• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4903502)   Today's Articles (557)
For: Vaishanav SK, Korram J, Pradhan P, Chandraker K, Nagwanshi R, Ghosh KK, Satnami ML. Green Luminescent CdTe Quantum Dot Based Fluorescence Nano-Sensor for Sensitive Detection of Arsenic (III). J Fluoresc 2016;27:781-789. [PMID: 28032282 DOI: 10.1007/s10895-016-2011-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/20/2016] [Indexed: 11/24/2022]
Number Cited by Other Article(s)
1
Ghanbarlou S, Kahforoushan D, Abdollahi H, Zarrintaj P, Alomar A, Villanueva C, Davachi SM. Advances in quantum dot-based fluorescence sensors for environmental and biomedical detection. Talanta 2025;294:128176. [PMID: 40262347 DOI: 10.1016/j.talanta.2025.128176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 04/14/2025] [Accepted: 04/16/2025] [Indexed: 04/24/2025]
2
Yang W, Ye L, Wu Y, Wang X, Ye S, Deng Y, Huang K, Luo H, Zhang J, Zheng C. Arsenic field test kits based on solid-phase fluorescence filter effect induced by silver nanoparticle formation. JOURNAL OF HAZARDOUS MATERIALS 2024;470:134038. [PMID: 38552392 DOI: 10.1016/j.jhazmat.2024.134038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 03/02/2024] [Accepted: 03/12/2024] [Indexed: 04/25/2024]
3
Mohagheghpour E, Farzin L, Sadjadi S. Alendronate-Functionalized Graphene Quantum Dots as an Effective Fluorescent Sensing Platform for Arsenic Ion Detection. Biol Trace Elem Res 2024;202:2391-2401. [PMID: 37597070 DOI: 10.1007/s12011-023-03819-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
4
Cruz B, Balderas I, Gómez I. Aqueous synthesis of red fluorescent l-cysteine functionalized Cu2S quantum dots with potential application as an As(iii) aptasensor. RSC Adv 2023;13:18946-18952. [PMID: 37362604 PMCID: PMC10286222 DOI: 10.1039/d3ra02886k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]  Open
5
Ghorbanian N, Kajinehbaf T, Alizadeh N. Picomolar detection of As(III) ions by using hydrothermal synthesis of functionalized polymer dots as a highly selective fluorescence sensor. Talanta 2023;261:124667. [PMID: 37207511 DOI: 10.1016/j.talanta.2023.124667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/08/2023] [Accepted: 05/11/2023] [Indexed: 05/21/2023]
6
Somnath, Ahmad M, Siddiqui KA. Ratiometric luminescent sensing of a biomarker for sugar consumption in an aqueous medium using a Cu(II) coordination polymer. Dalton Trans 2023;52:3643-3660. [PMID: 36867431 DOI: 10.1039/d3dt00022b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
7
Gahlaut A, Kharewal T, Verma N, Hooda V. Cell-free arsenic biosensors with applied nanomaterials: critical analysis. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022;194:525. [PMID: 35737169 DOI: 10.1007/s10661-022-10127-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 05/17/2022] [Indexed: 06/15/2023]
8
Mohanta D, Gupta SV, Gadore V, Paul S, Ahmaruzzaman M. SnO2 Nanoparticles-CeO2 Nanorods Enriched with Oxygen Vacancies for Bifunctional Sensing Performances toward Toxic CO Gas and Arsenate Ions. ACS OMEGA 2022;7:20357-20368. [PMID: 35721907 PMCID: PMC9201895 DOI: 10.1021/acsomega.2c02414] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 05/16/2022] [Indexed: 05/27/2023]
9
Adegoke O, Daeid NN. Alloyed AuFeZnSe quantum dots@gold nanorod nanocomposite as an ultrasensitive and selective plasmon-amplified fluorescence OFF-ON aptasensor for arsenic (III). J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113755] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
10
A covalent organic framework containing bipyridine groups as a fluorescent chemical probe for the ultrasensitive detection of arsenic (III). J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
11
Naseh MF, Singh N, Ansari JR, Kumar A, Sarkar T, Datta A. L-cysteine functionalized graphene quantum dots for sub-ppb detection of As (III). NANOTECHNOLOGY 2021;33:065504. [PMID: 34724651 DOI: 10.1088/1361-6528/ac353b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
12
Ming T, Cheng Y, Xing Y, Luo J, Mao G, Liu J, Sun S, Kong F, Jin H, Cai X. Electrochemical Microfluidic Paper-Based Aptasensor Platform Based on a Biotin-Streptavidin System for Label-Free Detection of Biomarkers. ACS APPLIED MATERIALS & INTERFACES 2021;13:46317-46324. [PMID: 34546713 DOI: 10.1021/acsami.1c12716] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
13
Rahimi F, Anbia M, Farahi M. Aqueous synthesis of L- methionine capped PbS quantum dots for sensitive detection and quantification of arsenic (III). J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113361] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
14
Wang H, Zhang Z, Chen C, Liang A, Jiang Z. Fullerene carbon dot catalytic amplification-aptamer assay platform for ultratrace As+3 utilizing SERS/RRS/Abs trifunctional Au nanoprobes. JOURNAL OF HAZARDOUS MATERIALS 2021;403:123633. [PMID: 32827860 DOI: 10.1016/j.jhazmat.2020.123633] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 07/05/2020] [Accepted: 07/30/2020] [Indexed: 06/11/2023]
15
Thakkar S, Dumée LF, Gupta M, Singh BR, Yang W. Nano-Enabled sensors for detection of arsenic in water. WATER RESEARCH 2021;188:116538. [PMID: 33125993 DOI: 10.1016/j.watres.2020.116538] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/13/2020] [Accepted: 10/18/2020] [Indexed: 05/10/2023]
16
Ming T, Luo J, Liu J, Sun S, Xing Y, Wang H, Xiao G, Deng Y, Cheng Y, Yang Z, Jin H, Cai X. Paper-based microfluidic aptasensors. Biosens Bioelectron 2020;170:112649. [PMID: 33022516 DOI: 10.1016/j.bios.2020.112649] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
17
Gupta SK, Tapadia K, Sharma A. Selective Fluorometric Analysis of Hg(II) in Industrial Waste Water Samples. J Fluoresc 2020;30:1375-1381. [PMID: 32996105 DOI: 10.1007/s10895-020-02627-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/24/2020] [Indexed: 11/29/2022]
18
Roy S, Bardhan S, Chanda DK, Roy J, Mondal D, Das S. In Situ-Grown Cdot-Wrapped Boehmite Nanoparticles for Cr(VI) Sensing in Wastewater and a Theoretical Probe for Chromium-Induced Carcinogen Detection. ACS APPLIED MATERIALS & INTERFACES 2020;12:43833-43843. [PMID: 32894015 DOI: 10.1021/acsami.0c13433] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
19
Wu Y, Liu Y, Liu H, Liu B, Chen W, Xu L, Liu J. Ion-mediated self-assembly of Cys-capped quantum dots for fluorescence detection of As(iii) in water. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020;12:4229-4234. [PMID: 32820295 DOI: 10.1039/d0ay01144d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
20
Thepmanee O, Prapainop K, Noppha O, Rattanawimanwong N, Siangproh W, Chailapakul O, Songsrirote K. A simple paper-based approach for arsenic determination in water using hydride generation coupled with mercaptosuccinic-acid capped CdTe quantum dots. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020;12:2718-2726. [PMID: 32930303 DOI: 10.1039/d0ay00273a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
21
Duhan S, Sahoo K, Singh SK, Kumar M. Development of ultrasensitive and As(iii)-selective upconverting (NaYF4:Yb3+,Er3+) platform. Analyst 2020;145:6378-6387. [PMID: 32729595 DOI: 10.1039/d0an00717j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
22
Mao K, Zhang H, Wang Z, Cao H, Zhang K, Li X, Yang Z. Nanomaterial-based aptamer sensors for arsenic detection. Biosens Bioelectron 2019;148:111785. [PMID: 31689596 DOI: 10.1016/j.bios.2019.111785] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Revised: 10/02/2019] [Accepted: 10/12/2019] [Indexed: 02/06/2023]
23
Wang C, Fu H, Wang P, Wang C. Highly sensitive and selective detect of p ‐arsanilic acid with a new water‐stable europium metal–organic framework. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.5021] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
24
Kini S, Kulkarni SD, Ganiga V, T.K. N, Chidangil S. Dual functionalized, stable and water dispersible CdTe quantum dots: Facile, one-pot aqueous synthesis, optical tuning and energy transfer applications. MATERIALS RESEARCH BULLETIN 2019;110:57-66. [DOI: 10.1016/j.materresbull.2018.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2023]
25
Ranolazine-Functionalized Copper Nanoparticles as a Colorimetric Sensor for Trace Level Detection of As3. NANOMATERIALS 2019;9:nano9010083. [PMID: 30634575 PMCID: PMC6359034 DOI: 10.3390/nano9010083] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/03/2019] [Accepted: 01/04/2019] [Indexed: 11/17/2022]
26
Progress in the materials for optical detection of arsenic in water. Trends Analyt Chem 2019. [DOI: 10.1016/j.trac.2018.10.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
27
Radhakrishnan K, Panneerselvam P. Green synthesis of surface-passivated carbon dots from the prickly pear cactus as a fluorescent probe for the dual detection of arsenic(iii) and hypochlorite ions from drinking water. RSC Adv 2018;8:30455-30467. [PMID: 35546865 PMCID: PMC9085518 DOI: 10.1039/c8ra05861j] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 08/12/2018] [Indexed: 11/21/2022]  Open
PrevPage 1 of 1 1Next
© 2004-2025 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA