1
|
Hamzi I. Colorimetric and Fluorometric N-Acylhydrazone-based Chemosensors for Detection of Single to Multiple Metal Ions: Design Strategies and Analytical Applications. J Fluoresc 2025; 35:2569-2621. [PMID: 38856800 DOI: 10.1007/s10895-024-03748-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/29/2024] [Indexed: 06/11/2024]
Abstract
The development of optical sensors for metal ions has gained significant attention due to their broad applications in biology, the environment, and medicine. Colorimetric and fluorometric detection methods are particularly valued for their simplicity, cost-effectiveness, high detection limits, and analytical power. Among various chemical probes, the hydrazone functional group stands out for its extensive study and utility, owing to its ease of synthesis and adaptability. This review provides a comprehensive overview of N-acylhydrazone-based probes, serving as highly effective colorimetric and fluorometric chemosensors for a diverse range of metal ions. Probes are categorized into single-ion, dual-ion, and multi-ion chemosensors, each further classified based on the detected metal(s). Additionally, the review discusses detection modes, detection limits, association constants, and spectroscopic measurements.
Collapse
Affiliation(s)
- I Hamzi
- Laboratoire de Catalyse Et Synthèse en Chimie Organique, Faculté des Sciences, Université de Tlemcen, B.P.119, 13000, Tlemcen, Algeria.
- Faculté de Médecine, Université de Tlemcen, 12 B P 123 Hamri Ahmed, 13000, Tlemcen, Algeria.
| |
Collapse
|
2
|
Li T, Xiao X, Zhou C, Luo M. Design and Application of Cu 2+ Fluorescent Sensor Based on Carbazole Derivatives. J Fluoresc 2025; 35:2993-3001. [PMID: 38691280 DOI: 10.1007/s10895-024-03741-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 04/23/2024] [Indexed: 05/03/2024]
Abstract
A novel fluorescent sensor for the detection of Cu2+ was developed based on carbazole derivatives. After the addition of Cu2+, the sensor exhibited obvious fluorescence quenching phenomenon, and the optical signal variation also enabled the sensor to quantitatively analyze Cu2+ due to the formation of a stable 1:1 metal-ligand complex in a short time. In addition, the sensor possessed chemical reversibility and pH stability. The cell imaging and zebra fish experiments also verified its application value in biological system.
Collapse
Affiliation(s)
- Tiantian Li
- School of Chemistry & Environmental Engineering, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Xiao Xiao
- School of Chemistry & Environmental Engineering, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, PR China
| | - Chen Zhou
- School of Chemistry & Environmental Engineering, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, PR China.
| | - Mingxin Luo
- School of Chemistry & Environmental Engineering, Jilin Provincial International Joint Research Center of Photo-Functional Materials and Chemistry, Changchun University of Science and Technology, Changchun, 130022, PR China
| |
Collapse
|
3
|
Fu H, Li Z, Zhao Y, Li J. Interplays between Functional Groups and Substitution Sites Modulate the Photophysics of the Bithiophenes. J Phys Chem A 2025; 129:2033-2040. [PMID: 39960263 DOI: 10.1021/acs.jpca.4c08513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
Bithiophene has an electron-rich conjugated ring, enabling highly tunable photophysical properties for the design of novel organic light-emitting materials. Extensive research was focused on the functionalization of α-site-connected bithiophene, while recent work reported the synthesis of β-bithiophene, substantially enlarging the chemical space for bithiophene design. However, the design rule for modulating the physical properties of β-bithiophene has remained unexplored. We performed comprehensive quantum chemical calculations to investigate how functional groups and substituent sites control the absorption and emission wavelengths of β-bithiophene. Our results show that the functional groups lead to red-shifts of the wavelengths by extending the electron delocalization, while the substitution sites have fewer effects on the wavelengths. The absorption and emission calculation for trithiophene and tetrathiophene suggest that the photophysical properties of thiophene polymer are controlled by the short thiophene chains, underscoring the significance of the rational design of β-bithiophene derivatives.
Collapse
Affiliation(s)
- Haijun Fu
- School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, China
| | - Zhendong Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, China
| | - Yanying Zhao
- School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jingbai Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, 7098 Liuxian Blvd, Nanshan District, Shenzhen 518055, China
| |
Collapse
|
4
|
Liu P, Shui X, Shi M, Kang M, Liu Y, Yang X, Zhang G. The comparative study of two new Schiff bases derived from 5-(thiophene-2-yl)isoxazole as "Off-On-Off" fluorescence sensors for the sequential detection of Ga 3+ and Fe 3+ ions. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 315:124247. [PMID: 38599023 DOI: 10.1016/j.saa.2024.124247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Two new Schiff bases, TIC ((E)-N'-(2-hydroxybenzylidene)-5-(thiophene-2-yl)isoxazole-3-carbohydrazide) and TIE ((E)-N'-(3-ethoxy-2-hydroxybenzylidene)-5-(thiophene-2-yl)isoxazole-3-carbohydrazide), have been designed and synthesized as chemosensors for distinct recognition of Ga3+ and Fe3+ ions. TIE demonstrated a prominent "turn on" response characterized by clear distinguished fluorescence when coordination with Ga3+ ions in the DMSO/H2O buffer solution. In comparison, TIC also showed "turn on" response of blue fluorescence which was more selective and sensitive than that of TIE due to the steric hindrance of ethoxy group of TIE. The newly formed complexes TIC-Ga3+ and TIE-Ga3+ may act as selective "turn-off" fluorescent probes towards Fe3+ ions. Limits of detection of TIC and TIE towards Ga3+ ions were 7.8809 × 10-9 M and 2.6277 × 10-8 M, respectively. Limits of detection of TIC-Ga3+ and TIE-Ga3+ towards Fe3+ ions were 8.6562 × 10-9 M and 3.3764 × 10-7 M, respectively. The molar ratio of the complex between the sensor and Ga3+ or Fe3+ ions were all 1:2 determined through Job's Plot, mass spectrometry, and theoretical calculations. Both sensors were utilized for the determination of target ions in environment water samples, and the portable paper sensors for detecting Ga3+ ions have been successfully developed.
Collapse
Affiliation(s)
- Peng Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaoxing Shui
- Henan Sanmenxia Aoke Chemical Industry Co. Ltd., Sanmenxia 472000, China.
| | - Manman Shi
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingyi Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Yuanying Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
5
|
Nilo N, Reyna-Jeldes M, Covarrubias AA, Coddou C, Artigas V, Fuentealba M, Aguilar LF, Saldías M, Mellado M. A pH-Sensitive Fluorescent Chemosensor Turn-On Based in a Salen Iron (III) Complex: Synthesis, Photophysical Properties, and Live-Cell Imaging Application. Molecules 2023; 28:7237. [PMID: 37959657 PMCID: PMC10647502 DOI: 10.3390/molecules28217237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/18/2023] [Accepted: 09/27/2023] [Indexed: 11/15/2023] Open
Abstract
pH regulation is essential to allow normal cell function, and their imbalance is associated with different pathologic situations, including cancer. In this study, we present the synthesis of 2-(((2-aminoethyl)imino)methyl)phenol (HL1) and the iron (III) complex (Fe(L1)2Br, (C1)), confirmed by X-ray diffraction analysis. The absorption and emission properties of complex C1 were assessed in the presence and absence of different physiologically relevant analytes, finding a fluorescent turn-on when OH- was added. So, we determined the limit of detection (LOD = 3.97 × 10-9 M), stoichiometry (1:1), and association constant (Kas = 5.86 × 103 M-1). Using DFT calculations, we proposed a spontaneous decomposition mechanism for C1. After characterization, complex C1 was evaluated as an intracellular pH chemosensor on the human primary gastric adenocarcinoma (AGS) and non-tumoral gastric epithelia (GES-1) cell lines, finding fluorescent signal activation in the latter when compared to AGS cells due to the lower intracellular pH of AGS cells caused by the increased metabolic rate. However, when complex C1 was used on metastatic cancer cell lines (MKN-45 and MKN-74), a fluorescent turn-on was observed in both cell lines because the intracellular lactate amount increased. Our results could provide insights about the application of complex C1 as a metabolic probe to be used in cancer cell imaging.
Collapse
Affiliation(s)
- Nicole Nilo
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (N.N.); (V.A.); (M.F.); (L.F.A.)
| | - Mauricio Reyna-Jeldes
- Laboratory of Cancer Biology, Department of Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK;
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; (A.A.C.); (C.C.)
| | - Alejandra A. Covarrubias
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; (A.A.C.); (C.C.)
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile
- Facultad de Ciencias Agropecuarias, Universidad del Alba, La Serena 1700000, Chile
| | - Claudio Coddou
- Laboratorio de Señalización Purinérgica, Departamento de Ciencias Biomédicas, Facultad de Medicina, Universidad Católica del Norte, Coquimbo 1781421, Chile; (A.A.C.); (C.C.)
- Millennium Nucleus for the Study of Pain (MiNuSPain), Santiago 8330025, Chile
- Núcleo para el Estudio del Cáncer a Nivel Básico, Aplicado, y Clínico, Universidad Católica del Norte, Coquimbo 1781421, Chile
| | - Vania Artigas
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (N.N.); (V.A.); (M.F.); (L.F.A.)
| | - Mauricio Fuentealba
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (N.N.); (V.A.); (M.F.); (L.F.A.)
| | - Luis F. Aguilar
- Instituto de Química, Facultad de Ciencias, Pontificia Universidad Católica de Valparaíso, Valparaíso 2373223, Chile; (N.N.); (V.A.); (M.F.); (L.F.A.)
| | - Marianela Saldías
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
| | - Marco Mellado
- Instituto de Investigación y Postgrado, Facultad de Ciencias de la Salud, Universidad Central de Chile, Santiago 8330507, Chile;
| |
Collapse
|
6
|
Adrion DM, Lopez SA. Design rules for optimization of photophysical and kinetic properties of azoarene photoswitches. Org Biomol Chem 2023; 21:7351-7357. [PMID: 37646103 DOI: 10.1039/d3ob01298k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Azoarenes are an important class of molecular photoswitches that often undergo E → Z isomerization with ultraviolet light and have short Z-isomer lifetimes. Azobenzene has been a widely studied photoswitch for decades but can be poorly suited for photopharmacological applications due to its UV-light absorption and short-lived Z-isomer half-life (t1/2). Recently, diazo photoswitches with one or more thiophene rings in place of a phenyl ring have emerged as promising candidates, as they exhibit a stable photostationary state (98% E → Z conversion) and E-isomer absorption (λmax) in the visible light range (405 nm). In this work, we performed density functional theory calculations [PBE0-D3BJ/6-31+G(d,p)] on 26 hemi-azothiophenes, substituted with one phenyl ring and one thiophene ring on the diazo bond. We calculated the E-isomer absorption (λmax) and Z-isomer t1/2 for a set of 26 hemi-azothiophenes. We compared their properties to thiophene-based photoswitches that have been studied previously. We separated the 26 proposed photoswitches into four quadrants based on their λmax and t1/2 relative to past generations of hemi-azothiophene photoswitches. We note 8 hemi-azothiophenes with redshifted λmax and longer t1/2 than previous systems. Our top candidate has λmax and a t1/2 approaching 360 nm and 279 years, respectively. The results here present a pathway towards leveraging and optimizing two properties of photoswitches previously thought to be inversely related.
Collapse
Affiliation(s)
- Daniel M Adrion
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, USA.
| | - Steven A Lopez
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, Massachusetts, 02115, USA.
| |
Collapse
|
7
|
Liu Y, Cui H, Wei K, Kang M, Liu P, Yang X, Pei M, Zhang G. A new Schiff base derived from 5-(thiophene-2-yl)oxazole as "off-on-off" fluorescence sensor for monitoring indium and ferric ions sequentially and its application. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 292:122376. [PMID: 36709682 DOI: 10.1016/j.saa.2023.122376] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/15/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
A new Schiff base sensor (E)-N'-((8-hydroxy-2,3,6,7-tetrahydro-1H,5H-pyrido[3,2,1-ij]quinolin-9-yl)methylene)-5-(thiophen-2-yl)oxazole-4-carbohydrazide (TOQ) was synthesized and found to emit yellowish green fluorescence upon introduction of In3+. Furthermore, the resulting complex TOQ-In3+ was quenched selectively by Fe3+. The detection limits of TOQ for In3+ and Fe3+ were 1.75 × 10-10 M and 8.45 × 10-9 M, respectively. The complex stoichiometry of TOQ with target ions was determined to be 1:2 via Job's plot analysis, which further was verified by ESI-MS titration and theoretical calculations. Moreover, TOQ can be used for the determination of target ions in environmental water samples. A portable paper sensor of TOQ was successfully developed for detecting In3+ to assess its applicability.
Collapse
Affiliation(s)
- Yuanying Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Huanxia Cui
- Henan Sanmenxia Aoke Chemical Industry Co. Ltd., Sanmenxia 472000, China.
| | - Kehui Wei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Mingyi Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Peng Liu
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Xiaofeng Yang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Meishan Pei
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Guangyou Zhang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| |
Collapse
|
8
|
Zagranyarski Y, Cheshmedzhieva DV, Mutovska M, Ahmedova A, Stoyanov S. Dioxepine-Peri-Annulated PMIs-Synthesis and Spectral and Sensing Properties. SENSORS (BASEL, SWITZERLAND) 2023; 23:2902. [PMID: 36991615 PMCID: PMC10058915 DOI: 10.3390/s23062902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/27/2023] [Accepted: 03/02/2023] [Indexed: 06/19/2023]
Abstract
New perylene monoimide (PMI) derivatives bearing a seven-membered heterocycle and 1,8-diaminosarcophagine (DiAmSar) or N,N-dimethylaminoethyl chelator fragments were synthesized, and their spectroscopic properties in the absence and presence of metal cations were determined to evaluate their potential applications as PET optical sensors for such analytes. DFT and TDDFT calculations were employed to rationalize the observed effects.
Collapse
|
9
|
Li Z, Hou C, Luo Y, Zhang W, Li L, Xu P, Xu T. Embedded racetrack microring resonator sensor based on GeSbSe glasses. OPTICS EXPRESS 2023; 31:1103-1111. [PMID: 36785152 DOI: 10.1364/oe.478613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/14/2022] [Indexed: 06/18/2023]
Abstract
In this article, a compact racetrack double microring resonator (MRR) sensor based on Ge28Sb12Se60 (GeSbSe) is investigated. The sensor device consists of a racetrack microring, an embedded small microring, and a strip waveguide. Electron beam lithography (EBL) and dry etching are used to fabricate the device. The compact racetrack double MRR device are obtained with Q-factor equal to 7.17 × 104 and FSR of 24 nm by measuring the transmission spectrum. By measuring different concentrations of glucose solutions, a sensitivity of 297 nm/RIU by linear fitting and an intrinsic limit of detection (iLOD) of 7.40 × 10-5 are obtained. It paves the way for the application of chalcogenide glasses in the field of biosensing.
Collapse
|
10
|
Liu Y, Yang F, Wei K, Kang M, Liu P, Yang X, Pei M, Zhang G. 5-(thiophene-2-yl)oxazole derived “off-on-off” fluorescence chemosensor for sequential recognition of In3+ and Cr3+ ions. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.114464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
11
|
Li J, Zhou C, Zhang H, Hou Y, Pan Q, Sun J, Li X. A novel colorimetric and “turn-on” fluorescent sensor for selective detection of Cu2+. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
12
|
Sano S, Nakao M, Toguchi M, Horikoshi K, Kitaike S. Synthesis of Novel 2,3-Disubstituted Thiophenes via Tandem Thia-Michael/Aldol Reaction of Allenyl Esters. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|