1
|
Li T, Li Y, Mao J. Transition metal supported UiO-67 materials and their applications in catalysis. Front Chem 2025; 13:1596868. [PMID: 40520677 PMCID: PMC12163014 DOI: 10.3389/fchem.2025.1596868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Accepted: 05/20/2025] [Indexed: 06/18/2025] Open
Abstract
Metal-organic frameworks (MOFs) have emerged as promising platforms for heterogeneous catalysis due to their tunable structures and high specific surface areas. Results indicate that modified composite MOFs not only exhibit superior water stability but also demonstrate broader applicability in catalysis, such as Fenton-like oxidation, Morita-Baylis-Hillman reactions, ethylene dimerization, and various photoelectrochemical processes. Among them, UiO-67, a zirconium-based MOF, has attracted extensive attention for its exceptional chemical stability, high catalytic activity, and well-defined microporous structure. This review introduces composites formed by different types of single and multi-metal loadings on UiO-67 and their demonstrated catalytic performance. It emphasizes the structure-performance relationships of these composites, highlighting how metal loading and spatial distribution influence their reactivity and stability. The current application status and existing challenges of UiO-67 series materials and their derivatives in catalysis are systematically reviewed. By integrating experimental results and mechanistic insights, this work underscores the transformative potential of UiO-67 series materials in meeting the demands of sustainable catalysis.
Collapse
Affiliation(s)
- Tingting Li
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery system, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Yan Li
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery system, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Jingxin Mao
- Chongqing Key Laboratory of High Active Traditional Chinese Drug Delivery system, Chongqing Medical and Pharmaceutical College, Chongqing, China
- College of Pharmaceutical Sciences, Southwest University, Chongqing, China
| |
Collapse
|
2
|
Gong D, Zhu W, Wu M, Chen C, Chen X, Ye J, He M, Zhao X, Fu Q. A chitosan/MOF hybrid monolith with improved stability and enhanced adsorption performances via a pre-frozen crosslinking route. ENVIRONMENTAL RESEARCH 2025; 271:121095. [PMID: 39947375 DOI: 10.1016/j.envres.2025.121095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/20/2025] [Accepted: 02/09/2025] [Indexed: 02/19/2025]
Abstract
In wastewater remediation by adsorption, three-dimensional porous MOF (metal-organic frame)/polymer hybrid monoliths have been demonstrated to be promising absorbents with effective adsorption and recovery capacities. However, MOF/polymer monoliths often suffer from obvious decrease of porous structures due to large shrinkage during dry at room temperature, weakening the accessibility of active sites for adsorption. Here, a so-called pre-frozen crosslinking process is employed for fabrication of a chitosan/UiO-66 monolith, of which shrinkage is restrained markedly during drying in the air, and the shape of the monolith can be kept intact in 6.3 M acetic acid (CH3COOH), deionized water and 1 M sodium hydroxide (NaOH) for 60 days. Furthermore, the monolith achieves an adsorption capacity of 55.50 mg g-1 for methylchlorophenoxypropionic acid (MCPP) from its aqueous solution, increasing by 55.6% compared with UiO-66 particles, and the maximum adsorption capacity is 256.41 mg g-1.
Collapse
Affiliation(s)
- Die Gong
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Wenli Zhu
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Mingzhu Wu
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Chao Chen
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Xuedan Chen
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; Key Laboratory of Material Corrosion and Protection of Sichuan Province, Zigong, 643000, China
| | - Jiankang Ye
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Maozheng He
- Sichuan Huayou Zhonglan Energy Co., Ltd., Bazhong, 636475, China
| | - Xin Zhao
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China
| | - Qingshan Fu
- College of Material Science and Engineering, Sichuan University of Science and Engineering, Zigong, 643000, China; Key Laboratory of Material Corrosion and Protection of Sichuan Province, Zigong, 643000, China.
| |
Collapse
|
3
|
Ren S, Wang F, Gao H, Han X, Zhang T, Yuan Y, Zhou Z. Recent Progress and Future Prospects of Laccase Immobilization on MOF Supports for Industrial Applications. Appl Biochem Biotechnol 2024; 196:1669-1684. [PMID: 37378720 DOI: 10.1007/s12010-023-04607-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2023] [Indexed: 06/29/2023]
Abstract
Laccase is a multicopper oxidoreductase enzyme that can oxidize organics such as phenolic compounds. Laccases appear to be unstable at room temperature, and their conformation often changes in a strongly acidic or alkaline environment, making them less effective. Therefore, rationally linking enzymes with supports can effectively improve the stability and reusability of native enzymes and add important industrial value. However, in the process of immobilization, many factors may lead to a decrease in enzymatic activity. Therefore, the selection of a suitable support can ensure the activity and economic utilization of immobilized catalysts. Metal-organic frameworks (MOFs) are porous and simple hybrid support materials. Moreover, the characteristics of the metal ion ligand of MOFs can enable a potential synergistic effect with the metal ions of the active center of metalloenzymes, enhancing the catalytic activity of such enzymes. Therefore, in addition to summarizing the biological characteristics and enzymatic properties of laccase, this article reviews laccase immobilization using MOF supports, as well as the application prospects of immobilized laccase in many fields.
Collapse
Affiliation(s)
- Sizhu Ren
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang, 065000, Hebei Province, People's Republic of China
- Edible and Medicinal Fungi Research and Development Center of Hebei Universities, Langfang, 065000, Hebei Province, People's Republic of China
| | - Fangfang Wang
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Hui Gao
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Xiaoling Han
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Tong Zhang
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China
| | - Yanlin Yuan
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China.
| | - Zhiguo Zhou
- College of Life Sciences, Langfang Normal University, No 100, Aimin West Road, Langfang, Hebei Province, 065000, People's Republic of China.
- Technical Innovation Center for Utilization of Edible and Medicinal Fungi in Hebei Province, Langfang, 065000, Hebei Province, People's Republic of China.
- Edible and Medicinal Fungi Research and Development Center of Hebei Universities, Langfang, 065000, Hebei Province, People's Republic of China.
| |
Collapse
|
4
|
Zhou Y, Wang J, Zhao Q, Cai H, Zhang H. Selective Adsorption and Removal of Congo Red Based on Ethylenediamine Functionalized Mesoporous Silica. ChemistrySelect 2022. [DOI: 10.1002/slct.202203280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yunpeng Zhou
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China (J. Wang
| | - Jing Wang
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China (J. Wang
| | - Qian Zhao
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China (J. Wang
| | - Honghui Cai
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China (J. Wang
| | - Hao Zhang
- School of Chemistry and Chemical Engineering Guangxi University Nanning 530004 PR China (J. Wang
| |
Collapse
|
5
|
Liu JY, Sheng MS, Geng YH, Zhang ZT, Wang TT, Fei L, Lacoste JD, Huo JZ, Zhang F, Ding B. In-situ encapsulation of oil soluble carbon nanoclusters in ZIF-8 and applied as bifunctional recyclable stable sensing material of nitrofurazone and lysine and fluorescent ink. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
6
|
Konno H, Tsukada A. Size- and ion-selective adsorption of organic dyes from aqueous solutions using functionalized UiO-66 frameworks. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129749] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Milanese S, De Giorgi ML, Cerdán L, La-Placa MG, Jamaludin NF, Bruno A, Bolink HJ, Kovalenko MV, Anni M. Amplified Spontaneous Emission Threshold Dependence on Determination Method in Dye-Doped Polymer and Lead Halide Perovskite Waveguides. Molecules 2022; 27:4261. [PMID: 35807506 PMCID: PMC9268657 DOI: 10.3390/molecules27134261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Revised: 06/27/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Nowadays, the search for novel active materials for laser devices is proceeding faster and faster thanks to the development of innovative materials able to combine excellent stimulated emission properties with low-cost synthesis and processing techniques. In this context, amplified spontaneous emission (ASE) properties are typically investigated to characterize the potentiality of a novel material for lasers, and a low ASE threshold is used as the key parameter to select the best candidate. However, several different methods are currently used to define the ASE threshold, hindering meaningful comparisons among various materials. In this work, we quantitatively investigate the ASE threshold dependence on the method used to determine it in thin films of dye-polymer blends and lead halide perovskites. We observe a systematic ASE threshold dependence on the method for all the different tested materials, and demonstrate that the best method choice depends on the kind of information one wants to extract. In particular, the methods that provide the lowest ASE threshold values are able to detect the excitation regime of early-stage ASE, whereas methods that are mostly spread in the literature return higher thresholds, detecting the excitation regime in which ASE becomes the dominant process in the sample emission. Finally, we propose a standard procedure to properly characterize the ASE threshold, in order to allow comparisons between different materials.
Collapse
Affiliation(s)
- Stefania Milanese
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy; (M.L.D.G.); (M.A.)
| | - Maria Luisa De Giorgi
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy; (M.L.D.G.); (M.A.)
| | - Luis Cerdán
- Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Paterna, Spain; (L.C.); (M.-G.L.-P.); (H.J.B.)
| | - Maria-Grazia La-Placa
- Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Paterna, Spain; (L.C.); (M.-G.L.-P.); (H.J.B.)
| | - Nur Fadilah Jamaludin
- Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Singapore 637553, Singapore; (N.F.J.); (A.B.)
| | - Annalisa Bruno
- Energy Research Institute @ NTU (ERI@N), Nanyang Technological University, Singapore 637553, Singapore; (N.F.J.); (A.B.)
| | - Henk J. Bolink
- Instituto de Ciencia Molecular, Universidad de Valencia, 46980 Paterna, Spain; (L.C.); (M.-G.L.-P.); (H.J.B.)
| | - Maksym V. Kovalenko
- Department of Chemistry and Applied Biosciences, Institute of Inorganic Chemistry, ETH Zürich, CH-8093 Zürich, Switzerland;
- Laboratory for Thin Films and Photovoltaics, Empa—Swiss Federal Laboratories for Materials Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Marco Anni
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy; (M.L.D.G.); (M.A.)
| |
Collapse
|
8
|
Xie W, Zhou F, Li X, Liu Z, Zhang M, Zong Z, Liang L. A surface architectured metal-organic framework for targeting delivery: suppresses cancer growth and metastasis. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
9
|
Jo H, Kitao T, Kimura A, Itoh Y, Aida T, Okuro K. Bio-adhesive Nanoporous Module: Toward Autonomous Gating. Angew Chem Int Ed Engl 2021; 60:8932-8937. [PMID: 33528083 DOI: 10.1002/anie.202017117] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 12/15/2022]
Abstract
Here we report a bio-adhesive porous organic module (Glue COF) composed of hexagonally packed 1D nanopores based on a covalent organic framework. The nanopores are densely decorated with guanidinium ion (Gu+ ) pendants capable of forming salt bridges with oxyanionic species. Glue COF strongly adheres to biopolymers through multivalent salt-bridging interactions with their ubiquitous oxyanionic species. By taking advantage of its strong bio-adhesive nature, we succeeded in creating a gate that possibly opens the nanopores through a selective interaction with a reporter chemical and releases guest molecules. We chose calmodulin (CaM) as a gating component that can stably entrap a loaded guest, sulforhodamine B (SRB), within the nanopores (CaM COF⊃SRB). CaM is known to change its conformation on binding with Ca2+ ions. We confirmed that mixing CaM COF⊃SRB with Ca2+ resulted in the release of SRB from the nanopores, whereas the use of weakly binding Mg2+ ions resulted in a much slower release of SRB.
Collapse
Affiliation(s)
- Hyuna Jo
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Kitao
- Department of Advanced Materials Science, Graduate School of Frontier Sciences and Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, Chiba, 227-8561, Japan
| | - Ayumi Kimura
- Institute of Engineering Innovation, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshimitsu Itoh
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Kou Okuro
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan.,Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
10
|
Jo H, Kitao T, Kimura A, Itoh Y, Aida T, Okuro K. Bio‐adhesive Nanoporous Module: Toward Autonomous Gating. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Hyuna Jo
- Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takashi Kitao
- Department of Advanced Materials Science Graduate School of Frontier Sciences and Department of Applied Chemistry Graduate School of Engineering The University of Tokyo Chiba 227-8561 Japan
| | - Ayumi Kimura
- Institute of Engineering Innovation The University of Tokyo 2-11-16 Yayoi, Bunkyo-ku Tokyo 113-8656 Japan
| | - Yoshimitsu Itoh
- Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takuzo Aida
- Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- RIKEN Center for Emergent Matter Science 2-1 Hirosawa Wako Saitama 351-0198 Japan
| | - Kou Okuro
- Department of Chemistry and Biotechnology School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong China
| |
Collapse
|
11
|
Leith GA, Martin CR, Mayers JM, Kittikhunnatham P, Larsen RW, Shustova NB. Confinement-guided photophysics in MOFs, COFs, and cages. Chem Soc Rev 2021; 50:4382-4410. [PMID: 33594994 DOI: 10.1039/d0cs01519a] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In this review, the dependence of the photophysical response of chromophores in the confined environments associated with crystalline scaffolds, such as metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and molecular cages, has been carefully evaluated. Tunability of the framework aperture, cavity microenvironment, and scaffold topology significantly affects emission profiles, quantum yields, or fluorescence lifetimes of confined chromophores. In addition to the role of the host and its effect on the guest, the methods for integration of a chromophore (e.g., as a framework backbone, capping linker, ligand side group, or guest) are discussed. The overall potential of chromophore-integrated frameworks for a wide-range of applications, including artificial biomimetic systems, white-light emitting diodes, photoresponsive devices, and fluorescent sensors with unparalleled spatial resolution are highlighted throughout the review.
Collapse
Affiliation(s)
- Gabrielle A Leith
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, South Carolina 29210, USA.
| | | | | | | | | | | |
Collapse
|
12
|
Ruan B, Yang J, Zhang YJ, Ma N, Shi D, Jiang T, Tsai FC. UiO-66 derivate as a fluorescent probe for Fe3+ detection. Talanta 2020; 218:121207. [DOI: 10.1016/j.talanta.2020.121207] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 01/07/2023]
|