1
|
Kuroiwa K, Matsumura Y, Nagano K, Kishimoto R, Yoshizawa M, Fujimura A, Shimaki N, Sakuragi M, Oda-Ueda N. Supramolecular Hybrids of Proteins from Habu Snake Venom with Discrete [Pt(CN) 4] 2- Complex. ACS APPLIED MATERIALS & INTERFACES 2024; 16:63884-63893. [PMID: 39267606 DOI: 10.1021/acsami.4c09837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
The venom of the Habu snake Protobothrops flavoviridis (P. flavoviridis) is known to contain a diverse array of proteins and peptides, with a notable presence of phospholipase A2 (PLA2) enzymes. These PLA2 enzymes have been extensively studied for their function and molecular evolution. Nevertheless, several aspects, such as the physical properties and the self-assembly mechanism of hierarchical structure from the nanoscale to the microscale with different chemical compounds, remain poorly understood. This study aims to fill this knowledge gap by investigating the behavior of enzyme components purified from P. flavoviridis venom in the presence of anionic [Pt(CN)4]2- complexes, which have the potential for soft metallophilic interactions and interesting optical properties. The purified PLA2 isozymes were diluted in Dulbecco's phosphate buffered saline (D-PBS (-)) and combined with the anionic metal complex, resulting in the formation of microstructures several micrometers in size, which further grew to form fibrous structures. This novel approach of combining PLA2 enzymes with discrete functional metal complexes opens up exciting possibilities for designing flexible and functional supramolecular and biomolecular hybrid systems in aqueous environments. These findings shed light on the potential applications of snake venom enzymes in nanotechnology and bioengineering.
Collapse
Affiliation(s)
- Keita Kuroiwa
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Yusei Matsumura
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Keito Nagano
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Reina Kishimoto
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Mai Yoshizawa
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Aoi Fujimura
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Nobuhito Shimaki
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Mina Sakuragi
- Department of Nanoscience, Faculty of Engineering, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| | - Naoko Oda-Ueda
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Sojo University, 4-22-1 Ikeda, Nishi-ku, Kumamoto 860-0082, Japan
| |
Collapse
|
2
|
Freeman A. Protein-Mediated Biotemplating on the Nanoscale. Biomimetics (Basel) 2017; 2:E14. [PMID: 31105177 PMCID: PMC6352702 DOI: 10.3390/biomimetics2030014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/18/2017] [Accepted: 08/01/2017] [Indexed: 12/26/2022] Open
Abstract
Purified proteins offer a homogeneous population of biological nanoparticles, equipped in many cases with specific binding sites enabling the directed self-assembly of envisaged one-, two- or three-dimensional arrays. These arrays may serve as nanoscale biotemplates for the preparation of novel functional composite materials, which exhibit potential applications, especially in the fields of nanoelectronics and optical devices. This review provides an overview of the field of protein-mediated biotemplating, focussing on achievements made throughout the past decade. It is comprised of seven sections designed according to the size and configuration of the protein-made biotemplate. Each section describes the design and size of the biotemplate, the resulting hybrid structures, the fabrication methodology, the analytical tools employed for the structural analysis of the hybrids obtained, and, finally, their claimed/intended applications and a feasibility demonstration (whenever available). In conclusion, a short assessment of the overall status of the achievements already made vs. the future challenges of this field is provided.
Collapse
Affiliation(s)
- Amihay Freeman
- Department of Molecular Microbiology and Biotechnology, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
3
|
Beznosov SN, Veluri PS, Pyatibratov MG, Chatterjee A, MacFarlane DR, Fedorov OV, Mitra S. Flagellar filament bio-templated inorganic oxide materials - towards an efficient lithium battery anode. Sci Rep 2015; 5:7736. [PMID: 25583370 PMCID: PMC4291565 DOI: 10.1038/srep07736] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Accepted: 12/10/2014] [Indexed: 11/09/2022] Open
Abstract
Designing a new generation of energy-intensive and sustainable electrode materials for batteries to power a variety of applications is an imperative task. The use of biomaterials as a nanosized structural template for these materials has the potential to produce hitherto unachievable structures. In this report, we have used genetically modified flagellar filaments of the extremely halophilic archaea species Halobacterium salinarum to synthesize nanostructured iron oxide composites for use as a lithium-ion battery anode. The electrode demonstrated a superior electrochemical performance compared to existing literature results, with good capacity retention of 1032 mAh g(-1) after 50 cycles and with high rate capability, delivering 770 mAh g(-1) at 5 A g(-1) (~5 C) discharge rate. This unique flagellar filament based template has the potential to provide access to other highly structured advanced energy materials in the future.
Collapse
Affiliation(s)
- Sergei N Beznosov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Pavan S Veluri
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai 400076 Mumbai, India
| | - Mikhail G Pyatibratov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Abhijit Chatterjee
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, 400076 Mumbai, India
| | - Douglas R MacFarlane
- Australian Center of Excellence for Electromaterials Science, School of Chemistry, Monash University, Clayton, Victoria 3800, Australia
| | - Oleg V Fedorov
- Institute of Protein Research, Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Sagar Mitra
- Department of Energy Science and Engineering, Indian Institute of Technology Bombay, Powai 400076 Mumbai, India
| |
Collapse
|