/16/2018] [Indexed: 05/06/2023]
Abstract
A new aluminum ion fluorescent probe (4-(diethylamino)-2-hydroxybenzylidene)isoquinoline-1-carbohydrazide (HL1) has been conveniently synthesized and characterized. HL1 exhibited a highly selective and pronounced enhancement for Al3+ in the fluorescence emission over other common cations by forming a 2:1 complex, with a recognition mechanism based on excited-state intramolecular proton transfer (ESIPT) and intramolecular charge transfer (ICT). The strong fluorescent emission can be observed even at ppm level concentration of the probe in the presence of Al3+ with 41 fold intensity enhancement at 545 nm. HL1 displays good linear relationship with Al3+ in the low concentration and the limit of detection is 8.08 × 10-8 mol/L. Similar molecules with different substituents on salicylaldehyde phenyl ring were synthesized for studying the structure-activity relationship. Density-functional theory (DFT) calculations are in agreement with the proposed mechanism. It is confirmed that HL1 could be used to detect Al3+ ions in real sample by fluorescence spectrometry and Al3+ ions in cells by bioimaging.
Collapse
Affiliation(s)
- Yang Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Zhong-Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - De-Long Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Jia-Li Deng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Xiong Chen
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China; Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, PR China.
| | - Xin Qiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China
| | - Qing-Zhong Li
- The Laboratory of Theoretical and Computational Chemistry, School of Chemistry and Chemical Engineering, Yantai University, Yantai 264005, PR China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin 300070, PR China.
| |
Collapse
|